Review Article

异生素和病理生理条件对肝脏MRP3 / ABCC3的调节作用:药物药代动力学中的作用

卷 26, 期 7, 2019

页: [1185 - 1223] 页: 39

弟呕挨: 10.2174/0929867325666180221142315

价格: $65

摘要

肝转运蛋白在药物,环境污染物和内源性化合物的药代动力学和配置中起重要作用。其中,ATP结合盒(ABC)转运蛋白家族是最重要的,因为它在内源和异生素的转运中起作用。 ABCC亚家族是最大的一个,由13个成员组成,其中包括囊性纤维化传导调节因子(CFTR / ABCC7);磺酰脲受体(SUR1 / ABCC8和SUR2 / ABCC9)和多药耐药相关蛋白(MRPs)。 MRP相关蛋白可共同赋予对天然合成药物及其缀合代谢物的抗性,包括含铂化合物,叶酸抗代谢物,核苷和核苷酸类似物等。 MRP也可以编入“长”(MRP1 / ABCC1,-2 / C2,-3 / C3,-6 / C6和-7 / C10)和“短”(MRP4 / C4,-5 / C5, - 8 / C11,-9 / C12和-10 / C13)类别。虽然MRP2 / ABCC2在肝细胞的小管中表达,但所有其他位于基底外侧膜中。在本综述中,我们总结了研究中的信息,这些研究通过异生素和各种病理生理条件检查基底外侧肝转运蛋白MPR3 / ABCC3的表达和调节的变化。我们还主要关注由MRP3运输的不同临床用药的药代动力学,药效学和/或毒性的这种变化的后果。

关键词: ATP结合盒转运蛋白,多药耐药相关蛋白,药代动力学,异生素转运,对乙酰氨基酚。

[1]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta, 1976, 455(1), 152-162.
[2]
Ishikawa, T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci., 1992, 17(11), 463-468.
[3]
Hollenstein, K.; Dawson, R.J.; Locher, K.P. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol., 2007, 17(4), 412-418.
[4]
Deeley, R.G.; Westlake, C.; Cole, S.P. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev., 2006, 86(3), 849-899.
[5]
Chan, L.M.; Lowes, S.; Hirst, B.H. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur. J. Pharm. Sci., 2004, 21(1), 25-51.
[6]
Morrissey, K.M.; Stocker, S.L.; Wittwer, M.B.; Xu, L.; Giacomini, K.M. Renal transporters in drug development. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 503-529.
[7]
Williams, J.A.; Hyland, R.; Jones, B.C.; Smith, D.A.; Hurst, S.; Goosen, T.C.; Peterkin, V.; Koup, J.R.; Ball, S.E. Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos., 2004, 32(11), 1201-1208.
[8]
Patel, M.; Taskar, K.S.; Zamek-Gliszczynski, M.J. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J. Clin. Pharmacol., 2016, 56(Suppl. 7), S23-S39.
[9]
Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7735-7738.
[10]
Oude Elferink, R.P.; Meijer, D.K.; Kuipers, F.; Jansen, P.L.; Groen, A.K.; Groothuis, G.M. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim. Biophys. Acta, 1995, 1241(2), 215-268.
[11]
Schmid, D.; Ecker, G.; Kopp, S.; Hitzler, M.; Chiba, P. Structure-activity relationship studies of propafenone analogs based on P-glycoprotein ATPase activity measurements. Biochem. Pharmacol., 1999, 58(9), 1447-1456.
[12]
Pastan, I.; Gottesman, M. Multiple-drug resistance in human cancer. N. Engl. J. Med., 1987, 316(22), 1388-1393.
[13]
Padowski, J.M.; Pollack, G.M. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Methods Mol. Biol., 2010, 596, 359-384.
[14]
Croop, J.M.; Raymond, M.; Haber, D.; Devault, A.; Arceci, R.J.; Gros, P.; Housman, D.E. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell. Biol., 1989, 9(3), 1346-1350.
[15]
Oude Elferink, R.P.; Paulusma, C.C. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch., 2007, 453(5), 601-610.
[16]
de Vree, J.M.; Jacquemin, E.; Sturm, E.; Cresteil, D.; Bosma, P.J.; Aten, J.; Deleuze, J.F.; Desrochers, M.; Burdelski, M.; Bernard, O.; Oude Elferink, R.P.; Hadchouel, M. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 282-287.
[17]
Deleuze, J.F.; Jacquemin, E.; Dubuisson, C.; Cresteil, D.; Dumont, M.; Erlinger, S.; Bernard, O.; Hadchouel, M. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology, 1996, 23(4), 904-908.
[18]
Wendum, D.; Barbu, V.; Rosmorduc, O.; Arrive, L.; Flejou, J.F.; Poupon, R. Aspects of liver pathology in adult patients with MDR3/ABCB4 gene mutations. Virchows Arch., 2012, 460(3), 291-298.
[19]
Rosmorduc, O.; Poupon, R. Low phospholipid associated cholelithiasis: Association with mutation in the MDR3/ABCB4 gene. Orphanet J. Rare Dis., 2007, 2, 29.
[20]
Gerloff, T.; Stieger, B.; Hagenbuch, B.; Madon, J.; Landmann, L.; Roth, J.; Hofmann, A.F.; Meier, P.J. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem., 1998, 273(16), 10046-10050.
[21]
Strautnieks, S.S.; Bull, L.N.; Knisely, A.S.; Kocoshis, S.A.; Dahl, N.; Arnell, H.; Sokal, E.; Dahan, K.; Childs, S.; Ling, V.; Tanner, M.S.; Kagalwalla, A.F.; Németh, A.; Pawlowska, J.; Baker, A.; Mieli-Vergani, G.; Freimer, N.B.; Gardiner, R.M.; Thompson, R.J. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat. Genet., 1998, 20(3), 233-238.
[22]
Jansen, P.L.; Strautnieks, S.S.; Jacquemin, E.; Hadchouel, M.; Sokal, E.M.; Hooiveld, G.J.; Koning, J.H.; De Jager-Krikken, A.; Kuipers, F.; Stellaard, F.; Bijleveld, C.M.; Gouw, A.; Van Goor, H.; Thompson, R.J.; Müller, M. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology, 1999, 117(6), 1370-1379.
[23]
Dawson, S.; Stahl, S.; Paul, N.; Barber, J.; Kenna, J.G. In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab. Dispos., 2012, 40(1), 130-138.
[24]
Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670.
[25]
Maliepaard, M.; Scheffer, G.L.; Faneyte, I.F.; van Gastelen, M.A.; Pijnenborg, A.C.; Schinkel, A.H.; van De Vijver, M.J.; Scheper, R.J.; Schellens, J.H. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res., 2001, 61(8), 3458-3464.
[26]
Suzuki, M.; Suzuki, H.; Sugimoto, Y.; Sugiyama, Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J. Biol. Chem., 2003, 278(25), 22644-22649.
[27]
Lee, J.Y.; Kinch, L.N.; Borek, D.M.; Wang, J.; Wang, J.; Urbatsch, I.L.; Xie, X.S.; Grishin, N.V.; Cohen, J.C.; Otwinowski, Z.; Hobbs, H.H.; Rosenbaum, D.M. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature, 2016, 533(7604), 561-564.
[28]
Graf, G.A.; Li, W.P.; Gerard, R.D.; Gelissen, I.; White, A.; Cohen, J.C.; Hobbs, H.H. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J. Clin. Invest., 2002, 110(5), 659-669.
[29]
Graf, G.A.; Yu, L.; Li, W.P.; Gerard, R.; Tuma, P.L.; Cohen, J.C.; Hobbs, H.H. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem., 2003, 278(48), 48275-48282.
[30]
Wang, J.; Mitsche, M.A.; Lütjohann, D.; Cohen, J.C.; Xie, X.S.; Hobbs, H.H. Relative roles of ABCG5/ABCG8 in liver and intestine. J. Lipid Res., 2015, 56(2), 319-330.
[31]
Yu, L.; Li-Hawkins, J.; Hammer, R.E.; Berge, K.E.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest., 2002, 110(5), 671-680.
[32]
Yu, L.; von Bergmann, K.; Lutjohann, D.; Hobbs, H.H.; Cohen, J.C. Selective sterol accumulation in ABCG5/ABCG8-deficient mice. J. Lipid Res., 2004, 45(2), 301-307.
[33]
Wellington, C.L.; Walker, E.K.; Suarez, A.; Kwok, A.; Bissada, N.; Singaraja, R.; Yang, Y.Z.; Zhang, L.H.; James, E.; Wilson, J.E.; Francone, O.; McManus, B.M.; Hayden, M.R. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab. Invest., 2002, 82(3), 273-283.
[34]
Langmann, T.; Klucken, J.; Reil, M.; Liebisch, G.; Luciani, M.F.; Chimini, G.; Kaminski, W.E.; Schmitz, G. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem. Biophys. Res. Commun., 1999, 257(1), 29-33.
[35]
Hoekstra, M.; Kruijt, J.K.; Van Eck, M.; Van Berkel, T.J. Specific gene expression of ATP-binding cassette transporters and nuclear hormone receptors in rat liver parenchymal, endothelial, and Kupffer cells. J. Biol. Chem., 2003, 278(28), 25448-25453.
[36]
Neufeld, E.B.; Demosky, S.J., Jr; Stonik, J.A.; Combs, C.; Remaley, A.T.; Duverger, N.; Santamarina-Fojo, S.; Brewer, H.B., Jr The ABCA1 transporter functions on the basolateral surface of hepatocytes. Biochem. Biophys. Res. Commun., 2002, 297(4), 974-979.
[37]
Wang, N.; Silver, D.L.; Thiele, C.; Tall, A.R. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J. Biol. Chem., 2001, 276(26), 23742-23747.
[38]
Lawn, R.M.; Wade, D.P.; Garvin, M.R.; Wang, X.; Schwartz, K.; Porter, J.G.; Seilhamer, J.J.; Vaughan, A.M.; Oram, J.F. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest., 1999, 104(8), R25-R31.
[39]
Wang, N.; Tall, A.R. Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol., 2003, 23(7), 1178-1184.
[40]
Brunham, L.R.; Kruit, J.K.; Iqbal, J.; Fievet, C.; Timmins, J.M.; Pape, T.D.; Coburn, B.A.; Bissada, N.; Staels, B.; Groen, A.K.; Hussain, M.M.; Parks, J.S.; Kuipers, F.; Hayden, M.R. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest., 2006, 116(4), 1052-1062.
[41]
Slot, A.J.; Molinski, S.V.; Cole, S.P. Mammalian multidrug-resistance proteins (MRPs). Essays Biochem., 2011, 50(1), 179-207.
[42]
Cole, S.P.; Bhardwaj, G.; Gerlach, J.H.; Mackie, J.E.; Grant, C.E.; Almquist, K.C.; Stewart, A.J.; Kurz, E.U.; Duncan, A.M.; Deeley, R.G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 1992, 258(5088), 1650-1654.
[43]
Keppler, D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb. Exp. Pharmacol., 2011, (201), 299-323.
[44]
Rius, M.; Hummel-Eisenbeiss, J.; Hofmann, A.F.; Keppler, D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(4), G640-G649.
[45]
Sodani, K.; Patel, A.; Kathawala, R.J.; Chen, Z.S. Multidrug resistance associated proteins in multidrug resistance. Chin. J. Cancer, 2012, 31(2), 58-72.
[46]
Nies, A.T. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett., 2007, 254(1), 11-29.
[47]
Li, J.; Li, Z.N.; Yu, L.C.; Bao, Q.L.; Wu, J.R.; Shi, S.B.; Li, X.Q. Association of expression of MRP1, BCRP, LRP and ERCC1 with outcome of patients with locally advanced non-small cell lung cancer who received neoadjuvant chemotherapy. Lung Cancer, 2010, 69(1), 116-122.
[48]
Penson, R.T.; Oliva, E.; Skates, S.J.; Glyptis, T.; Fuller, A.F., Jr; Goodman, A.; Seiden, M.V. Expression of multidrug resistance-1 protein inversely correlates with paclitaxel response and survival in ovarian cancer patients: a study in serial samples. Gynecol. Oncol., 2004, 93(1), 98-106.
[49]
Zhang, D.; Fan, D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future Oncol., 2010, 6(4), 527-537.
[50]
Henderson, M.J.; Haber, M.; Porro, A.; Munoz, M.A.; Iraci, N.; Xue, C.; Murray, J.; Flemming, C.L.; Smith, J.; Fletcher, J.I.; Gherardi, S.; Kwek, C.K.; Russell, A.J.; Valli, E.; London, W.B.; Buxton, A.B.; Ashton, L.J.; Sartorelli, A.C.; Cohn, S.L.; Schwab, M.; Marshall, G.M.; Perini, G.; Norris, M.D. ABCC multidrug transporters in childhood neuroblastoma: Clinical and biological effects independent of cytotoxic drug efflux. J. Natl. Cancer Inst., 2011, 103(16), 1236-1251.
[51]
Tiwari, A.K.; Sodani, K.; Dai, C.L.; Ashby, C.R., Jr; Chen, Z.S. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr. Pharm. Biotechnol., 2011, 12(4), 570-594.
[52]
Wijnholds, J.; Evers, R.; van Leusden, M.R.; Mol, C.A.; Zaman, G.J.; Mayer, U.; Beijnen, J.H.; van der Valk, M.; Krimpenfort, P.; Borst, P. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med., 1997, 3(11), 1275-1279.
[53]
Lorico, A.; Rappa, G.; Finch, R.A.; Yang, D.; Flavell, R.A.; Sartorelli, A.C. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res., 1997, 57(23), 5238-5242.
[54]
Narasaki, F.; Oka, M.; Nakano, R.; Ikeda, K.; Fukuda, M.; Nakamura, T.; Soda, H.; Nakagawa, M.; Kuwano, M.; Kohno, S. Human canalicular multispecific organic anion transporter (cMOAT) is expressed in human lung, gastric, and colorectal cancer cells. Biochem. Biophys. Res. Commun., 1997, 240(3), 606-611.
[55]
Korita, P.V.; Wakai, T.; Shirai, Y.; Matsuda, Y.; Sakata, J.; Takamura, M.; Yano, M.; Sanpei, A.; Aoyagi, Y.; Hatakeyama, K.; Ajioka, Y. Multidrug resistance-associated protein 2 determines the efficacy of cisplatin in patients with hepatocellular carcinoma. Oncol. Rep., 2010, 23(4), 965-972.
[56]
König, J.; Nies, A.T.; Cui, Y.; Leier, I.; Keppler, D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta, 1999, 1461(2), 377-394.
[57]
Johnson, B.M.; Zhang, P.; Schuetz, J.D.; Brouwer, K.L. Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. Drug Metab. Dispos., 2006, 34(4), 556-562.
[58]
Hirohashi, T.; Suzuki, H.; Ito, K.; Ogawa, K.; Kume, K.; Shimizu, T.; Sugiyama, Y. Hepatic expression of multidrug resistance-associated protein-like proteins maintained in eisai hyperbilirubinemic rats. Mol. Pharmacol., 1998, 53(6), 1068-1075.
[59]
Jansen, P.L.; Groothuis, G.M.; Peters, W.H.; Meijer, D.F. Selective hepatobiliary transport defect for organic anions and neutral steroids in mutant rats with hereditary-conjugated hyperbilirubinemia. Hepatology, 1987, 7(1), 71-76.
[60]
Paulusma, C.C.; Bosma, P.J.; Zaman, G.J.; Bakker, C.T.; Otter, M.; Scheffer, G.L.; Scheper, R.J.; Borst, P.; Oude Elferink, R.P. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science, 1996, 271(5252), 1126-1128.
[61]
Ito, K.; Suzuki, H.; Hirohashi, T.; Kume, K.; Shimizu, T.; Sugiyama, Y. Molecular cloning of canalicular multispecific organic anion transporter defective in EHBR. Am. J. Physiol., 1997, 272(1 Pt 1), G16-G22.
[62]
Kartenbeck, J.; Leuschner, U.; Mayer, R.; Keppler, D. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology, 1996, 23(5), 1061-1066.
[63]
Paulusma, C.C.; Oude Elferink, R.P. The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia in rat and man. J. Mol. Med. (Berl.), 1997, 75(6), 420-428.
[64]
Russel, F.G.; Koenderink, J.B.; Masereeuw, R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol. Sci., 2008, 29(4), 200-207.
[65]
Norris, M.D.; Smith, J.; Tanabe, K.; Tobin, P.; Flemming, C.; Scheffer, G.L.; Wielinga, P.; Cohn, S.L.; London, W.B.; Marshall, G.M.; Allen, J.D.; Haber, M. Expression of multidrug transporter MRP4/ABCC4 is a marker of poor prognosis in neuroblastoma and confers resistance to irinotecan in vitro. Mol. Cancer Ther., 2005, 4(4), 547-553.
[66]
Belinsky, M.G.; Guo, P.; Lee, K.; Zhou, F.; Kotova, E.; Grinberg, A.; Westphal, H.; Shchaveleva, I.; Klein-Szanto, A.; Gallo, J.M.; Kruh, G.D. Multidrug resistance protein 4 protects bone marrow, thymus, spleen, and intestine from nucleotide analogue-induced damage. Cancer Res., 2007, 67(1), 262-268.
[67]
Leggas, M.; Adachi, M.; Scheffer, G.L.; Sun, D.; Wielinga, P.; Du, G.; Mercer, K.E.; Zhuang, Y.; Panetta, J.C.; Johnston, B.; Scheper, R.J.; Stewart, C.F.; Schuetz, J.D. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol. Cell. Biol., 2004, 24(17), 7612-7621.
[68]
Mennone, A.; Soroka, C.J.; Cai, S.Y.; Harry, K.; Adachi, M.; Hagey, L.; Schuetz, J.D.; Boyer, J.L. Mrp4-/- mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology, 2006, 43(5), 1013-1021.
[69]
Borst, P.; de Wolf, C.; van de Wetering, K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch., 2007, 453(5), 661-673.
[70]
Bergen, A.A.; Plomp, A.S.; Schuurman, E.J.; Terry, S.; Breuning, M.; Dauwerse, H.; Swart, J.; Kool, M.; van Soest, S.; Baas, F.; ten Brink, J.B.; de Jong, P.T. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat. Genet., 2000, 25(2), 228-231.
[71]
Le Saux, O.; Urban, Z.; Tschuch, C.; Csiszar, K.; Bacchelli, B.; Quaglino, D.; Pasquali-Ronchetti, I.; Pope, F.M.; Richards, A.; Terry, S.; Bercovitch, L.; de Paepe, A.; Boyd, C.D. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat. Genet., 2000, 25(2), 223-227.
[72]
Ringpfeil, F.; Lebwohl, M.G.; Uitto, J. Abstracts: Mutations in the MRP6 gene cause pseudoxanthoma elasticum. J. Invest. Dermatol., 2000, 115(2), 332.
[73]
Gorgels, T.G.; Hu, X.; Scheffer, G.L.; van der Wal, A.C.; Toonstra, J.; de Jong, P.T.; van Kuppevelt, T.H.; Levelt, C.N.; de Wolf, A.; Loves, W.J.; Scheper, R.J.; Peek, R.; Bergen, A.A. Disruption of Abcc6 in the mouse: Novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum. Mol. Genet., 2005, 14(13), 1763-1773.
[74]
Klement, J.F.; Matsuzaki, Y.; Jiang, Q.J.; Terlizzi, J.; Choi, H.Y.; Fujimoto, N.; Li, K.; Pulkkinen, L.; Birk, D.E.; Sundberg, J.P.; Uitto, J. Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues. Mol. Cell. Biol., 2005, 25(18), 8299-8310.
[75]
Yoshiura, K.; Kinoshita, A.; Ishida, T.; Ninokata, A.; Ishikawa, T.; Kaname, T.; Bannai, M.; Tokunaga, K.; Sonoda, S.; Komaki, R.; Ihara, M.; Saenko, V.A.; Alipov, G.K.; Sekine, I.; Komatsu, K.; Takahashi, H.; Nakashima, M.; Sosonkina, N.; Mapendano, C.K.; Ghadami, M.; Nomura, M.; Liang, D.S.; Miwa, N.; Kim, D.K.; Garidkhuu, A.; Natsume, N.; Ohta, T.; Tomita, H.; Kaneko, A.; Kikuchi, M.; Russomando, G.; Hirayama, K.; Ishibashi, M.; Takahashi, A.; Saitou, N.; Murray, J.C.; Saito, S.; Nakamura, Y.; Niikawa, N. A SNP in the ABCC11 gene is the determinant of human earwax type. Nat. Genet., 2006, 38(3), 324-330.
[76]
Toyoda, Y.; Sakurai, A.; Mitani, Y.; Nakashima, M.; Yoshiura, K.; Nakagawa, H.; Sakai, Y.; Ota, I.; Lezhava, A.; Hayashizaki, Y.; Niikawa, N.; Ishikawa, T. Earwax, osmidrosis, and breast cancer: Why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J., 2009, 23(6), 2001-2013.
[77]
Martin, A.; Saathoff, M.; Kuhn, F.; Max, H.; Terstegen, L.; Natsch, A. A functional ABCC11 allele is essential in the biochemical formation of human axillary odor. J. Invest. Dermatol., 2010, 130(2), 529-540.
[78]
van der Schoor, L.W.; Verkade, H.J.; Kuipers, F.; Jonker, J.W. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin. Drug Metab. Toxicol., 2015, 11(2), 273-293.
[79]
Steinbach, D.; Wittig, S.; Cario, G.; Viehmann, S.; Mueller, A.; Gruhn, B.; Haefer, R.; Zintl, F.; Sauerbrey, A. The multidrug resistance-associated protein 3 (MRP3) is associated with a poor outcome in childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype. Blood, 2003, 102(13), 4493-4498.
[80]
König, J.; Hartel, M.; Nies, A.T.; Martignoni, M.E.; Guo, J.; Büchler, M.W.; Friess, H.; Keppler, D. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int. J. Cancer, 2005, 115(3), 359-367.
[81]
Belinsky, M.G.; Bain, L.J.; Balsara, B.B.; Testa, J.R.; Kruh, G.D. Characterization of MOAT-C and MOAT-D, new members of the MRP/cMOAT subfamily of transporter proteins. J. Natl. Cancer Inst., 1998, 90(22), 1735-1741.
[82]
Uchiumi, T.; Hinoshita, E.; Haga, S.; Nakamura, T.; Tanaka, T.; Toh, S.; Furukawa, M.; Kawabe, T.; Wada, M.; Kagotani, K.; Okumura, K.; Kohno, K.; Akiyama, S.; Kuwano, M. Isolation of a novel human canalicular multispecific organic anion transporter, cMOAT2/MRP3, and its expression in cisplatin-resistant cancer cells with decreased ATP-dependent drug transport. Biochem. Biophys. Res. Commun., 1998, 252(1), 103-110.
[83]
Zeng, H.; Liu, G.; Rea, P.A.; Kruh, G.D. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res., 2000, 60(17), 4779-4784.
[84]
Belinsky, M.G.; Dawson, P.A.; Shchaveleva, I.; Bain, L.J.; Wang, R.; Ling, V.; Chen, Z.S.; Grinberg, A.; Westphal, H.; Klein-Szanto, A.; Lerro, A.; Kruh, G.D. Analysis of the in vivo functions of Mrp3. Mol. Pharmacol., 2005, 68(1), 160-168.
[85]
Kamisako, T.; Leier, I.; Cui, Y.; König, J.; Buchholz, U.; Hummel-Eisenbeiss, J.; Keppler, D. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology, 1999, 30(2), 485-490.
[86]
Borst, P.; Zelcer, N.; van de Wetering, K. MRP2 and 3 in health and disease. Cancer Lett., 2006, 234(1), 51-61.
[87]
Lee, Y.M.; Cui, Y.; König, J.; Risch, A.; Jäger, B.; Drings, P.; Bartsch, H.; Keppler, D.; Nies, A.T. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics, 2004, 14(4), 213-223.
[88]
Hirohashi, T.; Suzuki, H.; Takikawa, H.; Sugiyama, Y. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J. Biol. Chem., 2000, 275(4), 2905-2910.
[89]
Zelcer, N.; van de Wetering, K.; de Waart, R.; Scheffer, G.L.; Marschall, H.U.; Wielinga, P.R.; Kuil, A.; Kunne, C.; Smith, A.; van der Valk, M.; Wijnholds, J.; Elferink, R.O.; Borst, P. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J. Hepatol., 2006, 44(4), 768-775.
[90]
Zelcer, N.; van de Wetering, K.; Hillebrand, M.; Sarton, E.; Kuil, A.; Wielinga, P.R.; Tephly, T.; Dahan, A.; Beijnen, J.H.; Borst, P. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc. Natl. Acad. Sci. USA, 2005, 102(20), 7274-7279.
[91]
Rius, M.; Nies, A.T.; Hummel-Eisenbeiss, J.; Jedlitschky, G.; Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology, 2003, 38(2), 374-384.
[92]
Teng, S.; Piquette-Miller, M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br. J. Pharmacol., 2007, 151(3), 367-376.
[93]
Zelcer, N.; Saeki, T.; Bot, I.; Kuil, A.; Borst, P. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochem. J., 2003, 369(Pt 1), 23-30.
[94]
Sacquet, E.; Parquet, M.; Riottot, M.; Raizman, A.; Jarrige, P.; Huguet, C.; Infante, R. Intestinal absorption, excretion, and biotransformation of hyodeoxycholic acid in man. J. Lipid Res., 1983, 24(5), 604-613.
[95]
Radomińska-Pyrek, A.; Zimniak, P.; Irshaid, Y.M.; Lester, R.; Tephly, T.R.; St Pyrek, J. Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes. J. Clin. Invest., 1987, 80(1), 234-241.
[96]
Kool, M.; van der Linden, M.; de Haas, M.; Scheffer, G.L.; de Vree, J.M.; Smith, A.J.; Jansen, G.; Peters, G.J.; Ponne, N.; Scheper, R.J.; Elferink, R.P.; Baas, F.; Borst, P. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. USA, 1999, 96(12), 6914-6919.
[97]
Zelcer, N.; Saeki, T.; Reid, G.; Beijnen, J.H.; Borst, P. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J. Biol. Chem., 2001, 276(49), 46400-46407.
[98]
Hirohashi, T.; Suzuki, H.; Sugiyama, Y. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J. Biol. Chem., 1999, 274(21), 15181-15185.
[99]
Zeng, H.; Chen, Z.S.; Belinsky, M.G.; Rea, P.A.; Kruh, G.D. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res., 2001, 61(19), 7225-7232.
[100]
Kitamura, Y.; Kusuhara, H.; Sugiyama, Y. Basolateral efflux mediated by multidrug resistance-associated protein 3 (Mrp3/Abcc3) facilitates intestinal absorption of folates in mouse. Pharm. Res., 2010, 27(4), 665-672.
[101]
Lagas, J.S.; Fan, L.; Wagenaar, E.; Vlaming, M.L.; van Tellingen, O.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin. Cancer Res., 2010, 16(1), 130-140.
[102]
Matsushima, S.; Maeda, K.; Hayashi, H.; Debori, Y.; Schinkel, A.H.; Schuetz, J.D.; Kusuhara, H.; Sugiyama, Y. Involvement of multiple efflux transporters in hepatic disposition of fexofenadine. Mol. Pharmacol., 2008, 73(5), 1474-1483.
[103]
van de Wetering, K.; Feddema, W.; Helms, J.B.; Brouwers, J.F.; Borst, P. Targeted metabolomics identifies glucuronides of dietary phytoestrogens as a major class of MRP3 substrates in vivo. Gastroenterology, 2009, 137(5), 1725-1735.
[104]
Zamek-Gliszczynski, M.J.; Nezasa, K.; Tian, X.; Bridges, A.S.; Lee, K.; Belinsky, M.G.; Kruh, G.D.; Brouwer, K.L. Evaluation of the role of multidrug resistance-associated protein (Mrp) 3 and Mrp4 in hepatic basolateral excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in Abcc3-/- and Abcc4-/- mice. J. Pharmacol. Exp. Ther., 2006, 319(3), 1485-1491.
[105]
Manautou, J.E.; de Waart, D.R.; Kunne, C.; Zelcer, N.; Goedken, M.; Borst, P.; Elferink, R.O. Altered disposition of acetaminophen in mice with a disruption of the Mrp3 gene. Hepatology, 2005, 42(5), 1091-1098.
[106]
Xiong, H.; Turner, K.C.; Ward, E.S.; Jansen, P.L.; Brouwer, K.L. Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(-) rats. J. Pharmacol. Exp. Ther., 2000, 295(2), 512-518.
[107]
Xiong, H.; Suzuki, H.; Sugiyama, Y.; Meier, P.J.; Pollack, G.M.; Brouwer, K.L. Mechanisms of impaired biliary excretion of acetaminophen glucuronide after acute phenobarbital treatment or phenobarbital pretreatment. Drug Metab. Dispos., 2002, 30(9), 962-969.
[108]
Kitamura, Y.; Kusuhara, H.; Sugiyama, Y. Functional characterization of multidrug resistance-associated protein 3 (mrp3/abcc3) in the basolateral efflux of glucuronide conjugates in the mouse small intestine. J. Pharmacol. Exp. Ther., 2010, 332(2), 659-666.
[109]
Hirouchi, M.; Kusuhara, H.; Onuki, R.; Ogilvie, B.W.; Parkinson, A.; Sugiyama, Y. Construction of triple-transfected cells [organic anion-transporting polypeptide (OATP) 1B1/multidrug resistance-associated protein (MRP) 2/MRP3 and OATP1B1/MRP2/MRP4] for analysis of the sinusoidal function of MRP3 and MRP4. Drug Metab. Dispos., 2009, 37(10), 2103-2111.
[110]
Lagas, J.S.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Hepatic clearance of reactive glucuronide metabolites of diclofenac in the mouse is dependent on multiple ATP-binding cassette efflux transporters. Mol. Pharmacol., 2010, 77(4), 687-694.
[111]
Chu, X.Y.; Huskey, S.E.; Braun, M.P.; Sarkadi, B.; Evans, D.C.; Evers, R. Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3. J. Pharmacol. Exp. Ther., 2004, 309(1), 156-164.
[112]
Hardwick, R.N.; Fisher, C.D.; Street, S.M.; Canet, M.J.; Cherrington, N.J. Molecular mechanism of altered ezetimibe disposition in nonalcoholic steatohepatitis. Drug Metab. Dispos., 2012, 40(3), 450-460.
[113]
Scheffer, G.L.; Kool, M.; de Haas, M.; de Vree, J.M.; Pijnenborg, A.C.; Bosman, D.K.; Elferink, R.P.; van der Valk, P.; Borst, P.; Scheper, R.J. Tissue distribution and induction of human multidrug resistant protein 3. Lab. Invest., 2002, 82(2), 193-201.
[114]
Kiuchi, Y.; Suzuki, H.; Hirohashi, T.; Tyson, C.A.; Sugiyama, Y. cDNA cloning and inducible expression of human multidrug resistance associated protein 3 (MRP3). FEBS Lett., 1998, 433(1-2), 149-152.
[115]
König, J.; Rost, D.; Cui, Y.; Keppler, D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology, 1999, 29(4), 1156-1163.
[116]
Kool, M.; de Haas, M.; Scheffer, G.L.; Scheper, R.J.; van Eijk, M.J.; Juijn, J.A.; Baas, F.; Borst, P. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res., 1997, 57(16), 3537-3547.
[117]
Lang, T.; Hitzl, M.; Burk, O.; Mornhinweg, E.; Keil, A.; Kerb, R.; Klein, K.; Zanger, U.M.; Eichelbaum, M.; Fromm, M.F. Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Pharmacogenetics, 2004, 14(3), 155-164.
[118]
Donner, M.G.; Keppler, D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology, 2001, 34(2), 351-359.
[119]
Soroka, C.J.; Lee, J.M.; Azzaroli, F.; Boyer, J.L. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology, 2001, 33(4), 783-791.
[120]
Stieger, B.; O’Neill, B.; Meier, P.J. ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles. Biochem. J., 1992, 284(Pt 1), 67-74.
[121]
Müller, M.; Ishikawa, T.; Berger, U.; Klünemann, C.; Lucka, L.; Schreyer, A.; Kannicht, C.; Reutter, W.; Kurz, G.; Keppler, D. ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt. J. Biol. Chem., 1991, 266(28), 18920-18926.
[122]
de Waart, D.R.; van de Wetering, K.; Kunne, C.; Duijst, S.; Paulusma, C.C.; Oude Elferink, R.P. Oral availability of cefadroxil depends on ABCC3 and ABCC4. Drug Metab. Dispos., 2012, 40(3), 515-521.
[123]
Matsushima, S.; Maeda, K.; Ishiguro, N.; Igarashi, T.; Sugiyama, Y. Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans. Drug Metab. Dispos., 2008, 36(4), 663-669.
[124]
Cvetkovic, M.; Leake, B.; Fromm, M.F.; Wilkinson, G.R.; Kim, R.B. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos., 1999, 27(8), 866-871.
[125]
Hooijberg, J.H.; Jansen, G.; Assaraf, Y.G.; Kathmann, I.; Pieters, R.; Laan, A.C.; Veerman, A.J.; Kaspers, G.J.; Peters, G.J. Folate concentration dependent transport activity of the Multidrug Resistance Protein 1 (ABCC1). Biochem. Pharmacol., 2004, 67(8), 1541-1548.
[126]
El-Sheikh, A.A.; Greupink, R.; Wortelboer, H.M.; van den Heuvel, J.J.; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl. Res., 2013, 162(6), 398-409.
[127]
van de Wetering, K.; Burkon, A.; Feddema, W.; Bot, A.; de Jonge, H.; Somoza, V.; Borst, P. Intestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol. Mol. Pharmacol., 2009, 75(4), 876-885.
[128]
Chen, Z.S.; Lee, K.; Kruh, G.D. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem., 2001, 276(36), 33747-33754.
[129]
van Aubel, R.A.; Smeets, P.H.; Peters, J.G.; Bindels, R.J.; Russel, F.G. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol., 2002, 13(3), 595-603.
[130]
Chen, C.; Hennig, G.E.; Manautou, J.E. Hepatobiliary excretion of acetaminophen glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic rats. Drug Metab. Dispos., 2003, 31(6), 798-804.
[131]
Ogawa, K.; Suzuki, H.; Hirohashi, T.; Ishikawa, T.; Meier, P.J.; Hirose, K.; Akizawa, T.; Yoshioka, M.; Sugiyama, Y. Characterization of inducible nature of MRP3 in rat liver. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278(3), G438-G446.
[132]
Fahrmayr, C.; König, J.; Auge, D.; Mieth, M.; Fromm, M.F. Identification of drugs and drug metabolites as substrates of multidrug resistance protein 2 (MRP2) using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells. Br. J. Pharmacol., 2012, 165(6), 1836-1847.
[133]
van de Wetering, K.; Zelcer, N.; Kuil, A.; Feddema, W.; Hillebrand, M.; Vlaming, M.L.; Schinkel, A.H.; Beijnen, J.H.; Borst, P. Multidrug resistance proteins 2 and 3 provide alternative routes for hepatic excretion of morphine-glucuronides. Mol. Pharmacol., 2007, 72(2), 387-394.
[134]
Kuipers, F.; Enserink, M.; Havinga, R.; van der Steen, A.B.; Hardonk, M.J.; Fevery, J.; Vonk, R.J. Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat. J. Clin. Invest., 1988, 81(5), 1593-1599.
[135]
Villanueva, S.S.; Ruiz, M.L.; Luquita, M.G.; Sanchez Pozzi, E.J.; Catania, V.A.; Mottino, A.D. Involvement of Mrp2 in hepatic and intestinal disposition of dinitrophenyl-S-glutathione in partially hepatectomized rats. Toxicol. Sci., 2005, 84(1), 4-11.
[136]
Ghanem, C.I.; Ruiz, M.L.; Villanueva, S.S.; Luquita, M.G.; Catania, V.A.; Jones, B.; Bengochea, L.A.; Vore, M.; Mottino, A.D. Shift from biliary to urinary elimination of acetaminophen-glucuronide in acetaminophen-pretreated rats. J. Pharmacol. Exp. Ther., 2005, 315(3), 987-995.
[137]
Ghanem, C.I.; Ruiz, M.L.; Villanueva, S.S.; Luquita, M.; Llesuy, S.; Catania, V.A.; Bengochea, L.A.; Mottino, A.D. Effect of repeated administration with subtoxic doses of acetaminophen to rats on enterohepatic recirculation of a subsequent toxic dose. Biochem. Pharmacol., 2009, 77(10), 1621-1628.
[138]
Aleksunes, L.M.; Slitt, A.M.; Cherrington, N.J.; Thibodeau, M.S.; Klaassen, C.D.; Manautou, J.E. Differential expression of mouse hepatic transporter genes in response to acetaminophen and carbon tetrachloride. Toxicol. Sci., 2005, 83(1), 44-52.
[139]
Aleksunes, L.M.; Augustine, L.M.; Cherrington, N.J.; Manautou, J.E. Influence of acetaminophen vehicle on regulation of transporter gene expression during hepatotoxicity. J. Toxicol. Environ. Health A, 2007, 70(21), 1870-1872.
[140]
Aleksunes, L.M.; Campion, S.N.; Goedken, M.J.; Manautou, J.E. Acquired resistance to acetaminophen hepatotoxicity is associated with induction of multidrug resistance-associated protein 4 (Mrp4) in proliferating hepatocytes. Toxicol. Sci., 2008, 104(2), 261-273.
[141]
Barnes, S.N.; Aleksunes, L.M.; Augustine, L.; Scheffer, G.L.; Goedken, M.J.; Jakowski, A.B.; Pruimboom-Brees, I.M.; Cherrington, N.J.; Manautou, J.E. Induction of hepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases. Drug Metab. Dispos., 2007, 35(10), 1963-1969.
[142]
Wagner, M.; Halilbasic, E.; Marschall, H.U.; Zollner, G.; Fickert, P.; Langner, C.; Zatloukal, K.; Denk, H.; Trauner, M. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology, 2005, 42(2), 420-430.
[143]
Maher, J.M.; Cheng, X.; Slitt, A.L.; Dieter, M.Z.; Klaassen, C.D. Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab. Dispos., 2005, 33(7), 956-962.
[144]
Aleksunes, L.M.; Klaassen, C.D. Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-null mice. Drug Metab. Dispos., 2012, 40(7), 1366-1379.
[145]
Moffit, J.S.; Aleksunes, L.M.; Maher, J.M.; Scheffer, G.L.; Klaassen, C.D.; Manautou, J.E. Induction of hepatic transporters multidrug resistance-associated proteins (Mrp) 3 and 4 by clofibrate is regulated by peroxisome proliferator-activated receptor alpha. J. Pharmacol. Exp. Ther., 2006, 317(2), 537-545.
[146]
Teng, S.; Jekerle, V.; Piquette-Miller, M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab. Dispos., 2003, 31(11), 1296-1299.
[147]
Sasaki, T.; Inami, K.; Numata, Y.; Funakoshi, K.; Yoshida, M.; Kumagai, T.; Kanno, S.; Matsui, S.; Toriyabe, T.; Yamazoe, Y.; Yoshinari, K.; Nagata, K. Activation of p38 mitogen-activated protein kinase by clotrimazole induces multidrug resistance-associated protein 3 activation through a novel transcriptional element. J. Pharmacol. Exp. Ther., 2016, 359(1), 102-109.
[148]
Fuksa, L.; Brcakova, E.; Kolouchova, G.; Hirsova, P.; Hroch, M.; Cermanova, J.; Staud, F.; Micuda, S. Dexamethasone reduces methotrexate biliary elimination and potentiates its hepatotoxicity in rats. Toxicology, 2010, 267(1-3), 165-171.
[149]
Ruiz, M.L.; Villanueva, S.S.; Luquita, M.G.; Vore, M.; Mottino, A.D.; Catania, V.A. Ethynylestradiol increases expression and activity of rat liver MRP3. Drug Metab. Dispos., 2006, 34(6), 1030-1034.
[150]
Kamisako, T.; Ogawa, H. Alteration of the expression of adenosine triphosphate-binding cassette transporters associated with bile acid and cholesterol transport in the rat liver and intestine during cholestasis. J. Gastroenterol. Hepatol., 2005, 20(9), 1429-1434.
[151]
Fiorucci, S.; Clerici, C.; Antonelli, E.; Orlandi, S.; Goodwin, B.; Sadeghpour, B.M.; Sabatino, G.; Russo, G.; Castellani, D.; Willson, T.M.; Pruzanski, M.; Pellicciari, R.; Morelli, A. Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J. Pharmacol. Exp. Ther., 2005, 313(2), 604-612.
[152]
Ruiz, M.L.; Rigalli, J.P.; Arias, A.; Villanueva, S.; Banchio, C.; Vore, M.; Mottino, A.D.; Catania, V.A. Induction of hepatic multidrug resistance-associated protein 3 by ethynylestradiol is independent of cholestasis and mediated by estrogen receptor. Drug Metab. Dispos., 2013, 41(2), 275-280.
[153]
Ruiz, M.L.; Rigalli, J.P.; Arias, A.; Villanueva, S.S.; Banchio, C.; Vore, M.; Mottino, A.D.; Catania, V.A. Estrogen receptor-α mediates human multidrug resistance associated protein 3 induction by 17α-ethynylestradiol. Role of activator protein-1. Biochem. Pharmacol., 2013, 86(3), 401-409.
[154]
Pan, Y.Q.; Mi, Q.Y.; He, B.S.; Zhao, S.L.; Tai, T.; Xie, H.G. The molecular mechanism underlying the induction of hepatic MRP3 expression and function by omeprazole. Biopharm. Drug Dispos., 2015, 36(4), 232-244.
[155]
Hitzl, M.; Klein, K.; Zanger, U.M.; Fritz, P.; Nüssler, A.K.; Neuhaus, P.; Fromm, M.F. Influence of omeprazole on multidrug resistance protein 3 expression in human liver. J. Pharmacol. Exp. Ther., 2003, 304(2), 524-530.
[156]
Xiong, H.; Yoshinari, K.; Brouwer, K.L.; Negishi, M. Role of constitutive androstane receptor in the in vivo induction of Mrp3 and CYP2B1/2 by phenobarbital. Drug Metab. Dispos., 2002, 30(8), 918-923.
[157]
Jigorel, E.; Le Vee, M.; Boursier-Neyret, C.; Parmentier, Y.; Fardel, O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab. Dispos., 2006, 34(10), 1756-1763.
[158]
Slitt, A.L.; Cherrington, N.J.; Maher, J.M.; Klaassen, C.D. Induction of multidrug resistance protein 3 in rat liver is associated with altered vectorial excretion of acetaminophen metabolites. Drug Metab. Dispos., 2003, 31(9), 1176-1186.
[159]
Benson, E.A.; Eadon, M.T.; Desta, Z.; Liu, Y.; Lin, H.; Burgess, K.S.; Segar, M.W.; Gaedigk, A.; Skaar, T.C. Rifampin regulation of drug transporters gene expression and the association of microRNAs in human hepatocytes. Front. Pharmacol., 2016, 7, 111.
[160]
Cherrington, N.J.; Hartley, D.P.; Li, N.; Johnson, D.R.; Klaassen, C.D. Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J. Pharmacol. Exp. Ther., 2002, 300(1), 97-104.
[161]
Cherrington, N.J.; Slitt, A.L.; Maher, J.M.; Zhang, X.X.; Zhang, J.; Huang, W.; Wan, Y.J.; Moore, D.D.; Klaassen, C.D. Induction of multidrug resistance protein 3 (mrp3) in vivo is independent of constitutive androstane receptor. Drug Metab. Dispos., 2003, 31(11), 1315-1319.
[162]
Chen, P.; Zeng, H.; Wang, Y.; Fan, X.; Xu, C.; Deng, R.; Zhou, X.; Bi, H.; Huang, M. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug Metab. Dispos., 2014, 42(5), 844-852.
[163]
Chai, J.; Du, X.; Chen, S.; Feng, X.; Cheng, Y.; Zhang, L.; Gao, Y.; Li, S.; He, X.; Wang, R.; Zhou, X.; Yang, Y.; Luo, W.; Chen, W. Oral administration of oleanolic acid, isolated from Swertia mussotii Franch, attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats. Int. J. Clin. Exp. Med., 2015, 8(2), 1691-1702.
[164]
Stöckel, B.; König, J.; Nies, A.T.; Cui, Y.; Brom, M.; Keppler, D. Characterization of the 5′-flanking region of the human multidrug resistance protein 2 (MRP2) gene and its regulation in comparison with the multidrug resistance protein 3 (MRP3) gene. Eur. J. Biochem., 2000, 267(5), 1347-1358.
[165]
Maher, J.M.; Aleksunes, L.M.; Dieter, M.Z.; Tanaka, Y.; Peters, J.M.; Manautou, J.E.; Klaassen, C.D. Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and per-fluorodecanoic acid. Toxicol. Sci., 2008, 106(2), 319-328.
[166]
Slitt, A.L.; Cherrington, N.J.; Dieter, M.Z.; Aleksunes, L.M.; Scheffer, G.L.; Huang, W.; Moore, D.D.; Klaassen, C.D. Trans-Stilbene oxide induces expression of genes involved in metabolism and transport in mouse liver via CAR and Nrf2 transcription factors. Mol. Pharmacol., 2006, 69(5), 1554-1563.
[167]
Wilcox, C.M.; Cryer, B.; Triadafilopoulos, G. Patterns of use and public perception of over-the-counter pain relievers: focus on nonsteroidal antiinflammatory drugs. J. Rheumatol., 2005, 32(11), 2218-2224.
[168]
Bentley, E.; Mackie, I.C. Trends in prescriptions of paracetamol for children. BMJ, 1995, 311(7001), 362.
[169]
Pandolfini, C.; Bonati, M. A literature review on off-label drug use in children. Eur. J. Pediatr., 2005, 164(9), 552-558.
[170]
Headley, J.; Northstone, K. Medication administered to children from 0 to 7.5 years in the Avon Longitudinal Study of Parents and Children (ALSPAC). Eur. J. Clin. Pharmacol., 2007, 63(2), 189-195.
[171]
Ostapowicz, G.; Fontana, R.J.; Schiødt, F.V.; Larson, A.; Davern, T.J.; Han, S.H.; McCashland, T.M.; Shakil, A.O.; Hay, J.E.; Hynan, L.; Crippin, J.S.; Blei, A.T.; Samuel, G.; Reisch, J.; Lee, W.M. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med., 2002, 137(12), 947-954.
[172]
Ghanem, C.I.; Gómez, P.C.; Arana, M.C.; Perassolo, M.; Ruiz, M.L.; Villanueva, S.S.; Ochoa, E.J.; Catania, V.A.; Bengochea, L.A.; Mottino, A.D. Effect of acetaminophen on expression and activity of rat liver multidrug resistance-associated protein 2 and P-glycoprotein. Biochem. Pharmacol., 2004, 68(4), 791-798.
[173]
Aleksunes, L.M.; Scheffer, G.L.; Jakowski, A.B.; Pruimboom-Brees, I.M.; Manautou, J.E.; Pruimboom-Brees, I.M.; Manautou, J.E. Coordinated expression of multidrug resistance-associated proteins (Mrps) in mouse liver during toxicant-induced injury. Toxicol. Sci., 2006, 89(2), 370-379.
[174]
Aleksunes, L.M.; Slitt, A.L.; Maher, J.M.; Augustine, L.M.; Goedken, M.J.; Chan, J.Y.; Cherrington, N.J.; Klaassen, C.D.; Manautou, J.E. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2. Toxicol. Appl. Pharmacol., 2008, 226(1), 74-83.
[175]
Ghanem, C.I.; Rudraiah, S.; Bataille, A.M.; Vigo, M.B.; Goedken, M.J.; Manautou, J.E. Role of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain ABC transporters during acute acetaminophen (APAP) intoxication in mice. Biochem. Pharmacol., 2015, 94(3), 203-211.
[176]
Campion, S.N.; Johnson, R.; Aleksunes, L.M.; Goedken, M.J.; van Rooijen, N.; Scheffer, G.L.; Cherrington, N.J.; Manautou, J.E. Hepatic Mrp4 induction following acetaminophen exposure is dependent on Kupffer cell function. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(2), G294-G304.
[177]
Lehmann, J.M.; McKee, D.D.; Watson, M.A.; Willson, T.M.; Moore, J.T.; Kliewer, S.A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest., 1998, 102(5), 1016-1023.
[178]
Hanawa, N.; Shinohara, M.; Saberi, B.; Gaarde, W.A.; Han, D.; Kaplowitz, N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J. Biol. Chem., 2008, 283(20), 13565-13577.
[179]
Boaglio, A.C.; Zucchetti, A.E.; Sánchez Pozzi, E.J.; Pellegrino, J.M.; Ochoa, J.E.; Mottino, A.D.; Vore, M.; Crocenzi, F.A.; Roma, M.G. Phosphoinositide 3-kinase/protein kinase B signaling pathway is involved in estradiol 17β-D-glucuronide-induced cholestasis: complementarity with classical protein kinase C. Hepatology, 2010, 52(4), 1465-1476.
[180]
Vore, M. Estrogen cholestasis. Membranes, metabolites, or receptors? Gastroenterology, 1987, 93(3), 643-649.
[181]
Reyes, H.; Simon, F.R. Intrahepatic cholestasis of pregnancy: an estrogen-related disease. Semin. Liver Dis., 1993, 13(3), 289-301.
[182]
Zollner, G.; Trauner, M. Mechanisms of cholestasis. Clin. Liver Dis., 2008, 12(1), 1-26. vii.
[183]
Klaassen, C.D.; Watkins, J.B., III Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol. Rev., 1984, 36(1), 1-67.
[184]
Trauner, M.; Arrese, M.; Soroka, C.J.; Ananthanarayanan, M.; Koeppel, T.A.; Schlosser, S.F.; Suchy, F.J.; Keppler, D.; Boyer, J.L. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology, 1997, 113(1), 255-264.
[185]
Lee, J.M.; Trauner, M.; Soroka, C.J.; Stieger, B.; Meier, P.J.; Boyer, J.L. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology, 2000, 118(1), 163-172.
[186]
Gräns, J.; Johansson, J.; Michelová, M.; Wassmur, B.; Norström, E.; Wallin, M.; Celander, M.C. Mixture effects between different azoles and β-naphthoflavone on the CYP1A biomarker in a fish cell line. Aquat. Toxicol., 2015, 164, 43-51.
[187]
Forman, B.M.; Tzameli, I.; Choi, H.S.; Chen, J.; Simha, D.; Seol, W.; Evans, R.M.; Moore, D.D. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature, 1998, 395(6702), 612-615.
[188]
Ramamoorthy, A.; Liu, Y.; Philips, S.; Desta, Z.; Lin, H.; Goswami, C.; Gaedigk, A.; Li, L.; Flockhart, D.A.; Skaar, T.C. Regulation of microRNA expression by rifampin in human hepatocytes. Drug Metab. Dispos., 2013, 41(10), 1763-1768.
[189]
Li, J.; Wang, Y.; Wang, L.; Dai, X.; Cong, W.; Feng, W.; Xu, C.; Deng, Y.; Wang, Y.; Skaar, T.C.; Liang, H.; Liu, Y. Identification of rifampin-regulated functional modules and related microRNAs in human hepatocytes based on the protein interaction network. BMC Genomics, 2016, 17(Suppl. 7), 517.
[190]
Haenisch, S.; Laechelt, S.; Bruckmueller, H.; Werk, A.; Noack, A.; Bruhn, O.; Remmler, C.; Cascorbi, I. Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol. Pharmacol., 2011, 80(2), 314-320.
[191]
Kahl, R. Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens. Toxicology, 1984, 33(3-4), 185-228.
[192]
Hocman, G. Chemoprevention of cancer: phenolic antioxidants (BHT, BHA). Int. J. Biochem., 1988, 20(7), 639-651.
[193]
Luo, L.; Chen, Y.; Wu, D.; Shou, J.; Wang, S.; Ye, J.; Tang, X.; Wang, X.J. Butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice. Toxicol. Appl. Pharmacol., 2015, 288(3), 339-348.
[194]
Abiko, Y.; Miura, T.; Phuc, B.H.; Shinkai, Y.; Kumagai, Y. Participation of covalent modification of Keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole. Toxicol. Appl. Pharmacol., 2011, 255(1), 32-39.
[195]
Hu, R.; Shen, G.; Yerramilli, U.R.; Lin, W.; Xu, C.; Nair, S.; Kong, A.N. In vivo pharmacokinetics, activation of MAPK signaling and induction of phase II/III drug metabolizing enzymes/transporters by cancer chemopreventive compound BHA in the mice. Arch. Pharm. Res., 2006, 29(10), 911-920.
[196]
Sueyoshi, T.; Green, W.D.; Vinal, K.; Woodrum, T.S.; Moore, R.; Negishi, M. Garlic extract diallyl sulfide (DAS) activates nuclear receptor CAR to induce the Sult1e1 gene in mouse liver. PLoS One, 2011, 6(6), e21229.
[197]
Suman, S.; Shukla, Y. Diallyl sulfide and its role in chronic diseases prevention. Adv. Exp. Med. Biol., 2016, 929, 127-144.
[198]
Benson, A.B. III Oltipraz: a laboratory and clinical review. J. Cell. Biochem. Suppl., 1993, 17F, 278-291.
[199]
Merrell, M.D.; Jackson, J.P.; Augustine, L.M.; Fisher, C.D.; Slitt, A.L.; Maher, J.M.; Huang, W.; Moore, D.D.; Zhang, Y.; Klaassen, C.D.; Cherrington, N.J. The Nrf2 activator oltipraz also activates the constitutive androstane receptor. Drug Metab. Dispos., 2008, 36(8), 1716-1721.
[200]
Wei, P.; Zhang, J.; Egan-Hafley, M.; Liang, S.; Moore, D.D. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature, 2000, 407(6806), 920-923.
[201]
Chambon, P. The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol. Endocrinol., 2005, 19(6), 1418-1428.
[202]
Omiecinski, C.J.; Vanden Heuvel, J.P.; Perdew, G.H.; Peters, J.M. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol. Sci., 2011, 120(Suppl. 1), S49-S75.
[203]
Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors, RXR, and the big bang. Cell, 2014, 157(1), 255-266.
[204]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O’Connor, T.; Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells, 2003, 8(4), 379-391.
[205]
Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; Yamamoto, M.; Nabeshima, Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun., 1997, 236(2), 313-322.
[206]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
[207]
Anwar-Mohamed, A.; Degenhardt, O.S.; El Gendy, M.A.; Seubert, J.M.; Kleeberger, S.R.; El-Kadi, A.O. The effect of Nrf2 knockout on the constitutive expression of drug metabolizing enzymes and transporters in C57Bl/6 mice livers. Toxicol. In Vitro, 2011, 25(4), 785-795.
[208]
Maher, J.M.; Dieter, M.Z.; Aleksunes, L.M.; Slitt, A.L.; Guo, G.; Tanaka, Y.; Scheffer, G.L.; Chan, J.Y.; Manautou, J.E.; Chen, Y.; Dalton, T.P.; Yamamoto, M.; Klaassen, C.D. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology, 2007, 46(5), 1597-1610.
[209]
Reisman, S.A.; Csanaky, I.L.; Aleksunes, L.M.; Klaassen, C.D. Altered disposition of acetaminophen in Nrf2-null and Keap1-knockdown mice. Toxicol. Sci., 2009, 109(1), 31-40.
[210]
Shimizu, Y.; Nakatsuru, Y.; Ichinose, M.; Takahashi, Y.; Kume, H.; Mimura, J.; Fujii-Kuriyama, Y.; Ishikawa, T. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA, 2000, 97(2), 779-782.
[211]
Kodama, S.; Koike, C.; Negishi, M.; Yamamoto, Y. Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol. Cell. Biol., 2004, 24(18), 7931-7940.
[212]
Ueda, A.; Hamadeh, H.K.; Webb, H.K.; Yamamoto, Y.; Sueyoshi, T.; Afshari, C.A.; Lehmann, J.M.; Negishi, M. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol. Pharmacol., 2002, 61(1), 1-6.
[213]
Baes, M.; Gulick, T.; Choi, H.S.; Martinoli, M.G.; Simha, D.; Moore, D.D. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol. Cell. Biol., 1994, 14(3), 1544-1552.
[214]
Blumberg, B.; Sabbagh, W., Jr; Juguilon, H.; Bolado, J., Jr; van Meter, C.M.; Ong, E.S.; Evans, R.M. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev., 1998, 12(20), 3195-3205.
[215]
Handschin, C.; Meyer, U.A. Induction of drug metabolism: The role of nuclear receptors. Pharmacol. Rev., 2003, 55(4), 649-673.
[216]
Sueyoshi, T.; Negishi, M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 123-143.
[217]
Kliewer, S.A.; Moore, J.T.; Wade, L.; Staudinger, J.L.; Watson, M.A.; Jones, S.A.; McKee, D.D.; Oliver, B.B.; Willson, T.M.; Zetterström, R.H.; Perlmann, T.; Lehmann, J.M. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell, 1998, 92(1), 73-82.
[218]
Fernandez-Salguero, P.; Pineau, T.; Hilbert, D.M.; McPhail, T.; Lee, S.S.; Kimura, S.; Nebert, D.W.; Rudikoff, S.; Ward, J.M.; Gonzalez, F.J. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science, 1995, 268(5211), 722-726.
[219]
Schmidt, J.V.; Su, G.H.; Reddy, J.K.; Simon, M.C.; Bradfield, C.A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA, 1996, 93(13), 6731-6736.
[220]
Hahn, M.E. Aryl hydrocarbon receptors: diversity and evolution. Chem. Biol. Interact., 2002, 141(1-2), 131-160.
[221]
Jaiswal, A.K.; Nebert, D.W.; Eisen, H.W. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines. Biochem. Pharmacol., 1985, 34(15), 2721-2731.
[222]
Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med., 2002, 53, 409-435.
[223]
Keller, H.; Mahfoudi, A.; Dreyer, C.; Hihi, A.K.; Medin, J.; Ozato, K.; Wahli, W. Peroxisome proliferator-activated receptors and lipid metabolism. Ann. N. Y. Acad. Sci., 1993, 684, 157-173.
[224]
Lee, S.S.; Pineau, T.; Drago, J.; Lee, E.J.; Owens, J.W.; Kroetz, D.L.; Fernandez-Salguero, P.M.; Westphal, H.; Gonzalez, F.J. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol., 1995, 15(6), 3012-3022.
[225]
Podvinec, M.; Kaufmann, M.R.; Handschin, C.; Meyer, U.A. NUBIScan, an in silico approach for prediction of nuclear receptor response elements. Mol. Endocrinol., 2002, 16(6), 1269-1279.
[226]
Wagner, M.; Fickert, P.; Zollner, G.; Fuchsbichler, A.; Silbert, D.; Tsybrovskyy, O.; Zatloukal, K.; Guo, G.L.; Schuetz, J.D.; Gonzalez, F.J.; Marschall, H.U.; Denk, H.; Trauner, M. Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology, 2003, 125(3), 825-838.
[227]
Zollner, G.; Fickert, P.; Silbert, D.; Fuchsbichler, A.; Marschall, H.U.; Zatloukal, K.; Denk, H.; Trauner, M. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J. Hepatol., 2003, 38(6), 717-727.
[228]
Zamek-Gliszczynski, M.J.; Hoffmaster, K.A.; Tian, X.; Zhao, R.; Polli, J.W.; Humphreys, J.E.; Webster, L.O.; Bridges, A.S.; Kalvass, J.C.; Brouwer, K.L. Multiple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1. Drug Metab. Dispos., 2005, 33(8), 1158-1165.
[229]
Zamek-Gliszczynski, M.J.; Nezasa, K.; Tian, X.; Kalvass, J.C.; Patel, N.J.; Raub, T.J.; Brouwer, K.L. The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol. Pharmacol., 2006, 70(6), 2127-2133.
[230]
Lee, J.K.; Abe, K.; Bridges, A.S.; Patel, N.J.; Raub, T.J.; Pollack, G.M.; Brouwer, K.L. Sex-dependent disposition of acetaminophen sulfate and glucuronide in the in situ perfused mouse liver. Drug Metab. Dispos., 2009, 37(9), 1916-1921.
[231]
Ortiz, D.F.; Li, S.; Iyer, R.; Zhang, X.; Novikoff, P.; Arias, I.M. MRP3, a new ATP-binding cassette protein localized to the canalicular domain of the hepatocyte. Am. J. Physiol., 1999, 276(6), G1493-G1500.
[232]
Shoda, J.; Kano, M.; Oda, K.; Kamiya, J.; Nimura, Y.; Suzuki, H.; Sugiyama, Y.; Miyazaki, H.; Todoroki, T.; Stengelin, S.; Kramer, W.; Matsuzaki, Y.; Tanaka, N. The expression levels of plasma membrane transporters in the cholestatic liver of patients undergoing biliary drainage and their association with the impairment of biliary secretory function. Am. J. Gastroenterol., 2001, 96(12), 3368-3378.
[233]
Paulusma, C.C.; Kothe, M.J.; Bakker, C.T.; Bosma, P.J.; van Bokhoven, I.; van Marle, J.; Bolder, U.; Tytgat, G.N.; Oude Elferink, R.P. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology, 2000, 31(3), 684-693.
[234]
Chu, X.Y.; Strauss, J.R.; Mariano, M.A.; Li, J.; Newton, D.J.; Cai, X.; Wang, R.W.; Yabut, J.; Hartley, D.P.; Evans, D.C.; Evers, R. Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J. Pharmacol. Exp. Ther., 2006, 317(2), 579-589.
[235]
Zelcer, N.; Reid, G.; Wielinga, P.; Kuil, A.; van der Heijden, I.; Schuetz, J.D.; Borst, P. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem. J., 2003, 371(Pt 2), 361-367.
[236]
Denk, G.U.; Soroka, C.J.; Takeyama, Y.; Chen, W.S.; Schuetz, J.D.; Boyer, J.L. Multidrug resistance-associated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholestasis in the rat. J. Hepatol., 2004, 40(4), 585-591.
[237]
Villanueva, S.S.; Ruiz, M.L.; Ghanem, C.I.; Luquita, M.G.; Catania, V.A.; Mottino, A.D. Hepatic synthesis and urinary elimination of acetaminophen glucuronide are exacerbated in bile duct-ligated rats. Drug Metab. Dispos., 2008, 36(3), 475-480.
[238]
Iwamura, A.; Nakajima, M.; Oda, S.; Yokoi, T. Toxicological potential of acyl glucuronides and its assessment. Drug Metab. Pharmacokinet., 2017, 32(1), 2-11.
[239]
Lickteig, A.J.; Fisher, C.D.; Augustine, L.M.; Aleksunes, L.M.; Besselsen, D.G.; Slitt, A.L.; Manautou, J.E.; Cherrington, N.J. Efflux transporter expression and acetaminophen metabolite excretion are altered in rodent models of nonalcoholic fatty liver disease. Drug Metab. Dispos., 2007, 35(10), 1970-1978.
[240]
Starley, B.Q.; Calcagno, C.J.; Harrison, S.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology, 2010, 51(5), 1820-1832.
[241]
Lomonaco, R.; Sunny, N.E.; Bril, F.; Cusi, K. Nonalcoholic fatty liver disease: Current issues and novel treatment approaches. Drugs, 2013, 73(1), 1-14.
[242]
Hardwick, R.N.; Fisher, C.D.; Canet, M.J.; Scheffer, G.L.; Cherrington, N.J. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab. Dispos., 2011, 39(12), 2395-2402.
[243]
Canet, M.J.; Merrell, M.D.; Hardwick, R.N.; Bataille, A.M.; Campion, S.N.; Ferreira, D.W.; Xanthakos, S.A.; Manautou, J.E. A-Kader, H.H.; Erickson, R.P.; Cherrington, N.J. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug Metab. Dispos., 2015, 43(6), 829-835.
[244]
Hardwick, R.N.; Ferreira, D.W.; More, V.R.; Lake, A.D.; Lu, Z.; Manautou, J.E.; Slitt, A.L.; Cherrington, N.J. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos., 2013, 41(3), 554-561.
[245]
Kosoglou, T.; Statkevich, P.; Johnson-Levonas, A.O.; Paolini, J.F.; Bergman, A.J.; Alton, K.B. Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin. Pharmacokinet., 2005, 44(5), 467-494.
[246]
Brouwer, K.L.; Jones, J.A. Altered hepatobiliary disposition of acetaminophen metabolites after phenobarbital pretreatment and renal ligation: evidence for impaired biliary excretion and a diffusional barrier. J. Pharmacol. Exp. Ther., 1990, 252(2), 657-664.
[247]
Gregus, Z.; Madhu, C.; Klaassen, C.D. Effect of microsomal enzyme inducers on biliary and urinary excretion of acetaminophen metabolites in rats. Decreased hepatobiliary and increased hepatovascular transport of acetaminophen-glucuronide after microsomal enzyme induction. Drug Metab. Dispos., 1990, 18(1), 10-19.
[248]
Zelcer, N.; Huisman, M.T.; Reid, G.; Wielinga, P.; Breedveld, P.; Kuil, A.; Knipscheer, P.; Schellens, J.H.; Schinkel, A.H.; Borst, P. Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J. Biol. Chem., 2003, 278(26), 23538-23544.
[249]
Watari, N.; Iwai, M.; Kaneniwa, N. Pharmacokinetic study of the fate of acetaminophen and its conjugates in rats. J. Pharmacokinet. Biopharm., 1983, 11(3), 245-272.
[250]
Allegaert, K.; de Hoon, J.; Verbesselt, R.; Vanhole, C.; Devlieger, H.; Tibboel, D. Intra- and interindividual variability of glucuronidation of paracetamol during repeated administration of propacetamol in neonates. 2005, 94(9), 1273-1279.
[251]
Gelotte, C.K.; Auiler, J.F.; Lynch, J.M.; Temple, A.R.; Slattery, J.T. Disposition of acetaminophen at 4, 6, and 8 g/day for 3 days in healthy young adults. Clin. Pharmacol. Ther., 2007, 81(6), 840-848.
[252]
Sampath, J.; Adachi, M.; Hatse, S.; Naesens, L.; Balzarini, J.; Flatley, R.M.; Matherly, L.H.; Schuetz, J.D. Role of MRP4 and MRP5 in biology and chemotherapy. AAPS PharmSci, 2002, 4(3), E14.
[253]
Shin, M.; Song, S.H.; Kim, J.M.; Kim, S.J.; Joh, J.W.; Lee, S.K.; Kwon, C.H. Effectiveness of intraportal prostaglandin E1 administration after liver transplantation. Transplant. Proc., 2012, 44(2), 500-504.
[254]
Cavar, I.; Kelava, T.; Vukojević, K.; Saraga-Babić, M.; Culo, F. The role of prostaglandin E2 in acute acetaminophen hepatotoxicity in mice. Histol. Histopathol., 2010, 25(7), 819-830.
[255]
Kuo, C.K.; Hanioka, N.; Hoshikawa, Y.; Oguri, K.; Yoshimura, H. Species difference of site-selective glucuronidation of morphine. J. Pharmacobiodyn., 1991, 14(4), 187-193.
[256]
Moran, T.D.; Smith, P.A. Morphine-3beta-D-glucuronide suppresses inhibitory synaptic transmission in rat substantia gelatinosa. J. Pharmacol. Exp. Ther., 2002, 302(2), 568-576.
[257]
Lötsch, J.; Geisslinger, G. Morphine-6-glucuronide: an analgesic of the future? Clin. Pharmacokinet., 2001, 40(7), 485-499.
[258]
Romberg, R.; Olofsen, E.; Sarton, E.; den Hartigh, J.; Taschner, P.E.; Dahan, A. Pharmacokinetic-pharmacodynamic modeling of morphine-6-glucuronide-induced analgesia in healthy volunteers: Absence of sex differences. Anesthesiology, 2004, 100(1), 120-133.
[259]
Kitamura, Y.; Hirouchi, M.; Kusuhara, H.; Schuetz, J.D.; Sugiyama, Y. Increasing systemic exposure of methotrexate by active efflux mediated by multidrug resistance-associated protein 3 (mrp3/abcc3). J. Pharmacol. Exp. Ther., 2008, 327(2), 465-473.
[260]
Brcakova, E.; Fuksa, L.; Cermanova, J.; Kolouchova, G.; Hroch, M.; Hirsova, P.; Martinkova, J.; Staud, F.; Micuda, S. Alteration of methotrexate biliary and renal elimination during extrahepatic and intrahepatic cholestasis in rats. Biol. Pharm. Bull., 2009, 32(12), 1978-1985.
[261]
Kato, Y.; Takahara, S.; Kato, S.; Kubo, Y.; Sai, Y.; Tamai, I.; Yabuuchi, H.; Tsuji, A. Involvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weight-dependent biliary excretion of beta-lactam antibiotics. Drug Metab. Dispos., 2008, 36(6), 1088-1096.
[262]
Muraoka, I.; Hasegawa, T.; Nadai, M.; Wang, L.; Haghgoo, S.; Tagaya, O.; Nabeshima, T. Biliary and renal excretions of cefpiramide in Eisai hyperbilirubinemic rats. Antimicrob. Agents Chemother., 1995, 39(1), 70-74.
[263]
Lickteig, A.J.; Slitt, A.L.; Arkan, M.C.; Karin, M.; Cherrington, N.J. Differential regulation of hepatic transporters in the absence of tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and nuclear factor-kappaB in two models of cholestasis. Drug Metab. Dispos., 2007, 35(3), 402-409.
[264]
Arab, J.P.; Ramírez, C.; Muñoz, P.; Pizarro, M.; Solís, N.; Riquelme, A.; Arrese, M. Effects of Japanese herbal medicine Inchin-ko-to on endotoxin-induced cholestasis in the rat. Ann. Hepatol., 2009, 8(3), 228-233.
[265]
Bolder, U.; Jeschke, M.G.; Landmann, L.; Wolf, F.; de Sousa, C.; Schlitt, H.J.; Przkora, R. Heat stress enhances recovery of hepatocyte bile acid and organic anion transporters in endotoxemic rats by multiple mechanisms. Cell Stress Chaperones, 2006, 11(1), 89-100.
[266]
Cherrington, N.J.; Slitt, A.L.; Li, N.; Klaassen, C.D. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispos., 2004, 32(7), 734-741.
[267]
Elferink, M.G.; Olinga, P.; Draaisma, A.L.; Merema, M.T.; Faber, K.N.; Slooff, M.J.; Meijer, D.K.; Groothuis, G.M. LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287(5), G1008-G1016.
[268]
Geier, A.; Dietrich, C.G.; Voigt, S.; Kim, S.K.; Gerloff, T.; Kullak-Ublick, G.A.; Lorenzen, J.; Matern, S.; Gartung, C. Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology, 2003, 38(2), 345-354.
[269]
Hojo, M.; Sano, N.; Takikawa, H. Effects of lipopolysaccharide on the biliary excretion of bile acids and organic anions in rats. J. Gastroenterol. Hepatol., 2003, 18(7), 815-821.
[270]
Hartmann, G.; Cheung, A.K.; Piquette-Miller, M. Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J. Pharmacol. Exp. Ther., 2002, 303(1), 273-281.
[271]
Vos, T.A.; Hooiveld, G.J.; Koning, H.; Childs, S.; Meijer, D.K.; Moshage, H.; Jansen, P.L.; Müller, M. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology, 1998, 28(6), 1637-1644.
[272]
Green, R.M.; Beier, D.; Gollan, J.L. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology, 1996, 111(1), 193-198.
[273]
Krell, H.; Höke, H.; Pfaff, E. Development of intrahepatic cholestasis by alpha-naphthylisothiocyanate in rats. Gastroenterology, 1982, 82(3), 507-514.
[274]
Yao, X.; Li, Y.; Cheng, X.; Li, H. ER stress contributes to alpha-naphthyl isothiocyanate-induced liver injury with cholestasis in mice. Pathol. Res. Pract., 2016, 212(6), 560-567.
[275]
Zhang, A.; Jia, Y.; Xu, Q.; Wang, C.; Liu, Q.; Meng, Q.; Peng, J.; Sun, H.; Sun, P.; Huo, X.; Liu, K. Dioscin protects against ANIT-induced cholestasis via regulating Oatps, Mrp2 and Bsep expression in rats. Toxicol. Appl. Pharmacol., 2016, 305, 127-135.
[276]
Ding, L.; Zhang, B.; Zhan, C.; Yang, L.; Wang, Z. Danning tablets attenuates α-naphthylisothiocyanate-induced cholestasis by modulating the expression of transporters and metabolic enzymes. BMC Complement. Altern. Med., 2014, 14, 249.
[277]
Yang, P.; Chen, P.; Wang, T.; Zhan, Y.; Zhou, M.; Xia, L.; Cheng, R.; Guo, Y.; Zhu, L.; Zhang, J. Loss of A(1) adenosine receptor attenuates alpha-naphthylisothiocyanate-induced cholestatic liver injury in mice. Toxicol. Sci., 2013, 131(1), 128-138.
[278]
Cui, Y.J.; Aleksunes, L.M.; Tanaka, Y.; Goedken, M.J.; Klaassen, C.D. Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol. Sci., 2009, 110(1), 47-60.
[279]
Tanaka, Y.; Aleksunes, L.M.; Cui, Y.J.; Klaassen, C.D. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol. Sci., 2009, 108(2), 247-257.
[280]
Liu, J.; He, Y.Y.; Chignell, C.F.; Clark, J.; Myers, P.; Saavedra, J.E.; Waalkes, M.P. Limited protective role of V-PYRRO/NO against cholestasis produced by alpha-naphthylisothiocyanate in mice. Biochem. Pharmacol., 2005, 70(1), 144-151.
[281]
Yimam, K.K.; Bowlus, C.L. Diagnosis and classification of primary sclerosing cholangitis. Autoimmun. Rev., 2014, 13(4-5), 445-450.
[282]
Fickert, P.; Stöger, U.; Fuchsbichler, A.; Moustafa, T.; Marschall, H.U.; Weiglein, A.H.; Tsybrovskyy, O.; Jaeschke, H.; Zatloukal, K.; Denk, H.; Trauner, M. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am. J. Pathol., 2007, 171(2), 525-536.
[283]
Kurzawski, M.; Dziedziejko, V.; Post, M.; Wojcicki, M.; Urasinska, E.; Mietkiewski, J.; Drozdzik, M. Expression of genes involved in xenobiotic metabolism and transport in end-stage liver disease: up-regulation of ABCC4 and CYP1B1. Pharmacological Reports:PR, 2012, 64(4), 92-939.
[284]
Oswald, M.; Kullak-Ublick, G.A.; Paumgartner, G.; Beuers, U. Expression of hepatic transporters OATP-C and MRP2 in primary sclerosing cholangitis. Liver, 2001, 21(4), 247-253.
[285]
Kojima, H.; Nies, A.T.; König, J.; Hagmann, W.; Spring, H.; Uemura, M.; Fukui, H.; Keppler, D. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. J. Hepatol., 2003, 39(5), 693-702.
[286]
Takeyama, Y.; Uehara, Y.; Inomata, S.; Morihara, D.; Nishizawa, S.; Ueda, S.; Matsumoto, T.; Tanaka, T.; Anan, A.; Nishimura, H.; Irie, M.; Iwata, K.; Shakado, S.; Sohda, T.; Sakisaka, S. Alternative transporter pathways in patients with untreated early-stage and late-stage primary biliary cirrhosis. Liver Int., 2009, 29(3), 406-414.
[287]
Ros, J.E.; Libbrecht, L.; Geuken, M.; Jansen, P.L.; Roskams, T.A. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J. Pathol., 2003, 200(5), 553-560.
[288]
Zollner, G.; Wagner, M.; Fickert, P.; Silbert, D.; Gumhold, J.; Zatloukal, K.; Denk, H.; Trauner, M. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol. Sci., 2009, 108(2), 247-257.
[289]
Gradhand, U.; Kim, R.B. Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2). Drug Metab. Rev., 2008, 40(2), 317-354.
[290]
Manibusan, M.K.; Odin, M.; Eastmond, D.A. Postulated carbon tetrachloride mode of action: a review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2007, 25(3), 185-209.
[291]
Lagadec, M.; Doblas, S.; Giraudeau, C.; Ronot, M.; Lambert, S.A.; Fasseu, M.; Paradis, V.; Moreau, R.; Pastor, C.M.; Vilgrain, V.; Daire, J.L.; Van Beers, B.E. Advanced fibrosis: Correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver. Radiology, 2015, 274(2), 379-386.
[292]
Okumura, H.; Katoh, M.; Minami, K.; Nakajima, M.; Yokoi, T. Change of drug excretory pathway by CCl4-induced liver dysfunction in rat. Biochem. Pharmacol., 2007, 74(3), 488-495.
[293]
Yokooji, T.; Murakami, T.; Yumoto, R.; Nagai, J.; Takano, M. Function of multidrug resistance-associated protein 2 in acute hepatic failure rats. Eur. J. Pharmacol., 2006, 546(1-3), 152-160.
[294]
Song, I.S.; Lee, Y.M.; Chung, S.J.; Shim, C.K. Multiple alterations of canalicular membrane transport activities in rats with CCl(4)-induced hepatic injury. Drug Metab. Dispos., 2003, 31(4), 482-490.
[295]
Lau, S.S.; Monks, T.J. The contribution of bromobenzene to our current understanding of chemically-induced toxicities. Life Sci., 1988, 42(13), 1259-1269.
[296]
Heijne, W.H.; Slitt, A.L.; van Bladeren, P.J.; Groten, J.P.; Klaassen, C.D.; Stierum, R.H.; van Ommen, B. Bromobenzene-induced hepatotoxicity at the transcriptome level. Toxicol. Sci., 2004, 79(2), 411-422.
[297]
Tanaka, K.; Kiyosawa, N.; Watanabe, K.; Manabe, S. Characterization of resistance to bromobenzene-induced hepatotoxicity by microarray. J. Toxicol. Sci., 2007, 32(2), 129-134.
[298]
Meier, M.; Andersen, K.J.; Knudsen, A.R.; Nyengaard, J.R.; Hamilton-Dutoit, S.; Mortensen, F.V. Liver regeneration is dependent on the extent of hepatectomy. J. Surg. Res., 2016, 205(1), 76-84.
[299]
Kimura, N.; Hakamada, K.; Ikenaga, S.K.; Umehara, Y.; Toyoki, Y.; Sasaki, M. Gene expression of ATP-binding cassette transporters during liver regeneration after 90% hepatectomy in rats. Int. J. Mol. Med., 2012, 30(1), 28-34.
[300]
Miura, T.; Kimura, N.; Yamada, T.; Shimizu, T.; Nanashima, N.; Yamana, D.; Hakamada, K.; Tsuchida, S. Sustained repression and translocation of Ntcp and expression of Mrp4 for cholestasis after rat 90% partial hepatectomy. J. Hepatol., 2011, 55(2), 407-414.
[301]
Csanaky, I.L.; Aleksunes, L.M.; Tanaka, Y.; Klaassen, C.D. Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(3), G419-G433.
[302]
Dransfeld, O.; Gehrmann, T.; Kohrer, K.; Kircheis, G.; Holneicher, C.; Haussinger, D.; Wettstein, M. Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver Int., 2005, 25(6), 1243-1258.
[303]
Hofmann, A.F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci., 2009, 14, 2584-2598.
[304]
Fernández-Barrena, M.G.; Monte, M.J.; Latasa, M.U.; Uriarte, I.; Vicente, E.; Chang, H.C.; Rodriguez-Ortigosa, C.M.; Elferink, R.O.; Berasain, C.; Marin, J.J.; Prieto, J.; Ávila, M.A. Lack of Abcc3 expression impairs bile-acid induced liver growth and delays hepatic regeneration after partial hepatectomy in mice. J. Hepatol., 2012, 56(2), 367-373.
[305]
Ros, J.E.; Roskams, T.A.; Geuken, M.; Havinga, R.; Splinter, P.L.; Petersen, B.E.; LaRusso, N.F.; van der Kolk, D.M.; Kuipers, F.; Faber, K.N.; Müller, M.; Jansen, P.L. ATP binding cassette transporter gene expression in rat liver progenitor cells. Gut, 2003, 52(7), 1060-1067.
[306]
Ogasawara, K.; Terada, T.; Katsura, T.; Hatano, E.; Ikai, I.; Yamaoka, Y.; Inui, K. Hepatitis C virus-related cirrhosis is a major determinant of the expression levels of hepatic drug transporters. Drug Metab. Pharmacokinet., 2010, 25(2), 190-199.
[307]
Hinoshita, E.; Taguchi, K.; Inokuchi, A.; Uchiumi, T.; Kinukawa, N.; Shimada, M.; Tsuneyoshi, M.; Sugimachi, K.; Kuwano, M. Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection. J. Hepatol., 2001, 35(6), 765-773.
[308]
Dumoulin, F.L.; Reichel, C.; Sauerbruch, T.; Spengler, U. Semiquantitation of intrahepatic MDR3 mRNA levels by reverse transcription/competitive polymerase chain reaction. J. Hepatol., 1997, 26(4), 852-856.
[309]
Hyogo, H.; Tazuma, S.; Nishioka, T.; Ochi, H.; Yamaguchi, A.; Numata, Y.; Kanno, K.; Sakomoto, M.; Asamoto, Y.; Tsuboi, K.; Nakai, K.; Yasumiba, S.; Sunami, Y.; Kajiyama, G. Phospholipid alterations in hepatocyte membranes and transporter protein changes in cholestatic rat model. Dig. Dis. Sci., 2001, 46(10), 2089-2097.
[310]
Slitt, A.L.; Allen, K.; Morrone, J.; Aleksunes, L.M.; Chen, C.; Maher, J.M.; Manautou, J.E.; Cherrington, N.J.; Klaassen, C.D. Regulation of transporter expression in mouse liver, kidney, and intestine during extrahepatic cholestasis. Biochim. Biophys. Acta, 2007, 1768(3), 637-647.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy