摘要
硒是一种微量元素,营养上被归类为一种必需的微量营养素,参与维持几种含有硒半胱氨酸残基的酶的正常功能,即硒蛋白。包括25种蛋白质在内的人类硒蛋白组在这里被广泛地描述。最相关的硒蛋白,包括谷胱甘肽过氧化物酶、硫氧还蛋白还原酶和碘代嘌呤脱碘酶,是维持细胞氧化还原平衡和正确的甲状腺功能所必需的,从而预防氧化应激和相关疾病。本文综述了氧化应激的主要研究进展,并着重对硒的代谢和转运进行了综述。此外,考虑到甲状腺每克组织最高含硒量及未来可能的治疗意义,分析讨论甲状腺相关的疾病。
关键词: 脱碘化酶,氧化应激,氧化还原平衡,硒,甲状腺功能不全。
[1]
Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[2]
Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life, 2016, 68(2), 97-105.
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[3]
Steinbrenner, H.; Sies, H. Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta, 2009, 1790(11), 1478-1485.
[http://dx.doi.org/10.1016/j.bbagen.2009.02.014] [PMID: 19268692]
[http://dx.doi.org/10.1016/j.bbagen.2009.02.014] [PMID: 19268692]
[4]
Steinbrenner, H.; Speckmann, B.; Klotz, L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys., 2016, 595, 113-119.
[http://dx.doi.org/10.1016/j.abb.2015.06.024] [PMID: 27095226]
[http://dx.doi.org/10.1016/j.abb.2015.06.024] [PMID: 27095226]
[5]
Brigelius-Flohé, R.; Flohé, L. Selenium and redox signaling. Arch. Biochem. Biophys., 2017, 617, 48-59.
[http://dx.doi.org/10.1016/j.abb.2016.08.003] [PMID: 27495740]
[http://dx.doi.org/10.1016/j.abb.2016.08.003] [PMID: 27495740]
[6]
Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2012, 16(7), 705-743.
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]
[7]
Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: from pathophysiology to treatment. Int. J. Endocrinol., 2017, 20171297658
[http://dx.doi.org/10.1155/2017/1297658] [PMID: 28255299]
[http://dx.doi.org/10.1155/2017/1297658] [PMID: 28255299]
[8]
Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol., 2011, 8(3), 160-171.
[http://dx.doi.org/10.1038/nrendo.2011.174] [PMID: 22009156]
[http://dx.doi.org/10.1038/nrendo.2011.174] [PMID: 22009156]
[9]
Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci., 2014, 39(3), 112-120.
[http://dx.doi.org/10.1016/j.tibs.2013.12.007] [PMID: 24485058]
[http://dx.doi.org/10.1016/j.tibs.2013.12.007] [PMID: 24485058]
[10]
Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; Copeland, P.R.; Diamond, A.M.; Driscoll, D.M.; Ferreiro, A.; Flohé, L.; Green, F.R.; Guigó, R.; Handy, D.E.; Hatfield, D.L.; Hesketh, J.; Hoffmann, P.R.; Holmgren, A.; Hondal, R.J.; Howard, M.T.; Huang, K.; Kim, H.Y.; Kim, I.Y.; Köhrle, J.; Krol, A.; Kryukov, G.V.; Lee, B.J.; Lee, B.C.; Lei, X.G.; Liu, Q.; Lescure, A.; Lobanov, A.V.; Loscalzo, J.; Maiorino, M.; Mariotti, M.; Sandeep Prabhu, K.; Rayman, M.P.; Rozovsky, S.; Salinas, G.; Schmidt, E.E.; Schomburg, L.; Schweizer, U.; Simonović, M.; Sunde, R.A.; Tsuji, P.A.; Tweedie, S.; Ursini, F.; Whanger, P.D.; Zhang, Y. Selenoprotein gene nomenclature. J. Biol. Chem., 2016, 291(46), 24036-24040.
[http://dx.doi.org/10.1074/jbc.M116.756155] [PMID: 27645994]
[http://dx.doi.org/10.1074/jbc.M116.756155] [PMID: 27645994]
[11]
Reeves, M.A.; Hoffmann, P.R. The human selenoproteome: recent insights into functions and regulation. Cell. Mol. Life Sci., 2009, 66(15), 2457-2478.
[http://dx.doi.org/10.1007/s00018-009-0032-4] [PMID: 19399585]
[http://dx.doi.org/10.1007/s00018-009-0032-4] [PMID: 19399585]
[12]
Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Currò, D. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm., 2016, 20166757154
[http://dx.doi.org/10.1155/2016/6757154] [PMID: 27051079]
[http://dx.doi.org/10.1155/2016/6757154] [PMID: 27051079]
[13]
De Groot, L.J. Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit. Care Clin., 2006, 22(1), 57-86 vi..
[http://dx.doi.org/10.1016/j.ccc.2005.10.001] [PMID: 16399020]]
[http://dx.doi.org/10.1016/j.ccc.2005.10.001] [PMID: 16399020]]
[14]
Mancini, A.R.S.; Di Segni, C.; Persano, M.; Pontecorvi, A. Non-thyroidal illness: physiopathology and clinical implications in: Current topics in hypothyroidism with focus on development; Potlukova, E., Ed.; InTech: Rijeka, 2013, pp. 183-202.
[15]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[16]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86, 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[17]
Sies, H. Oxidative Stress in:Oxidative stress and vascular disease;, Keaney J.F.Jr., Ed.; Academic Press: London,. 1985, 1-8.
[18]
Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol., 2013, 13(5), 349-361.
[http://dx.doi.org/10.1038/nri3423] [PMID: 23618831]
[http://dx.doi.org/10.1038/nri3423] [PMID: 23618831]
[19]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[20]
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[21]
Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal., 2006, 8(9-10), 1865-1879.
[http://dx.doi.org/10.1089/ars.2006.8.1865] [PMID: 16987039]
[http://dx.doi.org/10.1089/ars.2006.8.1865] [PMID: 16987039]
[22]
Jones, D.P. Hydrogen peroxide and central redox theory for aerobic life: A tribute to Helmut Sies: Scout, trailblazer, and redox pioneer. Arch. Biochem. Biophys., 2016, 595, 13-18.
[http://dx.doi.org/10.1016/j.abb.2015.10.022] [PMID: 27095208]
[http://dx.doi.org/10.1016/j.abb.2015.10.022] [PMID: 27095208]
[23]
Sies, H.; Jones, D.P. Encyclopedia of Stress; Fink, E., Ed.;2nd ed.;. Elsevier: Amsterdam, 2007, pp. 45-48.
[http://dx.doi.org/10.1016/B978-012373947-6.00285-3]
[http://dx.doi.org/10.1016/B978-012373947-6.00285-3]
[24]
Niki, E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med., 2009, 47(5), 469-484.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.032] [PMID: 19500666]
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.032] [PMID: 19500666]
[25]
Niki, E. Oxidative stress and antioxidants: Distress or eustress? Arch. Biochem. Biophys., 2016, 595, 19-24.
[http://dx.doi.org/10.1016/j.abb.2015.11.017] [PMID: 27095209]
[http://dx.doi.org/10.1016/j.abb.2015.11.017] [PMID: 27095209]
[26]
Poljsak, B.; Š uput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid. Med. Cell. Longev., 2013.2013, 956792.
[http://dx.doi.org/10.1155/2013/956792] [PMID: 23738047]
[http://dx.doi.org/10.1155/2013/956792] [PMID: 23738047]
[27]
Radak, Z.; Ishihara, K.; Tekus, E.; Varga, C.; Posa, A.; Balogh, L.; Boldogh, I.; Koltai, E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol., 2017, 12, 285-290.
[http://dx.doi.org/10.1016/j.redox.2017.02.015] [PMID: 28285189]
[http://dx.doi.org/10.1016/j.redox.2017.02.015] [PMID: 28285189]
[28]
Calabrese, E.J. Hormesis: a fundamental concept in biology. Microb. Cell, 2014, 1(5), 145-149.
[http://dx.doi.org/10.15698/mic2014.05.145] [PMID: 28357236]
[http://dx.doi.org/10.15698/mic2014.05.145] [PMID: 28357236]
[29]
Radak, Z.; Chung, H.Y.; Goto, S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology, 2005, 6(1), 71-75.
[http://dx.doi.org/10.1007/s10522-004-7386-7] [PMID: 15834665]
[http://dx.doi.org/10.1007/s10522-004-7386-7] [PMID: 15834665]
[30]
Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol., 2017, 11, 613-619.
[http://dx.doi.org/10.1016/j.redox.2016.12.035] [PMID: 28110218]
[http://dx.doi.org/10.1016/j.redox.2016.12.035] [PMID: 28110218]
[31]
Munro, D.; Treberg, J.R. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J. Exp. Biol., 2017, 220(Pt 7), 1170-1180.
[http://dx.doi.org/10.1242/jeb.132142] [PMID: 28356365]
[http://dx.doi.org/10.1242/jeb.132142] [PMID: 28356365]
[32]
Murphy, M.P.; Holmgren, A.; Larsson, N.G.; Halliwell, B.; Chang, C.J.; Kalyanaraman, B.; Rhee, S.G.; Thornalley, P.J.; Partridge, L.; Gems, D.; Nyström, T.; Belousov, V.; Schumacker, P.T.; Winterbourn, C.C. Unraveling the biological roles of reactive oxygen species. Cell Metab., 2011, 13(4), 361-366.
[http://dx.doi.org/10.1016/j.cmet.2011.03.010] [PMID: 21459321]
[http://dx.doi.org/10.1016/j.cmet.2011.03.010] [PMID: 21459321]
[33]
Signorini, L.; Granata, S.; Lupo, A.; Zaza, G. Naturally occurring compounds: new potential weapons against oxidative stress in chronic kidney disease. Int. J. Mol. Sci., 2017, 18(7)E1841
[http://dx.doi.org/10.3390/ijms18071481] [PMID: 28698529]
[http://dx.doi.org/10.3390/ijms18071481] [PMID: 28698529]
[34]
Fridovich, I. Superoxide radical: an endogenous toxicant. Annu. Rev. Pharmacol. Toxicol., 1983, 23, 239-257.
[http://dx.doi.org/10.1146/annurev.pa.23.040183.001323] [PMID: 6307121]
[http://dx.doi.org/10.1146/annurev.pa.23.040183.001323] [PMID: 6307121]
[35]
Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell, 2007, 26(1), 1-14.
[http://dx.doi.org/10.1016/j.molcel.2007.03.016] [PMID: 17434122]
[http://dx.doi.org/10.1016/j.molcel.2007.03.016] [PMID: 17434122]
[36]
Jones, D.P.; Sies, H. The redox code. Antioxid. Redox Signal., 2015, 23(9), 734-746.
[http://dx.doi.org/10.1089/ars.2015.6247] [PMID: 25891126]
[http://dx.doi.org/10.1089/ars.2015.6247] [PMID: 25891126]
[37]
Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842.
[http://dx.doi.org/10.1021/bi9020378] [PMID: 20050630]
[http://dx.doi.org/10.1021/bi9020378] [PMID: 20050630]
[38]
Watanabe, S.; Moniaga, C.S.; Nielsen, S.; Hara-Chikuma, M. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem. Biophys. Res. Commun., 2016, 471(1), 191-197.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.153] [PMID: 26837049]
[http://dx.doi.org/10.1016/j.bbrc.2016.01.153] [PMID: 26837049]
[39]
Sies, H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem., 2014, 289(13), 8735-8741.
[http://dx.doi.org/10.1074/jbc.R113.544635] [PMID: 24515117]
[http://dx.doi.org/10.1074/jbc.R113.544635] [PMID: 24515117]
[40]
Bienert, G.P.; Møller, A.L.; Kristiansen, K.A.; Schulz, A.; Møller, I.M.; Schjoerring, J.K.; Jahn, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem., 2007, 282(2), 1183-1192.
[http://dx.doi.org/10.1074/jbc.M603761200] [PMID: 17105724]
[http://dx.doi.org/10.1074/jbc.M603761200] [PMID: 17105724]
[41]
Antunes, F.; Brito, P.M. Quantitative biology of hydrogen peroxide signaling. Redox Biol., 2017, 13, 1-7.
[http://dx.doi.org/10.1016/j.redox.2017.04.039] [PMID: 28528123]
[http://dx.doi.org/10.1016/j.redox.2017.04.039] [PMID: 28528123]
[42]
Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2014, 2, 535-562.
[http://dx.doi.org/10.1016/j.redox.2014.02.006] [PMID: 24634836]
[http://dx.doi.org/10.1016/j.redox.2014.02.006] [PMID: 24634836]
[43]
Winterbourn, C.C. The biological chemistry of hydrogen peroxide. Methods Enzymol., 2013, 528, 3-25.
[http://dx.doi.org/10.1016/B978-0-12-405881-1.00001-X] [PMID: 23849856]
[http://dx.doi.org/10.1016/B978-0-12-405881-1.00001-X] [PMID: 23849856]
[44]
Winterbourn, C.C. Are free radicals involved in thiol-based redox signaling? Free Radic. Biol. Med., 2015, 80, 164-170.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.017] [PMID: 25277419]
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.017] [PMID: 25277419]
[45]
Pillay, C.S.; Eagling, B.D.; Driscoll, S.R.; Rohwer, J.M. Quantitative measures for redox signaling. Free Radic. Biol. Med., 2016, 96, 290-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.199] [PMID: 27151506]
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.199] [PMID: 27151506]
[46]
Gammella, E.; Recalcati, S.; Cairo, G. Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxid. Med. Cell. Longev., 2016, 20168629024
[http://dx.doi.org/10.1155/2016/8629024] [PMID: 27006749]
[http://dx.doi.org/10.1155/2016/8629024] [PMID: 27006749]
[47]
Bauer, G. Signaling and proapoptotic functions of transformed cell-derived reactive oxygen species. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 66(1), 41-56.
[http://dx.doi.org/10.1054/plef.2001.0332] [PMID: 12051956]
[http://dx.doi.org/10.1054/plef.2001.0332] [PMID: 12051956]
[48]
Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide ion: generation and chemical implications. Chem. Rev., 2016, 116(5), 3029-3085.
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[49]
Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid. Redox Signal., 2013, 18(16), 2029-2074.
[http://dx.doi.org/10.1089/ars.2012.4729] [PMID: 23244576]
[http://dx.doi.org/10.1089/ars.2012.4729] [PMID: 23244576]
[50]
Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med., 2016, 100, 14-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.001] [PMID: 27085844]
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.001] [PMID: 27085844]
[51]
Go, Y.M.; Chandler, J.D.; Jones, D.P. The cysteine proteome. Free Radic. Biol. Med., 2015, 84, 227-245.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.022] [PMID: 25843657]
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.022] [PMID: 25843657]
[52]
Halliwell, B.G.; Gutteridge, J.M. Oxidative stress and redox regulation: adaptation, damage, repair, senescence, and death. In: Free radicals in biology and medicine (3rd ed.);; Halliwell, B.G.; Gutteridge, J.M., Eds.; Oxford University Press: Oxford. , 1999; pp. 105-107.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.003.0005]
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.003.0005]
[53]
Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med., 1995, 18(1), 125-126.
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[54]
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(Pt 5), 1147-1150.
[http://dx.doi.org/10.1042/BST0351147] [PMID: 17956298]
[http://dx.doi.org/10.1042/BST0351147] [PMID: 17956298]
[55]
Berndt, C.; Lillig, C.H.; Flohé, L. Redox regulation by glutathione needs enzymes. Front. Pharmacol., 2014, 5, 168.
[http://dx.doi.org/10.3389/fphar.2014.00168] [PMID: 25100998]
[http://dx.doi.org/10.3389/fphar.2014.00168] [PMID: 25100998]
[56]
Finley, J.W. Bioavailability of selenium from foods. Nutr. Rev., 2006, 64(3), 146-151.
[http://dx.doi.org/10.1111/j.1753-4887.2006.tb00198.x] [PMID: 16572602]
[http://dx.doi.org/10.1111/j.1753-4887.2006.tb00198.x] [PMID: 16572602]
[57]
Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr., 2015, 35, 109-134.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034250] [PMID: 25974694]
[http://dx.doi.org/10.1146/annurev-nutr-071714-034250] [PMID: 25974694]
[58]
Formula, I. Infant formula: the addition of minimum and maximum levels of selenium to infant formula and related labeling requirements. Final rule. Fed. Regist., 2015, 80(120), 35834-35841.
[PMID: 26103741]
[PMID: 26103741]
[59]
Letavayová, L.; Vlcková, V.; Brozmanová, J. Selenium: from cancer prevention to DNA damage. Toxicology, 2006, 227(1-2), 1-14.
[http://dx.doi.org/10.1016/j.tox.2006.07.017] [PMID: 16935405]
[http://dx.doi.org/10.1016/j.tox.2006.07.017] [PMID: 16935405]
[60]
Xia, Y.; Hill, K.E.; Li, P.; Xu, J.; Zhou, D.; Motley, A.K.; Wang, L.; Byrne, D.W.; Burk, R.F. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am. J. Clin. Nutr., 2010, 92(3), 525-531.
[http://dx.doi.org/10.3945/ajcn.2010.29642] [PMID: 20573787]
[http://dx.doi.org/10.3945/ajcn.2010.29642] [PMID: 20573787]
[62]
Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol., 2015, 29, 31-38.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.003] [PMID: 25175508]
[http://dx.doi.org/10.1016/j.jtemb.2014.07.003] [PMID: 25175508]
[63]
Ralston, N.V.; Raymond, L.J. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology, 2010, 278(1), 112-123.
[http://dx.doi.org/10.1016/j.tox.2010.06.004] [PMID: 20561558]
[http://dx.doi.org/10.1016/j.tox.2010.06.004] [PMID: 20561558]
[64]
Mazokopakis, E.E.; Papadakis, J.A.; Papadomanolaki, M.G.; Batistakis, A.G.; Giannakopoulos, T.G.; Protopapadakis, E.E.; Ganotakis, E.S. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO Levels in Patients with Hashimoto’s thyroiditis. Thyroid, 2007, 17(7), 609-612.
[http://dx.doi.org/10.1089/thy.2007.0040] [PMID: 17696828]
[http://dx.doi.org/10.1089/thy.2007.0040] [PMID: 17696828]
[65]
Lu, Z.; Marks, E.; Chen, J.; Moline, J.; Barrows, L.; Raisbeck, M.; Volitakis, I.; Cherny, R.A.; Chopra, V.; Bush, A.I.; Hersch, S.; Fox, J.H. Altered selenium status in Huntington’s disease: neuroprotection by selenite in the N171-82Q mouse model. Neurobiol. Dis., 2014, 71, 34-42.
[http://dx.doi.org/10.1016/j.nbd.2014.06.022] [PMID: 25014023]
[http://dx.doi.org/10.1016/j.nbd.2014.06.022] [PMID: 25014023]
[66]
Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; Parsons, J.K.; Bearden, J.D., III; Crawford, E.D.; Goodman, G.E.; Claudio, J.; Winquist, E.; Cook, E.D.; Karp, D.D.; Walther, P.; Lieber, M.M.; Kristal, A.R.; Darke, A.K.; Arnold, K.B.; Ganz, P.A.; Santella, R.M.; Albanes, D.; Taylor, P.R.; Probstfield, J.L.; Jagpal, T.J.; Crowley, J.J.; Meyskens, F.L., Jr; Baker, L.H.; Coltman, C.A. Jr. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009, 301(1), 39-51.
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[67]
Legrain, Y.; Touat-Hamici, Z.; Chavatte, L. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts. J. Biol. Chem., 2014, 289(9), 6299-6310.
[http://dx.doi.org/10.1074/jbc.M113.526863] [PMID: 24425862]
[http://dx.doi.org/10.1074/jbc.M113.526863] [PMID: 24425862]
[68]
Pirola, I.; Gandossi, E.; Agosti, B.; Delbarba, A.; Cappelli, C. Selenium supplementation could restore euthyroidism in subclinical hypothyroid patients with autoimmune thyroiditis. Endokrynol. Pol., 2016, 67(6), 567-571.
[http://dx.doi.org/10.5603/EP.2016.0064] [PMID: 28042649]
[http://dx.doi.org/10.5603/EP.2016.0064] [PMID: 28042649]
[69]
Allmang, C.; Krol, A. Selenoprotein synthesis: UGA does not end the story. Biochimie, 2006, 88(11), 1561-1571.
[http://dx.doi.org/10.1016/j.biochi.2006.04.015] [PMID: 16737768]
[http://dx.doi.org/10.1016/j.biochi.2006.04.015] [PMID: 16737768]
[70]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[71]
Abdulah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H. Chemical forms of selenium for cancer prevention. J. Trace Elem. Med. Biol., 2005, 19(2-3), 141-150.
[http://dx.doi.org/10.1016/j.jtemb.2005.09.003] [PMID: 16325529]
[http://dx.doi.org/10.1016/j.jtemb.2005.09.003] [PMID: 16325529]
[72]
Fomenko, D.E.; Xing, W.; Adair, B.M.; Thomas, D.J.; Gladyshev, V.N. High-throughput identification of catalytic redox-active cysteine residues. Science, 2007, 315(5810), 387-389.
[http://dx.doi.org/10.1126/science.1133114] [PMID: 17234949]
[http://dx.doi.org/10.1126/science.1133114] [PMID: 17234949]
[73]
Schweizer, U.; Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J., 2016, 30(11), 3669-3681.
[http://dx.doi.org/10.1096/fj.201600424] [PMID: 27473727]
[http://dx.doi.org/10.1096/fj.201600424] [PMID: 27473727]
[74]
Hill, K.E.; Wu, S.; Motley, A.K.; Stevenson, T.D.; Winfrey, V.P.; Capecchi, M.R.; Atkins, J.F.; Burk, R.F. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J. Biol. Chem., 2012, 287(48), 40414-40424.
[http://dx.doi.org/10.1074/jbc.M112.421404] [PMID: 23038251]
[http://dx.doi.org/10.1074/jbc.M112.421404] [PMID: 23038251]
[75]
Olson, G.E.; Winfrey, V.P.; Hill, K.E.; Burk, R.F. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J. Biol. Chem., 2008, 283(11), 6854-6860.
[http://dx.doi.org/10.1074/jbc.M709945200] [PMID: 18174160]
[http://dx.doi.org/10.1074/jbc.M709945200] [PMID: 18174160]
[76]
Combs, G.F., Jr; Watts, J.C.; Jackson, M.I.; Johnson, L.K.; Zeng, H.; Scheett, A.J.; Uthus, E.O.; Schomburg, L.; Hoeg, A.; Hoefig, C.S.; Davis, C.D.; Milner, J.A. Determinants of selenium status in healthy adults. Nutr. J., 2011, 10, 75.
[http://dx.doi.org/10.1186/1475-2891-10-75] [PMID: 21767397]
[http://dx.doi.org/10.1186/1475-2891-10-75] [PMID: 21767397]
[77]
Schomburg, L.; Schweizer, U.; Holtmann, B.; Flohé, L.; Sendtner, M.; Köhrle, J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J., 2003, 370(Pt 2), 397-402.
[http://dx.doi.org/10.1042/bj20021853] [PMID: 12521380]
[http://dx.doi.org/10.1042/bj20021853] [PMID: 12521380]
[78]
Burk, R.F.; Hill, K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta, 2009, 1790(11), 1441-1447.
[http://dx.doi.org/10.1016/j.bbagen.2009.03.026] [PMID: 19345254]
[http://dx.doi.org/10.1016/j.bbagen.2009.03.026] [PMID: 19345254]
[79]
Barrett, C.W.; Short, S.P.; Williams, C.S. Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell. Mol. Life Sci., 2017, 74(4), 607-616.
[http://dx.doi.org/10.1007/s00018-016-2339-2] [PMID: 27563706]
[http://dx.doi.org/10.1007/s00018-016-2339-2] [PMID: 27563706]
[80]
Turanov, A.A.; Everley, R.A.; Hybsier, S.; Renko, K.; Schomburg, L.; Gygi, S.P.; Hatfield, D.L.; Gladyshev, V.N. Regulation of selenocysteine content of human selenoprotein P by dietary selenium and insertion of cysteine in place of selenocysteine. PLoS One, 2015, 10(10), e0140353.
[http://dx.doi.org/10.1371/journal.pone.0140353] [PMID: 26452064]
[http://dx.doi.org/10.1371/journal.pone.0140353] [PMID: 26452064]
[81]
Hill, K.E.; Zhou, J.; McMahan, W.J.; Motley, A.K.; Burk, R.F. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J. Nutr., 2004, 134(1), 157-161.
[http://dx.doi.org/10.1093/jn/134.1.157] [PMID: 14704310]
[http://dx.doi.org/10.1093/jn/134.1.157] [PMID: 14704310]
[82]
Chen, M.; Liu, B.; Wilkinson, D.; Hutchison, A.T.; Thompson, C.H.; Wittert, G.A.; Heilbronn, L.K. Selenoprotein P is elevated in individuals with obesity, but is not independently associated with insulin resistance. Obes. Res. Clin. Pract., 2017, 11(2), 227-232.
[http://dx.doi.org/10.1016/j.orcp.2016.07.004] [PMID: 27524654]
[http://dx.doi.org/10.1016/j.orcp.2016.07.004] [PMID: 27524654]
[83]
Gharipour, M.; Sadeghi, M.; Salehi, M.; Behmanesh, M.; Khosravi, E.; Dianatkhah, M.; Haghjoo Javanmard, S.; Razavi, R.; Gharipour, A. Association of expression of selenoprotein P in mRNA and protein levels with metabolic syndrome in subjects with cardiovascular disease: Results of the Selenegene study. J. Gene Med., 2017, 19(3)
[http://dx.doi.org/10.1002/jgm.2945] [PMID: 28190280]
[http://dx.doi.org/10.1002/jgm.2945] [PMID: 28190280]
[84]
Traulsen, H.; Steinbrenner, H.; Buchczyk, D.P.; Klotz, L.O.; Sies, H. Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic. Res., 2004, 38(2), 123-128.
[http://dx.doi.org/10.1080/10715760320001634852] [PMID: 15104205]
[http://dx.doi.org/10.1080/10715760320001634852] [PMID: 15104205]
[85]
Arteel, G.E.; Mostert, V.; Oubrahim, H.; Briviba, K.; Abel, J.; Sies, H. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol. Chem., 1998, 379(8-9), 1201-1205.
[PMID: 9792455]
[PMID: 9792455]
[86]
Saito, Y.; Hayashi, T.; Tanaka, A.; Watanabe, Y.; Suzuki, M.; Saito, E.; Takahashi, K. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J. Biol. Chem., 1999, 274(5), 2866-2871.
[http://dx.doi.org/10.1074/jbc.274.5.2866] [PMID: 9915822]
[http://dx.doi.org/10.1074/jbc.274.5.2866] [PMID: 9915822]
[87]
Petit, N.; Lescure, A.; Rederstorff, M.; Krol, A.; Moghadaszadeh, B.; Wewer, U.M.; Guicheney, P. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet., 2003, 12(9), 1045-1053.
[http://dx.doi.org/10.1093/hmg/ddg115] [PMID: 12700173]
[http://dx.doi.org/10.1093/hmg/ddg115] [PMID: 12700173]
[88]
Jurynec, M.J.; Xia, R.; Mackrill, J.J.; Gunther, D.; Crawford, T.; Flanigan, K.M.; Abramson, J.J.; Howard, M.T.; Grunwald, D.J. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12485-12490.
[http://dx.doi.org/10.1073/pnas.0806015105] [PMID: 18713863]
[http://dx.doi.org/10.1073/pnas.0806015105] [PMID: 18713863]
[89]
Arbogast, S.; Beuvin, M.; Fraysse, B.; Zhou, H.; Muntoni, F.; Ferreiro, A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann. Neurol., 2009, 65(6), 677-686.
[http://dx.doi.org/10.1002/ana.21644] [PMID: 19557870]
[http://dx.doi.org/10.1002/ana.21644] [PMID: 19557870]
[90]
Lu, C.; Qiu, F.; Zhou, H.; Peng, Y.; Hao, W.; Xu, J.; Yuan, J.; Wang, S.; Qiang, B.; Xu, C.; Peng, X. Identification and characterization of selenoprotein K: an antioxidant in cardiomyocytes. FEBS Lett., 2006, 580(22), 5189-5197.
[http://dx.doi.org/10.1016/j.febslet.2006.08.065] [PMID: 16962588]
[http://dx.doi.org/10.1016/j.febslet.2006.08.065] [PMID: 16962588]
[91]
Fan, R.; Yao, H.; Cao, C.; Zhao, X.; Khalid, A.; Zhao, J.; Zhang, Z.; Xu, S. Gene silencing of selenoprotein K induces inflammatory response and activates heat shock proteins expression in chicken myoblasts. Biol. Trace Elem. Res., 2017, 180(1), 135-145.
[http://dx.doi.org/10.1007/s12011-017-0979-1] [PMID: 28281222]
[http://dx.doi.org/10.1007/s12011-017-0979-1] [PMID: 28281222]
[92]
Zhang, Y.; Zhou, Y.; Schweizer, U.; Savaskan, N.E.; Hua, D.; Kipnis, J.; Hatfield, D.L.; Gladyshev, V.N. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J. Biol. Chem., 2008, 283(4), 2427-2438.
[http://dx.doi.org/10.1074/jbc.M707951200] [PMID: 18032379]
[http://dx.doi.org/10.1074/jbc.M707951200] [PMID: 18032379]
[93]
Ferguson, A.D.; Labunskyy, V.M.; Fomenko, D.E.; Araç, D.; Chelliah, Y.; Amezcua, C.A.; Rizo, J.; Gladyshev, V.N.; Deisenhofer, J. NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J. Biol. Chem., 2006, 281(6), 3536-3543.
[http://dx.doi.org/10.1074/jbc.M511386200] [PMID: 16319061]
[http://dx.doi.org/10.1074/jbc.M511386200] [PMID: 16319061]
[94]
Pitts, M.W.; Reeves, M.A.; Hashimoto, A.C.; Ogawa, A.; Kremer, P.; Seale, L.A.; Berry, M.J. Deletion of selenoprotein M leads to obesity without cognitive deficits. J. Biol. Chem., 2013, 288(36), 26121-26134.
[http://dx.doi.org/10.1074/jbc.M113.471235] [PMID: 23880772]
[http://dx.doi.org/10.1074/jbc.M113.471235] [PMID: 23880772]
[95]
Panee, J.; Stoytcheva, Z.R.; Liu, W.; Berry, M.J. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J. Biol. Chem., 2007, 282(33), 23759-23765.
[http://dx.doi.org/10.1074/jbc.M702267200] [PMID: 17526492]
[http://dx.doi.org/10.1074/jbc.M702267200] [PMID: 17526492]
[96]
Cox, A.G.; Tsomides, A.; Kim, A.J.; Saunders, D.; Hwang, K.L.; Evason, K.J.; Heidel, J.; Brown, K.K.; Yuan, M.; Lien, E.C.; Lee, B.C.; Nissim, S.; Dickinson, B.; Chhangawala, S.; Chang, C.J.; Asara, J.M.; Houvras, Y.; Gladyshev, V.N.; Goessling, W. Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5562-E5571.
[http://dx.doi.org/10.1073/pnas.1600204113] [PMID: 27588899]
[http://dx.doi.org/10.1073/pnas.1600204113] [PMID: 27588899]
[97]
Liu, J.; Rozovsky, S. Membrane-bound selenoproteins. Antioxid. Redox Signal., 2015, 23(10), 795-813.
[http://dx.doi.org/10.1089/ars.2015.6388] [PMID: 26168272]
[http://dx.doi.org/10.1089/ars.2015.6388] [PMID: 26168272]
[98]
Kim, H.Y.; Gladyshev, V.N. Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J., 2007, 407(3), 321-329.
[http://dx.doi.org/10.1042/BJ20070929] [PMID: 17922679]
[http://dx.doi.org/10.1042/BJ20070929] [PMID: 17922679]
[99]
Dai, J.; Liu, H.; Zhou, J.; Huang, K.; Selenoprotein, R. Selenoprotein R protects human lens epithelial cells against D-galactose-induced apoptosis by regulating oxidative stress and endoplasmic reticulum stress. Int. J. Mol. Sci., 2016, 17(2), 231.
[http://dx.doi.org/10.3390/ijms17020231] [PMID: 26875981]
[http://dx.doi.org/10.3390/ijms17020231] [PMID: 26875981]
[100]
Ye, Y.; Shibata, Y.; Yun, C.; Ron, D.; Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 2004, 429(6994), 841-847.
[http://dx.doi.org/10.1038/nature02656] [PMID: 15215856]
[http://dx.doi.org/10.1038/nature02656] [PMID: 15215856]
[101]
Bubenik, J.L.; Miniard, A.C.; Driscoll, D.M. Alternative transcripts and 3'UTR elements govern the incorporation of selenocysteine into selenoprotein S. PLoS One, 2013, 8(4)e62102
[http://dx.doi.org/10.1371/journal.pone.0062102] [PMID: 23614019]
[http://dx.doi.org/10.1371/journal.pone.0062102] [PMID: 23614019]
[102]
Lee, J.H.; Park, K.J.; Jang, J.K.; Jeon, Y.H.; Ko, K.Y.; Kwon, J.H.; Lee, S.R.; Kim, I.Y. Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J. Biol. Chem., 2015, 290(50), 29941-29952.
[http://dx.doi.org/10.1074/jbc.M115.680215] [PMID: 26504085]
[http://dx.doi.org/10.1074/jbc.M115.680215] [PMID: 26504085]
[103]
Du, S.; Liu, H.; Huang, K. Influence of SelS gene silence on beta-Mercaptoethanol-mediated endoplasmic reticulum stress and cell apoptosis in HepG2 cells. Biochim. Biophys. Acta, 2010, 1800(5), 511-517.
[http://dx.doi.org/10.1016/j.bbagen.2010.01.005] [PMID: 20114070]
[http://dx.doi.org/10.1016/j.bbagen.2010.01.005] [PMID: 20114070]
[104]
Liu, J.; Li, F.; Rozovsky, S. The intrinsically disordered membrane protein selenoprotein S is a reductase in vitro. Biochemistry, 2013, 52(18), 3051-3061.
[http://dx.doi.org/10.1021/bi4001358] [PMID: 23566202]
[http://dx.doi.org/10.1021/bi4001358] [PMID: 23566202]
[105]
Turanov, A.A.; Shchedrina, V.A.; Everley, R.A.; Lobanov, A.V.; Yim, S.H.; Marino, S.M.; Gygi, S.P.; Hatfield, D.L.; Gladyshev, V.N. Selenoprotein S is involved in maintenance and transport of multiprotein complexes. Biochem. J., 2014, 462(3), 555-565.
[http://dx.doi.org/10.1042/BJ20140076] [PMID: 24897171]
[http://dx.doi.org/10.1042/BJ20140076] [PMID: 24897171]
[106]
Sengupta, A.; Carlson, B.A.; Labunskyy, V.M.; Gladyshev, V.N.; Hatfield, D.L. Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells. Biochem. Cell Biol., 2009, 87(6), 953-961.
[http://dx.doi.org/10.1139/O09-064] [PMID: 19935881]
[http://dx.doi.org/10.1139/O09-064] [PMID: 19935881]
[107]
Grumolato, L.; Ghzili, H.; Montero-Hadjadje, M.; Gasman, S.; Lesage, J.; Tanguy, Y.; Galas, L.; Ait-Ali, D.; Leprince, J.; Guérineau, N.C.; Elkahloun, A.G.; Fournier, A.; Vieau, D.; Vaudry, H.; Anouar, Y. Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J., 2008, 22(6), 1756-1768.
[http://dx.doi.org/10.1096/fj.06-075820] [PMID: 18198219]
[http://dx.doi.org/10.1096/fj.06-075820] [PMID: 18198219]
[108]
Prevost, G.; Arabo, A.; Jian, L.; Quelennec, E.; Cartier, D.; Hassan, S.; Falluel-Morel, A.; Tanguy, Y.; Gargani, S.; Lihrmann, I.; Kerr-Conte, J.; Lefebvre, H.; Pattou, F.; Anouar, Y. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance. Endocrinology, 2013, 154(10), 3796-3806.
[http://dx.doi.org/10.1210/en.2013-1167] [PMID: 23913443]
[http://dx.doi.org/10.1210/en.2013-1167] [PMID: 23913443]
[109]
Labunskyy, V.M.; Lee, B.C.; Handy, D.E.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid. Redox Signal., 2011, 14(12), 2327-2336.
[http://dx.doi.org/10.1089/ars.2010.3526] [PMID: 21194350]
[http://dx.doi.org/10.1089/ars.2010.3526] [PMID: 21194350]
[110]
Dikiy, A.; Novoselov, S.V.; Fomenko, D.E.; Sengupta, A.; Carlson, B.A.; Cerny, R.L.; Ginalski, K.; Grishin, N.V.; Hatfield, D.L.; Gladyshev, V.N. SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry, 2007, 46(23), 6871-6882.
[http://dx.doi.org/10.1021/bi602462q] [PMID: 17503775]
[http://dx.doi.org/10.1021/bi602462q] [PMID: 17503775]
[111]
Beilstein, M.A.; Vendeland, S.C.; Barofsky, E.; Jensen, O.N.; Whanger, P.D. Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J. Inorg. Biochem., 1996, 61(2), 117-124.
[http://dx.doi.org/10.1016/0162-0134(95)00045-3] [PMID: 8576706]
[http://dx.doi.org/10.1016/0162-0134(95)00045-3] [PMID: 8576706]
[112]
Jeong, Dw.; Kim, T.S.; Chung, Y.W.; Lee, B.J.; Kim, I.Y. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett., 2002, 517(1-3), 225-228.
[http://dx.doi.org/10.1016/S0014-5793(02)02628-5] [PMID: 12062442]
[http://dx.doi.org/10.1016/S0014-5793(02)02628-5] [PMID: 12062442]
[113]
Sun, Y.; Gu, Q.P.; Whanger, P.D. Selenoprotein W in overexpressed and underexpressed rat glial cells in culture. J. Inorg. Biochem., 2001, 84(1-2), 151-156.
[http://dx.doi.org/10.1016/S0162-0134(00)00219-1] [PMID: 11330475]
[http://dx.doi.org/10.1016/S0162-0134(00)00219-1] [PMID: 11330475]
[114]
Loflin, J.; Lopez, N.; Whanger, P.D.; Kioussi, C. Selenoprotein W during development and oxidative stress. J. Inorg. Biochem., 2006, 100(10), 1679-1684.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.05.018] [PMID: 16876868]
[http://dx.doi.org/10.1016/j.jinorgbio.2006.05.018] [PMID: 16876868]
[115]
Whanger, P.D. Selenoprotein W: a review. Cell. Mol. Life Sci., 2000, 57(13-14), 1846-1852.
[http://dx.doi.org/10.1007/PL00000666] [PMID: 11215511]
[http://dx.doi.org/10.1007/PL00000666] [PMID: 11215511]
[116]
Gladyshev, V.N.; Jeang, K.T.; Wootton, J.C.; Hatfield, D.L. A new human selenium-containing protein. Purification, characterization, and cDNA sequence. J. Biol. Chem., 1998, 273(15), 8910-8915.
[http://dx.doi.org/10.1074/jbc.273.15.8910] [PMID: 9535873]
[http://dx.doi.org/10.1074/jbc.273.15.8910] [PMID: 9535873]
[117]
Korotkov, K.V.; Novoselov, S.V.; Hatfield, D.L.; Gladyshev, V.N. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol., 2002, 22(5), 1402-1411.
[http://dx.doi.org/10.1128/MCB.22.5.1402-1411.2002] [PMID: 11839807]
[http://dx.doi.org/10.1128/MCB.22.5.1402-1411.2002] [PMID: 11839807]
[118]
Kumaraswamy, E.; Malykh, A.; Korotkov, K.V.; Kozyavkin, S.; Hu, Y.; Kwon, S.Y.; Moustafa, M.E.; Carlson, B.A.; Berry, M.J.; Lee, B.J.; Hatfield, D.L.; Diamond, A.M.; Gladyshev, V.N. Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J. Biol. Chem., 2000, 275(45), 35540-35547.
[http://dx.doi.org/10.1074/jbc.M004014200] [PMID: 10945981]
[http://dx.doi.org/10.1074/jbc.M004014200] [PMID: 10945981]
[119]
Xu, X.M.; Carlson, B.A.; Zhang, Y.; Mix, H.; Kryukov, G.V.; Glass, R.S.; Berry, M.J.; Gladyshev, V.N.; Hatfield, D.L. New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea. Biol. Trace Elem. Res., 2007, 119(3), 234-241.
[http://dx.doi.org/10.1007/s12011-007-8003-9] [PMID: 17916946]
[http://dx.doi.org/10.1007/s12011-007-8003-9] [PMID: 17916946]
[120]
Brigelius-Flohé, R.; Müller, M.; Lippmann, D.; Kipp, A.P. The yin and yang of nrf2-regulated selenoproteins in carcinogenesis. Int. J. Cell Biol., 2012, 2012486147
[http://dx.doi.org/10.1155/2012/486147] [PMID: 22654914]
[http://dx.doi.org/10.1155/2012/486147] [PMID: 22654914]
[121]
Du, Y.; Zhang, H.; Lu, J.; Holmgren, A. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J. Biol. Chem., 2012, 287(45), 38210-38219.
[http://dx.doi.org/10.1074/jbc.M112.392225] [PMID: 22977247]
[http://dx.doi.org/10.1074/jbc.M112.392225] [PMID: 22977247]
[122]
Watson, W.H.; Heilman, J.M.; Hughes, L.L.; Spielberger, J.C. Thioredoxin reductase-1 knock down does not result in thioredoxin-1 oxidation. Biochem. Biophys. Res. Commun., 2008, 368(3), 832-836.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.006] [PMID: 18267104]
[http://dx.doi.org/10.1016/j.bbrc.2008.02.006] [PMID: 18267104]
[123]
Berggren, M.; Gallegos, A.; Gasdaska, J.R.; Gasdaska, P.Y.; Warneke, J.; Powis, G. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res., 1996, 16(6B), 3459-3466.
[PMID: 9042207]
[PMID: 9042207]
[124]
Lincoln, D.T.; Al-Yatama, F.; Mohammed, F.M.; Al-Banaw, A.G.; Al-Bader, M.; Burge, M.; Sinowatz, F.; Singal, P.K. Thioredoxin and thioredoxin reductase expression in thyroid cancer depends on tumour aggressiveness. Anticancer Res., 2010, 30(3), 767-775.
[PMID: 20392995]
[PMID: 20392995]
[125]
Ashton, K.; Hooper, L.; Harvey, L.J.; Hurst, R.; Casgrain, A.; Fairweather-Tait, S.J. Methods of assessment of selenium status in humans: a systematic review. Am. J. Clin. Nutr., 2009, 89(6), 2025S-2039S.
[http://dx.doi.org/10.3945/ajcn.2009.27230F] [PMID: 19420095]
[http://dx.doi.org/10.3945/ajcn.2009.27230F] [PMID: 19420095]
[126]
Rayman, M.P. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc. Nutr. Soc., 2005, 64(4), 527-542.
[http://dx.doi.org/10.1079/PNS2005467] [PMID: 16313696]
[http://dx.doi.org/10.1079/PNS2005467] [PMID: 16313696]
[127]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: a selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[128]
Tan, M.; Li, S.; Swaroop, M.; Guan, K.; Oberley, L.W.; Sun, Y. Transcriptional activation of the human glutathione peroxidase promoter by p53. J. Biol. Chem., 1999, 274(17), 12061-12066.
[http://dx.doi.org/10.1074/jbc.274.17.12061] [PMID: 10207030]
[http://dx.doi.org/10.1074/jbc.274.17.12061] [PMID: 10207030]
[129]
Yan, W.; Chen, X. GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J. Biol. Chem., 2006, 281(12), 7856-7862.
[http://dx.doi.org/10.1074/jbc.M512655200] [PMID: 16446369]
[http://dx.doi.org/10.1074/jbc.M512655200] [PMID: 16446369]
[130]
Murawaki, Y.; Tsuchiya, H.; Kanbe, T.; Harada, K.; Yashima, K.; Nozaka, K.; Tanida, O.; Kohno, M.; Mukoyama, T.; Nishimuki, E.; Kojo, H.; Matsura, T.; Takahashi, K.; Osaki, M.; Ito, H.; Yodoi, J.; Murawaki, Y.; Shiota, G. Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett., 2008, 259(2), 218-230.
[http://dx.doi.org/10.1016/j.canlet.2007.10.019] [PMID: 18054426]
[http://dx.doi.org/10.1016/j.canlet.2007.10.019] [PMID: 18054426]
[131]
Esworthy, R.S.; Aranda, R.; Martín, M.G.; Doroshow, J.H.; Binder, S.W.; Chu, F.F. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(3), G848-G855.
[http://dx.doi.org/10.1152/ajpgi.2001.281.3.G848] [PMID: 11518697]
[http://dx.doi.org/10.1152/ajpgi.2001.281.3.G848] [PMID: 11518697]
[132]
Chu, F.F.; Esworthy, R.S.; Chu, P.G.; Longmate, J.A.; Huycke, M.M.; Wilczynski, S.; Doroshow, J.H. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res., 2004, 64(3), 962-968.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2272] [PMID: 14871826]
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2272] [PMID: 14871826]
[133]
Qi, X.; Ng, K.T.; Lian, Q.Z.; Liu, X.B.; Li, C.X.; Geng, W.; Ling, C.C.; Ma, Y.Y.; Yeung, W.H.; Tu, W.W.; Fan, S.T.; Lo, C.M.; Man, K. Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma. Oncotarget, 2014, 5(22), 11103-11120.
[http://dx.doi.org/10.18632/oncotarget.2549] [PMID: 25333265]
[http://dx.doi.org/10.18632/oncotarget.2549] [PMID: 25333265]
[134]
Schomburg, L.; Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res., 2008, 52(11), 1235-1246.
[http://dx.doi.org/10.1002/mnfr.200700465] [PMID: 18686295]
[http://dx.doi.org/10.1002/mnfr.200700465] [PMID: 18686295]
[135]
Uchida, T.; Sakai, O.; Imai, H.; Ueta, T. Role of glutathione peroxidase 4 in corneal endothelial cells. Curr. Eye Res., 2017, 42(3), 380-385.
[http://dx.doi.org/10.1080/02713683.2016.1196707] [PMID: 27420751]
[http://dx.doi.org/10.1080/02713683.2016.1196707] [PMID: 27420751]
[136]
Ingold, I.; Aichler, M.; Yefremova, E.; Roveri, A.; Buday, K.; Doll, S.; Tasdemir, A.; Hoffard, N.; Wurst, W.; Walch, A.; Ursini, F.; Friedmann Angeli, J.P.; Conrad, M. Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (Gpx4) confers a dominant-negative effect in male fertility. J. Biol. Chem., 2015, 290(23), 14668-14678.
[http://dx.doi.org/10.1074/jbc.M115.656363] [PMID: 25922076]
[http://dx.doi.org/10.1074/jbc.M115.656363] [PMID: 25922076]
[137]
Vernet, P.; Faure, J.; Dufaure, J.P.; Drevet, J.R. Tissue and developmental distribution, dependence upon testicular factors and attachment to spermatozoa of GPX5, a murine epididymis-specific glutathione peroxidase. Mol. Reprod. Dev., 1997, 47(1), 87-98.
[http://dx.doi.org/10.1002/(SICI)1098-2795(199705)47:1<87:AID-MRD12>3.0.CO;2-X] [PMID: 9110319]
[http://dx.doi.org/10.1002/(SICI)1098-2795(199705)47:1<87:AID-MRD12>3.0.CO;2-X] [PMID: 9110319]
[138]
Dear, T.N.; Campbell, K.; Rabbitts, T.H. Molecular cloning of putative odorant-binding and odorant-metabolizing proteins. Biochemistry, 1991, 30(43), 10376-10382.
[http://dx.doi.org/10.1021/bi00107a003] [PMID: 1931961]
[http://dx.doi.org/10.1021/bi00107a003] [PMID: 1931961]
[139]
Schweizer, U.; Weitzel, J.M.; Schomburg, L. Think globally: act locally. New insights into the local regulation of thyroid hormone availability challenge long accepted dogmas. Mol. Cell. Endocrinol., 2008, 289(1-2), 1-9.
[http://dx.doi.org/10.1016/j.mce.2008.04.007] [PMID: 18508193]
[http://dx.doi.org/10.1016/j.mce.2008.04.007] [PMID: 18508193]
[140]
Friedrichs, B.; Tepel, C.; Reinheckel, T.; Deussing, J.; von Figura, K.; Herzog, V.; Peters, C.; Saftig, P.; Brix, K. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest., 2003, 111(11), 1733-1745.
[http://dx.doi.org/10.1172/JCI15990] [PMID: 12782676]
[http://dx.doi.org/10.1172/JCI15990] [PMID: 12782676]
[141]
Valverde, C.; Orozco, A.; Becerra, A.; Jeziorski, M.C.; Villalobos, P.; Solís, J.C. Halometabolites and cellular dehalogenase systems: an evolutionary perspective. Int. Rev. Cytol., 2004, 234, 143-199.
[http://dx.doi.org/10.1016/S0074-7696(04)34004-0] [PMID: 15066375]
[http://dx.doi.org/10.1016/S0074-7696(04)34004-0] [PMID: 15066375]
[142]
Beckett, G.J.; Arthur, J.R. Selenium and endocrine systems. J. Endocrinol., 2005, 184(3), 455-465.
[http://dx.doi.org/10.1677/joe.1.05971] [PMID: 15749805]
[http://dx.doi.org/10.1677/joe.1.05971] [PMID: 15749805]
[143]
Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev., 2014, 94(2), 355-382.
[http://dx.doi.org/10.1152/physrev.00030.2013] [PMID: 24692351]
[http://dx.doi.org/10.1152/physrev.00030.2013] [PMID: 24692351]
[144]
Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeöld, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev., 2008, 29(7), 898-938.
[http://dx.doi.org/10.1210/er.2008-0019] [PMID: 18815314]
[http://dx.doi.org/10.1210/er.2008-0019] [PMID: 18815314]
[145]
Kuiper, G.G.; Klootwijk, W.; Visser, T.J. Substitution of cysteine for selenocysteine in the catalytic center of type III iodothyronine deiodinase reduces catalytic efficiency and alters substrate preference. Endocrinology, 2003, 144(6), 2505-2513.
[http://dx.doi.org/10.1210/en.2003-0084] [PMID: 12746313]
[http://dx.doi.org/10.1210/en.2003-0084] [PMID: 12746313]
[146]
Olvera, A.; Mendoza, A.; Villalobos, P.; Mayorga-Martínez, L.; Orozco, A.; Valverde-R, C. The variable region of iodothyronine deiodinases directs their catalytic properties and subcellular localization. Mol. Cell. Endocrinol., 2015, 402, 107-112.
[http://dx.doi.org/10.1016/j.mce.2015.01.011] [PMID: 25591907]
[http://dx.doi.org/10.1016/j.mce.2015.01.011] [PMID: 25591907]
[147]
Sagar, G.D.; Gereben, B.; Callebaut, I.; Mornon, J.P.; Zeöld, A.; Curcio-Morelli, C.; Harney, J.W.; Luongo, C.; Mulcahey, M.A.; Larsen, P.R.; Huang, S.A.; Bianco, A.C. The thyroid hormone-inactivating deiodinase functions as a homodimer. Mol. Endocrinol., 2008, 22(6), 1382-1393.
[http://dx.doi.org/10.1210/me.2007-0490] [PMID: 18356288]
[http://dx.doi.org/10.1210/me.2007-0490] [PMID: 18356288]
[148]
van der Spek, A.H.; Bloise, F.F.; Tigchelaar, W.; Dentice, M.; Salvatore, D.; van der Wel, N.N.; Fliers, E.; Boelen, A. The thyroid hormone inactivating enzyme type 3 deiodinase is present in bactericidal granules and the cytoplasm of human neutrophils. Endocrinology, 2016, 157(8), 3293-3305.
[http://dx.doi.org/10.1210/en.2016-1103] [PMID: 27355490]
[http://dx.doi.org/10.1210/en.2016-1103] [PMID: 27355490]
[149]
Schweizer, U.; Steegborn, C. New insights into the structure and mechanism of iodothyronine deiodinases. J. Mol. Endocrinol., 2015, 55(3), R37-R52.
[http://dx.doi.org/10.1530/JME-15-0156] [PMID: 26390881]
[http://dx.doi.org/10.1530/JME-15-0156] [PMID: 26390881]
[150]
Arrojo, E. Drigo, R.; Bianco, A.C. Type 2 deiodinase at the crossroads of thyroid hormone action. Int. J. Biochem. Cell Biol., 2011, 43(10), 1432-1441.
[http://dx.doi.org/10.1016/j.biocel.2011.05.016] [PMID: 21679772]
[http://dx.doi.org/10.1016/j.biocel.2011.05.016] [PMID: 21679772]
[151]
Bianco, A.C.; Kim, B.W. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest., 2006, 116(10), 2571-2579.
[http://dx.doi.org/10.1172/JCI29812] [PMID: 17016550]
[http://dx.doi.org/10.1172/JCI29812] [PMID: 17016550]
[152]
Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; Schoonjans, K.; Bianco, A.C.; Auwerx, J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439(7075), 484-489.
[http://dx.doi.org/10.1038/nature04330] [PMID: 16400329]
[http://dx.doi.org/10.1038/nature04330] [PMID: 16400329]
[153]
Wajner, S.M.; Goemann, I.M.; Bueno, A.L.; Larsen, P.R.; Maia, A.L. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J. Clin. Invest., 2011, 121(5), 1834-1845.
[http://dx.doi.org/10.1172/JCI44678] [PMID: 21540553]
[http://dx.doi.org/10.1172/JCI44678] [PMID: 21540553]
[154]
Abilés, J.; de la Cruz, A.P.; Castaño, J.; Rodríguez-Elvira, M.; Aguayo, E.; Moreno-Torres, R.; Llopis, J.; Aranda, P.; Argüelles, S.; Ayala, A.; de la Quintana, A.M.; Planells, E.M. Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study. Crit. Care, 2006, 10(5), R146.
[http://dx.doi.org/10.1186/cc5068] [PMID: 17040563]
[http://dx.doi.org/10.1186/cc5068] [PMID: 17040563]
[155]
Maia, A.L.; Kim, B.W.; Huang, S.A.; Harney, J.W.; Larsen, P.R. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J. Clin. Invest., 2005, 115(9), 2524-2533.
[http://dx.doi.org/10.1172/JCI25083] [PMID: 16127464]
[http://dx.doi.org/10.1172/JCI25083] [PMID: 16127464]
[156]
Papp, L.V.; Lu, J.; Striebel, F.; Kennedy, D.; Holmgren, A.; Khanna, K.K. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol. Cell. Biol., 2006, 26(13), 4895-4910.
[http://dx.doi.org/10.1128/MCB.02284-05] [PMID: 16782878]
[http://dx.doi.org/10.1128/MCB.02284-05] [PMID: 16782878]
[157]
Marsili, A.; Zavacki, A.M.; Harney, J.W.; Larsen, P.R. Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J. Endocrinol. Invest., 2011, 34(5), 395-407.
[http://dx.doi.org/10.1007/BF03347465] [PMID: 21427525]
[http://dx.doi.org/10.1007/BF03347465] [PMID: 21427525]
[158]
de Vries, E.M.; Fliers, E.; Boelen, A. The molecular basis of the non-thyroidal illness syndrome. J. Endocrinol., 2015, 225(3), R67-R81.
[http://dx.doi.org/10.1530/JOE-15-0133] [PMID: 25972358]
[http://dx.doi.org/10.1530/JOE-15-0133] [PMID: 25972358]
[159]
Peeters, R.P.; Wouters, P.J.; van Toor, H.; Kaptein, E.; Visser, T.J.; Van den Berghe, G. Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J. Clin. Endocrinol. Metab., 2005, 90(8), 4559-4565.
[http://dx.doi.org/10.1210/jc.2005-0535] [PMID: 15886232]
[http://dx.doi.org/10.1210/jc.2005-0535] [PMID: 15886232]
[160]
Rodriguez-Perez, A.; Palos-Paz, F.; Kaptein, E.; Visser, T.J.; Dominguez-Gerpe, L.; Alvarez-Escudero, J.; Lado-Abeal, J. Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock. Clin. Endocrinol. (Oxf.), 2008, 68(5), 821-827.
[http://dx.doi.org/10.1111/j.1365-2265.2007.03102.x] [PMID: 17986277]
[http://dx.doi.org/10.1111/j.1365-2265.2007.03102.x] [PMID: 17986277]
[161]
Mebis, L.; Langouche, L.; Visser, T.J.; Van den Berghe, G. The type II iodothyronine deiodinase is up-regulated in skeletal muscle during prolonged critical illness. J. Clin. Endocrinol. Metab., 2007, 92(8), 3330-3333.
[http://dx.doi.org/10.1210/jc.2007-0510] [PMID: 17504898]
[http://dx.doi.org/10.1210/jc.2007-0510] [PMID: 17504898]
[162]
Kwakkel, J.; Surovtseva, O.V.; de Vries, E.M.; Stap, J.; Fliers, E.; Boelen, A. A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology, 2014, 155(7), 2725-2734.
[http://dx.doi.org/10.1210/en.2013-2066] [PMID: 24731098]
[http://dx.doi.org/10.1210/en.2013-2066] [PMID: 24731098]
[163]
Heemstra, K.A.; Soeters, M.R.; Fliers, E.; Serlie, M.J.; Burggraaf, J.; van Doorn, M.B.; van der Klaauw, A.A.; Romijn, J.A.; Smit, J.W.; Corssmit, E.P.; Visser, T.J. Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting. J. Clin. Endocrinol. Metab., 2009, 94(6), 2144-2150.
[http://dx.doi.org/10.1210/jc.2008-2520] [PMID: 19293265]
[http://dx.doi.org/10.1210/jc.2008-2520] [PMID: 19293265]
[164]
Ma, S.F.; Xie, L.; Pino-Yanes, M.; Sammani, S.; Wade, M.S.; Letsiou, E.; Siegler, J.; Wang, T.; Infusino, G.; Kittles, R.A.; Flores, C.; Zhou, T.; Prabhakar, B.S.; Moreno-Vinasco, L.; Villar, J.; Jacobson, J.R.; Dudek, S.M.; Garcia, J.G. Type 2 deiodinase and host responses of sepsis and acute lung injury. Am. J. Respir. Cell Mol. Biol., 2011, 45(6), 1203-1211.
[http://dx.doi.org/10.1165/rcmb.2011-0179OC] [PMID: 21685153]
[http://dx.doi.org/10.1165/rcmb.2011-0179OC] [PMID: 21685153]
[165]
Boelen, A.; Kwakkel, J.; Alkemade, A.; Renckens, R.; Kaptein, E.; Kuiper, G.; Wiersinga, W.M.; Visser, T.J. Induction of type 3 deiodinase activity in inflammatory cells of mice with chronic local inflammation. Endocrinology, 2005, 146(12), 5128-5134.
[http://dx.doi.org/10.1210/en.2005-0608] [PMID: 16150911]
[http://dx.doi.org/10.1210/en.2005-0608] [PMID: 16150911]
[166]
Boelen, A.; Kwakkel, J.; Wiersinga, W.M.; Fliers, E. Chronic local inflammation in mice results in decreased TRH and type 3 deiodinase mRNA expression in the hypothalamic paraventricular nucleus independently of diminished food intake. J. Endocrinol., 2006, 191(3), 707-714.
[http://dx.doi.org/10.1677/joe.1.07056] [PMID: 17170227]
[http://dx.doi.org/10.1677/joe.1.07056] [PMID: 17170227]
[167]
Debaveye, Y.; Ellger, B.; Mebis, L.; Van Herck, E.; Coopmans, W.; Darras, V.; Van den Berghe, G. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2. Endocrinology, 2005, 146(12), 5604-5611.
[http://dx.doi.org/10.1210/en.2005-0963] [PMID: 16150898]
[http://dx.doi.org/10.1210/en.2005-0963] [PMID: 16150898]
[168]
Peeters, R.P.; Wouters, P.J.; Kaptein, E.; van Toor, H.; Visser, T.J.; Van den Berghe, G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J. Clin. Endocrinol. Metab., 2003, 88(7), 3202-3211.
[http://dx.doi.org/10.1210/jc.2002-022013] [PMID: 12843166]
[http://dx.doi.org/10.1210/jc.2002-022013] [PMID: 12843166]
[169]
Olivares, E.L.; Marassi, M.P.; Fortunato, R.S.; da Silva, A.C.; Costa-e-Sousa, R.H.; Araújo, I.G.; Mattos, E.C.; Masuda, M.O.; Mulcahey, M.A.; Huang, S.A.; Bianco, A.C.; Carvalho, D.P. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology, 2007, 148(10), 4786-4792.
[http://dx.doi.org/10.1210/en.2007-0043] [PMID: 17628010]
[http://dx.doi.org/10.1210/en.2007-0043] [PMID: 17628010]
[170]
Granata, S.; Zaza, G.; Simone, S.; Villani, G.; Latorre, D.; Pontrelli, P.; Carella, M.; Schena, F.P.; Grandaliano, G.; Pertosa, G. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics, 2009, 10, 388.
[http://dx.doi.org/10.1186/1471-2164-10-388] [PMID: 19698090]
[http://dx.doi.org/10.1186/1471-2164-10-388] [PMID: 19698090]
[171]
Zachara, B.A.; Pawluk, H.; Bloch-Boguslawska, E.; Sliwka, K.M.; Korenkiewicz, J.; Skok, Z.; Ryć, K. Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arch. Environ. Health, 2001, 56(5), 461-466.
[http://dx.doi.org/10.1080/00039890109604483] [PMID: 11777029]
[http://dx.doi.org/10.1080/00039890109604483] [PMID: 11777029]
[172]
Lo, J.C.; Chertow, G.M.; Go, A.S.; Hsu, C.Y. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int., 2005, 67(3), 1047-1052.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00169.x] [PMID: 15698444]
[http://dx.doi.org/10.1111/j.1523-1755.2005.00169.x] [PMID: 15698444]
[173]
Chonchol, M.; Lippi, G.; Salvagno, G.; Zoppini, G.; Muggeo, M.; Targher, G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1296-1300.
[http://dx.doi.org/10.2215/CJN.00800208] [PMID: 18550654]
[http://dx.doi.org/10.2215/CJN.00800208] [PMID: 18550654]
[174]
Kaptein, E.M. Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr. Rev., 1996, 17(1), 45-63.
[http://dx.doi.org/10.1210/edrv-17-1-45] [PMID: 8641223]
[http://dx.doi.org/10.1210/edrv-17-1-45] [PMID: 8641223]
[175]
Carrero, J.J.; Qureshi, A.R.; Axelsson, J.; Yilmaz, M.I.; Rehnmark, S.; Witt, M.R.; Bárány, P.; Heimbürger, O.; Suliman, M.E.; Alvestrand, A.; Lindholm, B.; Stenvinkel, P. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J. Intern. Med., 2007, 262(6), 690-701.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01865.x] [PMID: 17908160]
[http://dx.doi.org/10.1111/j.1365-2796.2007.01865.x] [PMID: 17908160]
[176]
Song, S.H.; Kwak, I.S.; Lee, D.W.; Kang, Y.H.; Seong, E.Y.; Park, J.S. The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subjects with a normal thyroid-stimulating hormone. Nephrol. Dial. Transplant., 2009, 24(5), 1534-1538.
[http://dx.doi.org/10.1093/ndt/gfn682] [PMID: 19106286]
[http://dx.doi.org/10.1093/ndt/gfn682] [PMID: 19106286]
[177]
Ozen, K.P.; Asci, G.; Gungor, O.; Carrero, J.J.; Kircelli, F.
Tatar, E.; Sevinc Ok, E.; Ozkahya, M.; Toz, H.; Cirit, M.
Basci, A.; Ok, E. Nutritional state alters the association be-tween free triiodothyronine levels and mortality in hemo-dialysis patients. Am. J. Nephrol., 2011, 33(4), 305-312.
[http://dx.doi.org/10.1159/000324883] [PMID: 21389695]
Tatar, E.; Sevinc Ok, E.; Ozkahya, M.; Toz, H.; Cirit, M.
Basci, A.; Ok, E. Nutritional state alters the association be-tween free triiodothyronine levels and mortality in hemo-dialysis patients. Am. J. Nephrol., 2011, 33(4), 305-312.
[http://dx.doi.org/10.1159/000324883] [PMID: 21389695]
[178]
Lin, Y.C.; Lin, Y.C.; Chen, T.W.; Yang, W.C.; Lin, C.C. Abnormal thyroid function predicts mortality in patients receiving long-term peritoneal dialysis: a case-controlled longitudinal study. J. Chin. Med. Assoc., 2012, 75(2), 54-59.
[http://dx.doi.org/10.1016/j.jcma.2011.12.006] [PMID: 22340737]
[http://dx.doi.org/10.1016/j.jcma.2011.12.006] [PMID: 22340737]
[179]
Meuwese, C.L.; Dekker, F.W.; Lindholm, B.; Qureshi, A.R.; Heimburger, O.; Barany, P.; Stenvinkel, P.; Carrero, J.J. Baseline levels and trimestral variation of triiodothyronine and thyroxine and their association with mortality in maintenance hemodialysis patients. Clin. J. Am. Soc. Nephrol., 2012, 7(1), 131-138.
[http://dx.doi.org/10.2215/CJN.05250511] [PMID: 22246282]
[http://dx.doi.org/10.2215/CJN.05250511] [PMID: 22246282]
[180]
Dumler, F.; Bello, M.J.; Cruz, C.; Gotaas, K.A.; Macks, H. Thyroid function surveillance in CAPD patients. Adv. Perit. Dial., 1995, 11, 225-228.
[PMID: 8534710]
[PMID: 8534710]
[181]
Wiederkehr, M.R.; Kalogiros, J.; Krapf, R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol. Dial. Transplant., 2004, 19(5), 1190-1197.
[http://dx.doi.org/10.1093/ndt/gfh096] [PMID: 14993483]
[http://dx.doi.org/10.1093/ndt/gfh096] [PMID: 14993483]
[182]
Zoccali, C.; Tripepi, G.; Cutrupi, S.; Pizzini, P.; Mallamaci, F. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J. Am. Soc. Nephrol., 2005, 16(9), 2789-2795.
[http://dx.doi.org/10.1681/ASN.2005040356] [PMID: 16033857]
[http://dx.doi.org/10.1681/ASN.2005040356] [PMID: 16033857]
[183]
Bando, Y.; Ushiogi, Y.; Okafuji, K.; Toya, D.; Tanaka, N.; Miura, S. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction. Exp. Clin. Endocrinol. Diabetes, 2002, 110(8), 408-415.
[http://dx.doi.org/10.1055/s-2002-36427] [PMID: 12518252]
[http://dx.doi.org/10.1055/s-2002-36427] [PMID: 12518252]
[184]
Czernichow, P.; Dauzet, M.C.; Broyer, M.; Rappaport, R. Abnormal TSH, PRL and GH response to TSH releasing factor in chronic renal failure. J. Clin. Endocrinol. Metab., 1976, 43(3), 630-637.
[http://dx.doi.org/10.1210/jcem-43-3-630] [PMID: 821962]
[http://dx.doi.org/10.1210/jcem-43-3-630] [PMID: 821962]
[185]
Silverberg, D.S.; Ulan, R.A.; Fawcett, D.M.; Dossetor, J.B.; Grace, M.; Bettcher, K. Effects of chronic hemodialysis on thyroid function in chronic renal failure. Can. Med. Assoc. J., 1973, 109(4), 282-286.
[PMID: 4125852]
[PMID: 4125852]
[186]
Crowley, W.F., Jr; Ridgway, E.C.; Bough, E.W.; Francis, G.S.; Daniels, G.H.; Kourides, I.A.; Myers, G.S.; Maloof, F. Noninvasive evaluation of cardiac function in hypothyroidism. Response to gradual thyroxine replacement. N. Engl. J. Med., 1977, 296(1), 1-6.
[http://dx.doi.org/10.1056/NEJM197701062960101] [PMID: 830262]
[http://dx.doi.org/10.1056/NEJM197701062960101] [PMID: 830262]
[187]
Klein, I.; Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med., 2001, 344(7), 501-509.
[http://dx.doi.org/10.1056/NEJM200102153440707] [PMID: 11172193]
[http://dx.doi.org/10.1056/NEJM200102153440707] [PMID: 11172193]
[188]
Schmid, C.; Brändle, M.; Zwimpfer, C.; Zapf, J.; Wiesli, P. Effect of thyroxine replacement on creatinine, insulin-like growth factor 1, acid-labile subunit, and vascular endothelial growth factor. Clin. Chem., 2004, 50(1), 228-231.
[http://dx.doi.org/10.1373/clinchem.2003.021022] [PMID: 14709659]
[http://dx.doi.org/10.1373/clinchem.2003.021022] [PMID: 14709659]
[189]
Diekman, M.J.; Harms, M.P.; Endert, E.; Wieling, W.; Wiersinga, W.M. Endocrine factors related to changes in total peripheral vascular resistance after treatment of thyrotoxic and hypothyroid patients. Eur. J. Endocrinol., 2001, 144(4), 339-346.
[http://dx.doi.org/10.1530/eje.0.1440339] [PMID: 11275942]
[http://dx.doi.org/10.1530/eje.0.1440339] [PMID: 11275942]
[190]
Singer, M.A. Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am. J. Kidney Dis., 2001, 37(1), 164-178.
[http://dx.doi.org/10.1016/S0272-6386(01)80073-1] [PMID: 11136185]
[http://dx.doi.org/10.1016/S0272-6386(01)80073-1] [PMID: 11136185]
[191]
Bradley, S.E.; Coelho, J.B.; Sealey, J.E.; Edwards, K.D.; Stéphan, F. Changes in glomerulotubular dimensions, single nephron glomerular filtration rates and the renin-angiotensin system in hypothyroid rats. Life Sci., 1982, 30(7-8), 633-639.
[http://dx.doi.org/10.1016/0024-3205(82)90279-X] [PMID: 7040895]
[http://dx.doi.org/10.1016/0024-3205(82)90279-X] [PMID: 7040895]
[192]
Conger, J.D.; Falk, S.A.; Gillum, D.M. The protective mechanism of thyroidectomy in a rat model of chronic renal failure. Am. J. Kidney Dis., 1989, 13(3), 217-225.
[http://dx.doi.org/10.1016/S0272-6386(89)80055-1] [PMID: 2919601]
[http://dx.doi.org/10.1016/S0272-6386(89)80055-1] [PMID: 2919601]
[193]
Tomford, R.C.; Karlinsky, M.L.; Buddington, B.; Alfrey, A.C. Effect of thyroparathyroidectomy and parathyroidectomy on renal function and the nephrotic syndrome in rat nephrotoxic serum nephritis. J. Clin. Invest., 1981, 68(3), 655-664.
[http://dx.doi.org/10.1172/JCI110300] [PMID: 7276165]
[http://dx.doi.org/10.1172/JCI110300] [PMID: 7276165]
[194]
van Hoek, I.; Daminet, S. Interactions between thyroid and kidney function in pathological conditions of these organ systems: a review. Gen. Comp. Endocrinol., 2009, 160(3), 205-215.
[http://dx.doi.org/10.1016/j.ygcen.2008.12.008] [PMID: 19133263]
[http://dx.doi.org/10.1016/j.ygcen.2008.12.008] [PMID: 19133263]
[195]
Shin, D.H.; Lee, M.J.; Kim, S.J.; Oh, H.J.; Kim, H.R.; Han, J.H.; Koo, H.M.; Doh, F.M.; Park, J.T.; Han, S.H.; Yoo, T.H.; Kang, S.W. Preservation of renal function by thyroid hormone replacement therapy in chronic kidney disease patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab., 2012, 97(8), 2732-2740.
[http://dx.doi.org/10.1210/jc.2012-1663] [PMID: 22723335]
[http://dx.doi.org/10.1210/jc.2012-1663] [PMID: 22723335]
[196]
Hataya, Y.; Igarashi, S.; Yamashita, T.; Komatsu, Y. Thyroid hormone replacement therapy for primary hypothyroidism leads to significant improvement of renal function in chronic kidney disease patients. Clin. Exp. Nephrol., 2013, 17(4), 525-531.
[http://dx.doi.org/10.1007/s10157-012-0727-y] [PMID: 23160649]
[http://dx.doi.org/10.1007/s10157-012-0727-y] [PMID: 23160649]
[197]
Shin, D.H.; Lee, M.J.; Lee, H.S.; Oh, H.J.; Ko, K.I.; Kim, C.H.; Doh, F.M.; Koo, H.M.; Kim, H.R.; Han, J.H.; Park, J.T.; Han, S.H.; Yoo, T.H.; Kang, S.W. Thyroid hormone replacement therapy attenuates the decline of renal function in chronic kidney disease patients with subclinical hypothyroidism. Thyroid, 2013, 23(6), 654-661.
[http://dx.doi.org/10.1089/thy.2012.0475] [PMID: 23281965]
[http://dx.doi.org/10.1089/thy.2012.0475] [PMID: 23281965]
[198]
Reinhardt, W.; Misch, C.; Jockenhövel, F.; Wu, S.Y.; Chopra, I.; Philipp, T.; Reinwein, D.; Eigler, F.W.; Mann, K. Triiodothyronine (T3) reflects renal graft function after renal transplantation. Clin. Endocrinol. (Oxf.), 1997, 46(5), 563-569.
[http://dx.doi.org/10.1046/j.1365-2265.1997.1770988.x] [PMID: 9231052]
[http://dx.doi.org/10.1046/j.1365-2265.1997.1770988.x] [PMID: 9231052]
[199]
Cheung, A.K.; Sarnak, M.J.; Yan, G.; Berkoben, M.; Heyka, R.; Kaufman, A.; Lewis, J.; Rocco, M.; Toto, R.; Windus, D.; Ornt, D.; Levey, A.S. Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int., 2004, 65(6), 2380-2389.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00657.x] [PMID: 15149351]
[http://dx.doi.org/10.1111/j.1523-1755.2004.00657.x] [PMID: 15149351]
[200]
Pearce, E.N. Update in lipid alterations in subclinical hypothyroidism. J. Clin. Endocrinol. Metab., 2012, 97(2), 326-333.
[http://dx.doi.org/10.1210/jc.2011-2532] [PMID: 22205712]
[http://dx.doi.org/10.1210/jc.2011-2532] [PMID: 22205712]
[201]
Papaioannou, G.I.; Lagasse, M.; Mather, J.F.; Thompson, P.D. Treating hypothyroidism improves endothelial function. Metabolism, 2004, 53(3), 278-279.
[http://dx.doi.org/10.1016/j.metabol.2003.10.003] [PMID: 15015136]
[http://dx.doi.org/10.1016/j.metabol.2003.10.003] [PMID: 15015136]
[202]
Napoli, R.; Guardasole, V.; Zarra, E.; D’Anna, C.; De Sena, A.; Lupoli, G.A.; Oliviero, U.; Matarazzo, M.; Lupoli, G.; Saccà, L. Impaired endothelial- and nonendothelial-mediated vasodilation in patients with acute or chronic hypothyroidism. Clin. Endocrinol. (Oxf.), 2010, 72(1), 107-111.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03609.x] [PMID: 19508590]
[http://dx.doi.org/10.1111/j.1365-2265.2009.03609.x] [PMID: 19508590]
[203]
Shoji, T.; Maekawa, K.; Emoto, M.; Okuno, S.; Yamakawa, T.; Ishimura, E.; Inaba, M.; Nishizawa, Y. Arterial stiffness predicts cardiovascular death independent of arterial thickness in a cohort of hemodialysis patients. Atherosclerosis, 2010, 210(1), 145-149.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.11.013] [PMID: 20022324]
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.11.013] [PMID: 20022324]
[204]
Nagasaki, T.; Inaba, M.; Shirakawa, K.; Hiura, Y.; Tahara, H.; Kumeda, Y.; Ishikawa, T.; Ishimura, E.; Nishizawa, Y. Increased levels of C-reactive protein in hypothyroid patients and its correlation with arterial stiffness in the common carotid artery. Biomed. Pharmacother., 2007, 61(2-3), 167-172.
[http://dx.doi.org/10.1016/j.biopha.2006.10.008] [PMID: 17383146]
[http://dx.doi.org/10.1016/j.biopha.2006.10.008] [PMID: 17383146]
[205]
Carrero, J.J.; Park, S.H.; Axelsson, J.; Lindholm, B.; Stenvinkel, P. Cytokines, atherogenesis, and hypercatabolism in chronic kidney disease: a dreadful triad. Semin. Dial., 2009, 22(4), 381-386.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00585.x] [PMID: 19708986]
[http://dx.doi.org/10.1111/j.1525-139X.2009.00585.x] [PMID: 19708986]
[206]
Enia, G.; Panuccio, V.; Cutrupi, S.; Pizzini, P.; Tripepi, G.; Mallamaci, F.; Zoccali, C. Subclinical hypothyroidism is linked to micro-inflammation and predicts death in continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant., 2007, 22(2), 538-544.
[http://dx.doi.org/10.1093/ndt/gfl605] [PMID: 17082213]
[http://dx.doi.org/10.1093/ndt/gfl605] [PMID: 17082213]
[207]
Balázs, C.; Rácz, K. [The role of selenium in endocrine system diseases Orv. Hetil., 2013, 154(41), 1628-1635.
[PMID: 24095912]
[PMID: 24095912]
[208]
Kuiper, G.G.; Kester, M.H.; Peeters, R.P.; Visser, T.J. Biochemical mechanisms of thyroid hormone deiodination. Thyroid, 2005, 15(8), 787-798.
[http://dx.doi.org/10.1089/thy.2005.15.787] [PMID: 16131322]
[http://dx.doi.org/10.1089/thy.2005.15.787] [PMID: 16131322]
[209]
Vidart, J.; Wajner, S.M.; Leite, R.S.; Manica, A.; Schaan, B.D.; Larsen, P.R.; Maia, A.L. N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial. J. Clin. Endocrinol. Metab., 2014, 99(12), 4537-4545.
[http://dx.doi.org/10.1210/jc.2014-2192] [PMID: 25148231]
[http://dx.doi.org/10.1210/jc.2014-2192] [PMID: 25148231]
[210]
Wajner, S.M.; Rohenkohl, H.C.; Serrano, T.; Maia, A.L. Sodium selenite supplementation does not fully restore oxidative stress-induced deiodinase dysfunction: Implications for the nonthyroidal illness syndrome. Redox Biol., 2015, 6, 436-445.
[http://dx.doi.org/10.1016/j.redox.2015.09.002] [PMID: 26402162]
[http://dx.doi.org/10.1016/j.redox.2015.09.002] [PMID: 26402162]
[211]
Ceballos-Picot, I.; Witko-Sarsat, V.; Merad-Boudia, M.; Nguyen, A.T.; Thévenin, M.; Jaudon, M.C.; Zingraff, J.; Verger, C.; Jungers, P.; Descamps-Latscha, B. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic. Biol. Med., 1996, 21(6), 845-853.
[http://dx.doi.org/10.1016/0891-5849(96)00233-X] [PMID: 8902530]
[http://dx.doi.org/10.1016/0891-5849(96)00233-X] [PMID: 8902530]
[212]
Zachara, B.A.; Gromadzińska, J.; Wasowicz, W.; Zbróg, Z. Red blood cell and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease: a review. Acta Biochim. Pol., 2006, 53(4), 663-677.
[http://dx.doi.org/10.18388/abp.2006_3294] [PMID: 17160142]
[http://dx.doi.org/10.18388/abp.2006_3294] [PMID: 17160142]
[213]
Dworkin, B.; Weseley, S.; Rosenthal, W.S.; Schwartz, E.M.; Weiss, L. Diminished blood selenium levels in renal failure patients on dialysis: correlations with nutritional status. Am. J. Med. Sci., 1987, 293(1), 6-12.
[http://dx.doi.org/10.1097/00000441-198701000-00003] [PMID: 3812549]
[http://dx.doi.org/10.1097/00000441-198701000-00003] [PMID: 3812549]
[214]
Cristol, J.P.; Canaud, B.; Rabesandratana, H.; Gaillard, I.; Serre, A.; Mion, C. Enhancement of reactive oxygen species production and cell surface markers expression due to haemodialysis. Nephrol. Dial. Transplant., 1994, 9(4), 389-394.
[PMID: 8084452]
[PMID: 8084452]
[215]
Sedighi, O.; Zargari, M.; Varshi, G. Effect of selenium supplementation on glutathione peroxidase enzyme activity in patients with chronic kidney disease: a randomized clinical trial. Nephrourol. Mon., 2014, 6(3), e17945.
[http://dx.doi.org/10.5812/numonthly.17945] [PMID: 25032143]
[http://dx.doi.org/10.5812/numonthly.17945] [PMID: 25032143]
[216]
Yoshimura, S.; Suemizu, H.; Nomoto, Y.; Sakai, H.; Katsuoka, Y.; Kawamura, N.; Moriuchi, T. Plasma glutathione peroxidase deficiency caused by renal dysfunction. Nephron, 1996, 73(2), 207-211.
[http://dx.doi.org/10.1159/000189042] [PMID: 8773346]
[http://dx.doi.org/10.1159/000189042] [PMID: 8773346]
[217]
Zachara, B.A.; Salak, A.; Koterska, D.; Manitius, J.; Wasowicz, W. Selenium and glutathione peroxidases in blood of patients with different stages of chronic renal failure. J. Trace Elem. Med. Biol., 2004, 17(4), 291-299.
[http://dx.doi.org/10.1016/S0946-672X(04)80031-2] [PMID: 15139391]
[http://dx.doi.org/10.1016/S0946-672X(04)80031-2] [PMID: 15139391]
[218]
Zachara, B.A. Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv. Clin. Chem., 2015, 68, 131-151.
[http://dx.doi.org/10.1016/bs.acc.2014.11.006] [PMID: 25858871]
[http://dx.doi.org/10.1016/bs.acc.2014.11.006] [PMID: 25858871]
[219]
Vendrely, B.; Chauveau, P.; Barthe, N.; El Haggan, W.; Castaing, F.; de Précigout, V.; Combe, C.; Aparicio, M. Nutrition in hemodialysis patients previously on a supplemented very low protein diet. Kidney Int., 2003, 63(4), 1491-1498.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00884.x] [PMID: 12631366]
[http://dx.doi.org/10.1046/j.1523-1755.2003.00884.x] [PMID: 12631366]
[220]
Xia, Y.; Hill, K.E.; Byrne, D.W.; Xu, J.; Burk, R.F. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr., 2005, 81(4), 829-834.
[http://dx.doi.org/10.1093/ajcn/81.4.829] [PMID: 15817859]
[http://dx.doi.org/10.1093/ajcn/81.4.829] [PMID: 15817859]
[221]
Iwanier, K.; Zachara, B.A. Selenium supplementation enhances the element concentration in blood and seminal fluid but does not change the spermatozoal quality characteristics in subfertile men. J. Androl., 1995, 16(5), 441-447.
[PMID: 8575984]
[PMID: 8575984]
[222]
Preziosi, P.; Galan, P.; Herbeth, B.; Valeix, P.; Roussel, A.M.; Malvy, D.; Paul-Dauphin, A.; Arnaud, J.; Richard, M.J.; Briancon, S.; Favier, A.; Hercberg, S. Effects of supplementation with a combination of antioxidant vitamins and trace elements, at nutritional doses, on biochemical indicators and markers of the antioxidant system in adult subjects. J. Am. Coll. Nutr., 1998, 17(3), 244-249.
[http://dx.doi.org/10.1080/07315724.1998.10718754] [PMID: 9627910]
[http://dx.doi.org/10.1080/07315724.1998.10718754] [PMID: 9627910]
[223]
Saint-Georges, M.D.; Bonnefont, D.J.; Bourely, B.A.; Jaudon, M.C.; Cereze, P.; Chaumeil, P.; Gard, C.; D’Auzac, C.L. Correction of selenium deficiency in hemodialyzed patients. Kidney Int. Suppl., 1989, 27, S274-S277.
[PMID: 2636670]
[PMID: 2636670]
[224]
Zachara, B.A.; Koterska, D.; Manitius, J.; Sadowski, L.; Dziedziczko, A.; Salak, A.; Wasowicz, W. Selenium supplementation on plasma glutathione peroxidase activity in patients with end-stage chronic renal failure. Biol. Trace Elem. Res., 2004, 97(1), 15-30.
[http://dx.doi.org/10.1385/BTER:97:1:15] [PMID: 14742897]
[http://dx.doi.org/10.1385/BTER:97:1:15] [PMID: 14742897]
[225]
Chu, F.F.; Esworthy, R.S.; Doroshow, J.H.; Doan, K.; Liu, X.F. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood, 1992, 79(12), 3233-3238.
[http://dx.doi.org/10.1182/blood.V79.12.3233.bloodjournal79123233] [PMID: 1339300]
[http://dx.doi.org/10.1182/blood.V79.12.3233.bloodjournal79123233] [PMID: 1339300]
[226]
Nishioka, H.; Kanauchi, M.; Dohi, K. The role of extracellular glutathione peroxidase in diabetic nephropathy. Nephron, 2001, 87(2), 196-197.
[http://dx.doi.org/10.1159/000045915] [PMID: 11244321]
[http://dx.doi.org/10.1159/000045915] [PMID: 11244321]