Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

General Research Article

Total Phenolic Content and In vitro Antioxidant Activity of Endophytic Fungi Isolated from Calotropis procera L.

Author(s): Reena Rani, Dushyant Sharma, Monika Chaturvedi and Jaya Parkash Yadav*

Volume 15, Issue 2, 2019

Page: [232 - 241] Pages: 10

DOI: 10.2174/1573407214666180312143655

Price: $65

Abstract

Background: Endophytic fungi are microorganisms that colonize inside the plant tissues without causing any disease symptoms. Endophytic fungi isolated from medicinal plants have emerged as an interesting source for the isolation of bioactive compounds. In this study, we selected Calotropis procera, a member of the Asclepiadaceae family commonly called ‘Aak’ to evaluate the antioxidant potential of isolated endophytic fungi.

Objective: The aim of this study was to assess the total phenolic content (TPC), antioxidant capacity by using different assay and phytochemical screening of endophytic fungi isolated from Calotropis procera (leaves, stem and root).

Method: Crude ethyl acetate extracts of 20 different endophytic fungi isolated from Calotropis procera were tested for their preliminary phytoconstituents presence, TPC estimation (by Folin–Ciocalteu colorimetric assay) and antioxidant potential [1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, hydrogen peroxide (H2O2) free radical scavenging assay, β-carotene-linoleic free radical scavenging assay, metal chelating assay and xanthine oxidase inhibitory assay].

Results: Phenols, carbohydrates, saponins, tannins, alkaloids and flavanoids were the main phytoconstituents present in the endophytic fungi. Among the endophytes, Aspergillus nomius showed the highest TPC [72.71±1.67 µg GAE (gallic acid equivalent) /mg dry weight of fungi] and antioxidant activity for DPPH free radical scavenging assay (68.86±0.19%). A high positive linear correlation was found between TPC and xanthine oxidase inhibitory assay (R2-0.890) and between TPC and DPPH free radical scavenging assay (R2-0.839). Aspergillus and Fusarium genus species showed significant antioxidant activity by the different assay.

Conclusion: The present study revealed some endophytic fungi from Calotropis procera could be a potential source of novel natural antioxidant compounds.

Keywords: Antioxidant activity, Calotropis procera, DPPH assay, Endophytic fungi, Total phenolic content, Xanthine oxidase inhibitory assay.

Graphical Abstract

[1]
Davies, K.J. Oxidative stress: the paradox of aerobic life. Biochem. Soc. Symp., 1995, 61, 1-31.
[2]
Gutteridge, J.M.C. Free radicals in disease processes: a compilation of cause and consequence. Free Radic. Res. Commun., 1993, 19(3), 141-158.
[3]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[4]
Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance generated by plant/fungal symbiosis. Science, 2002, 298(5598), 1581-1581.
[5]
Yadav, M.; Yadav, A.; Yadav, J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med., 2014, 7S1(S1), S256-S261.
[6]
Rani, R.; Sharma, D.; Chaturvedi, M.; Yadav, J.P. Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clin. Microbiol., 2017, 6(3), 280-285.
[7]
Zhang, G.; Sun, S.; Zhu, T.; Lin, Z.; Gu, J.; Li, D.; Gu, Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry, 2011, 72(11-12), 1436-1442.
[8]
Parsons, W.T.; Cuthbertson, E.G. Noxious weeds of Australia, 2nd ed; Inkarta Press: Melbourne, 2001.
[9]
Yogi, B.; Gupta, S.K.; Mishra, A. Calotropis procera (Madar): A medicinal plant of various therapeutic uses-A review. Bull. Env. Pharmacol. Life Sci., 2016, 7(5), 74-81.
[10]
Arnold, A.E.; Maynard, Z.; Gilbert, G.S.; Coley, P.D.; Kursar, T.A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett., 2000, 3(4), 267-274.
[11]
Harborne, J.B. Phytochemical methods: a guide to modern techniques of plant analysis, 3rd ed; Springer: Dordrecht, 1998.
[12]
Bhandary, S.K.; Kumari, S.N.; Bhat, V.S.; Sharmila, K.P.; Bekal, M.P. Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J. Health Sci. (Sarajevo), 2012, 2(4), 35-38.
[13]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[14]
Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem., 2012, 130(4), 1036-1043.
[15]
Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 1989, 10(6), 1003-1008.
[16]
Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem., 2004, 84(4), 551-562.
[17]
Rajić, Z.; Končić, M.Z.; Miloloža, K.; Perković, I.; Butula, I.; Bucar, F.; Zorc, B. Primaquine-NSAID twin drugs: Synthesis, radical scavenging, antioxidant and Fe2+ chelating activity. Acta Pharm., 2010, 60(3), 325-337.
[18]
Hudaib, M.; Tawaha, K.; Bustanji, Y. In vitro xanthine oxidase inhibition by selected Jordanian medicinal plants. Jordan J. Pharm. Sci., 2011, 4(1), 29-34.
[19]
Garcia, A.; Rhoden, S.A.; Bernardi-Wenzel, J.; Orlandelli, R.C.; Azevedo, J.L.; Pamphile, J.A. Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Sapindus saponaria L. J. Appl. Pharm. Sci., 2012, 2(10), 35-40.
[20]
Nair, A.C.; Goveas, S.; D’Souza, L.; D’Cunha, F.; D’Souza, V. Antibacterial and antioxidant potential of organic solvents extract of mangrove endophytic fungus Eupenicillium senticosum Scott. J. Altern. Med. Res., 2017, 9(1), 65-73.
[21]
Bogner, C.W.; Kamdem, R.S.; Sichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.; Schouten, A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol., 2017, 10(1), 175-188.
[22]
Elliott, J.G. Application of antioxidant vitamins in foods and beverages: Developing nutraceuticals for the new millenium. Food Technol., 1999, 53(2), 46-48.
[23]
Khiralla, A.; Mohamed, I.; Thomas, J.; Mignard, B.; Spina, R.; Yagi, S.; Laurain-Mattar, D. A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac. J. Trop. Med., 2015, 8(9), 701-704.
[24]
Jayaprakash, G.K.; Selvi, T.; Sakariah, K.K. Antimicrobial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int., 2003, 36(2), 117-122.
[25]
Hippeli, S.; Elstner, E.F. Transition metal ion-catalyzed oxygen activation during pathogenic processes. FEBS Lett., 1999, 443(1), 1-7.
[26]
Nile, S.H.; Park, S.W. Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa L.). Front. Life Sci., 2013, 7(3-4), 224-228.
[27]
Keffous, F.; Belboukhari, N.; Djaradi, H.; Cheriti, A.; Sekkoum, K.Y.; Aboul-Enein, H. Total antioxidant capacity, reducing power and cyclic voltammetry of Zilla Macroptera (Brassicaceae) Aqueous extract. Curr. Bioact. Compd., 2016, 12(1), 39-43.
[28]
Strobel, G.; Ford, E.; Worapong, J.; Harper, J.K.; Arif, A.M.; Grant, D.M.; Fung, P.C.; Ming Wah Chau, R. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry, 2002, 60(2), 179-183.
[29]
Asker, M.M.S.; Mohamed, S.F.; Mahmoud, M.G.; Sayed El, O.H. Antioxidant and antitumor activity of a new sesquiterpene isolated from endophytic fungus Aspergillus glaucus. Int. J. Pharm. Tech. Res., 2013, 5(2), 391-397.
[30]
Tian, J.; Fu, L.; Zhang, Z.; Dong, X.; Xu, D.; Mao, Z.; Liu, Y.; Lai, D.; Zhou, L. Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: Isolation, structure elucidation, and their antibacterial and antioxidant activities. Nat. Prod. Res., 2017, 31(4), 387-396.
[31]
Dewi, R.T.; Tachibana, S.; Itoh, K.; Ilyas, M. Isolation of antioxidant compounds from Aspergillus terreus LS01. J. Microb. Biochem. Technol., 2012, 4(1), 10-14.
[32]
Dhankhar, S.; Kumar, S.; Dhankhar, S.; Yadav, J.P. Antioxidant activity of fungal endophytes isolated from Salvadora oleoides Decne. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 380-385.
[33]
Cui, J.L.; Guo, T.T.; Ren, Z.X.; Zhang, N.S.; Wang, M.L. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS One, 2015, 10(3), e0118204.
[34]
Nath, A.; Chattopadhyay, A.; Joshi, S.R. Biological activity of endophytic fungi of Rauwolfia serpentina Benth: an ethnomedicinal plant used in folk medicines in Northeast India. P. Natl. A Sci. India B: Biol. Sci., 2015, 85(1), 233-240.
[35]
Ksiksi, T.; Palakkott, A.R.; Ppoyil, S.B.T. Tribulus arabicus and Tribulus macropterus are comparable to Tribulus terrestris: An Antioxidant Assessment. Curr. Bioact. Compd., 2017, 13(1), 82-87.
[36]
Nile, S.H.; Nile, A.S.; Keum, Y.S. Total phenolics, antioxidant, antitumor, and enzyme inhibito-ry activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech, 2017, 7(1), 76-85.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy