Review Article

镧系纳米结构作为超强磁场磁共振成像探针的研究进展

卷 27, 期 3, 2020

页: [352 - 361] 页: 10

弟呕挨: 10.2174/0929867325666180201110244

价格: $65

摘要

顺磁性镧系离子被纳入纳米结构中,由于其强大的对比度增强效果结合平台能力,包括多种成像模式,正成为磁共振成像(MRI)造影剂的通用平台。本文简要介绍了镧系纳米结构(纳米颗粒和纳米组装体)在单、多模态成像中多功能探针的应用,其中高场强MRI是一种成像方式。

关键词: 磁共振成像,镧系元素氧化物纳米颗粒,氟化镧系元素纳米颗粒,増频变频纳米粒子,微胶粒,双峰核磁共振成像,超高场磁共振成像。

[1]
Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev., 2006, 35(6), 512-523.
[http://dx.doi.org/10.1039/b510982p] [PMID: 16729145]
[2]
Vuong, Q.L.; Berret, J-F.; Fresnais, J.; Gossuin, Y.; Sandre, O. A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv. Healthc. Mater., 2012, 1(4), 502-512.
[http://dx.doi.org/10.1002/adhm.201200078] [PMID: 23184784]
[3]
Blow, N. Functional Neuroscience: How to get ahead in imaging. Nature, 2009, 458(7240), 925-928.
[http://dx.doi.org/10.1038/458925a] [PMID: 19370034]
[4]
Fu, R.; Brey, W.W.; Shetty, K.; Gor’kov, P.; Saha, S.; Long, J.R.; Grant, S.C.; Chekmenev, E.Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T.M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I.R.; Markiewicz, W.D.; Cross, T.A. Ultra-wide bore 900 MHz high-resolution NMR at the national high magnetic field laboratory. J. Magn. Reson., 2005, 177(1), 1-8.
[http://dx.doi.org/10.1016/j.jmr.2005.07.013] [PMID: 16125429]
[5]
Rosenberg, J.T.; Kogot, J.M.; Lovingood, D.D.; Strouse, G.F.; Grant, S.C. Intracellular bimodal nanoparticles based on quantum dots for high-field MRI at 21.1 T. Magn. Reson. Med., 2010, 64(3), 871-882.
[http://dx.doi.org/10.1002/mrm.22441] [PMID: 20575090]
[6]
Solomon, I. Relaxation processes in a system of two spins. Phys. Rev., 1955, 99(2), 559-565.
[http://dx.doi.org/10.1103/PhysRev.99.559]
[7]
Bloembergen, N.; Morgan, L.O. Proton relaxation times in paramagnetic solutions. effects of electron spin relaxation. J. Chem. Phys., 1961, 34(3), 842-850.
[http://dx.doi.org/10.1063/1.1731684]
[8]
Terreno, E.; Castelli, D.D.; Viale, A.; Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev., 2010, 110(5), 3019-3042.
[http://dx.doi.org/10.1021/cr100025t] [PMID: 20415475]
[9]
Das, G.K.; Johnson, N.J.J.; Cramen, J.; Blasiak, B.; Latta, P.; Tomanek, B.; van Veggel, F.C.J.M. NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging. J. Phys. Chem. Lett., 2012, 3(4), 524-529.
[http://dx.doi.org/10.1021/jz201664h] [PMID: 26286058]
[10]
Norek, M.; Kampert, E.; Zeitler, U.; Peters, J.A. Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent. J. Am. Chem. Soc., 2008, 130(15), 5335-5340.
[http://dx.doi.org/10.1021/ja711492y] [PMID: 18355014]
[11]
Gueron, M. Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism. J. Magn. Reson., 1975, 19(1), 58-66.
[12]
Bertini, I.; Capozzi, F.; Luchinat, C.; Nicastro, G.; Xia, Z. Water proton relaxation for some lanthanide aqua ions in solution. J. Phys. Chem., 1993, 97(24), 6351-6354.
[http://dx.doi.org/10.1021/j100126a007]
[13]
Vander Elst, L.; Roch, A.; Gillis, P.; Laurent, S.; Botteman, F.; Bulte, J.W.M.; Muller, R.N. Dy-DTPA derivatives as relaxation agents for very high field MRI: the beneficial effect of slow water exchange on the transverse relaxivities. Magn. Reson. Med., 2002, 47(6), 1121-1130.
[http://dx.doi.org/10.1002/mrm.10163] [PMID: 12111958]
[14]
Norek, M.; Peters, J.A. MRI contrast agents based on dysprosium or holmium. Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59(1), 64-82.
[http://dx.doi.org/10.1016/j.pnmrs.2010.08.002] [PMID: 21600356]
[15]
Norek, M.; Pereira, G.A.; Geraldes, C.F.G.C.; Denkova, A.; Zhou, W.; Peters, J.A. NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles. J. Phys. Chem. C, 2007, 111(28), 10240-10246.
[http://dx.doi.org/10.1021/jp072288l]
[16]
Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Jin, S.; Baeck, J.S.; Chang, Y.; Kim, T.J.; Bae, J.E.; Chae, K.S.; Lee, G.H. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials, 2012, 33(11), 3254-3261.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.008] [PMID: 22277624]
[17]
Park, J.Y.; Chang, Y.; Lee, G.H. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives. Curr. Med. Chem., 2015, 22(5), 569-581.
[http://dx.doi.org/10.2174/0929867322666141128162843] [PMID: 25439587]
[18]
Xu, W.; Kattel, K.; Park, J.Y.; Chang, Y.; Kim, T.J.; Lee, G.H. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys., 2012, 14(37), 12687-12700.
[http://dx.doi.org/10.1039/c2cp41357d] [PMID: 22885983]
[19]
Hifumi, H.; Yamaoka, S.; Tanimoto, A.; Citterio, D.; Suzuki, K. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J. Am. Chem. Soc., 2006, 128(47), 15090-15091.
[http://dx.doi.org/10.1021/ja066442d] [PMID: 17117851]
[20]
Ho, D.; Sun, X.; Sun, S. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res., 2011, 44(10), 875-882.
[http://dx.doi.org/10.1021/ar200090c] [PMID: 21661754]
[21]
Dong, H.; Du, S-R.; Zheng, X-Y.; Lyu, G-M.; Sun, L-D.; Li, L-D.; Zhang, P-Z.; Zhang, C.; Yan, C-H. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem. Rev., 2015, 115(19), 10725-10815.
[http://dx.doi.org/10.1021/acs.chemrev.5b00091] [PMID: 26151155]
[22]
Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev., 2009, 38(4), 976-989.
[http://dx.doi.org/10.1039/b809132n] [PMID: 19421576]
[23]
Debroye, E.; Parac-Vogt, T.N. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chem. Soc. Rev., 2014, 43(23), 8178-8192.
[http://dx.doi.org/10.1039/C4CS00201F] [PMID: 25211043]
[24]
Jun, Y.W.; Huh, Y-M.; Choi, J.S.; Lee, J-H.; Song, H-T.; Kim, S.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S.; Cheon, J. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc., 2005, 127(16), 5732-5733.
[http://dx.doi.org/10.1021/ja0422155] [PMID: 15839639]
[25]
Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Lee, J.J.; Jin, S.; Baeck, J.S.; Chang, Y.; Kim, T.J.; Bae, J.E.; Chae, K.S.; Lee, G.H. A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Interfaces, 2011, 3(9), 3325-3334.
[http://dx.doi.org/10.1021/am200437r] [PMID: 21853997]
[26]
Zhang, X.; Blasiak, B.; Marenco, A.J.; Trudel, S.; Tomanek, B.; van Veggel, F.C.J.M. Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging. Chem. Mater., 2016, 28(9), 3060-3072.
[http://dx.doi.org/10.1021/acs.chemmater.6b00264]
[27]
Lu, Z.; Deng, R.; Zhen, M.; Li, X.; Zou, T.; Zhou, Y.; Guan, M.; Zhang, Y.; Wang, Y.; Yu, T.; Shu, C.; Wang, C. Size-tunable NaGdF4 nanoparticles as T2 contrast agents for high-field magnetic resonance imaging. RSC Advances, 2017, 7(68), 43125-43131.
[http://dx.doi.org/10.1039/C7RA08303C]
[28]
Deng, Y.; Wang, H.; Gu, W.; Li, S.; Xiao, N.; Shao, C.; Xu, Q.; Ye, L. Ho3+ doped NaGdF4 nanoparticles as MRI/optical probes for brain glioma imaging. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(11), 1521-1529.
[http://dx.doi.org/10.1039/C3TB21613F]
[29]
Ahmad, M. W.; Xu, W.; Kim, S. J.; Baeck, J. S.; Chang, Y.; Bae, J. E.; Chae, K. S.; Park, J. A.; Kim, T. J.; Lee, G. H. Potential dual imaging nanoparticle: Gd2O3 nanoparticle 2015, 5, 8549.
[http://dx.doi.org/10.1038/srep08549] [PMID: 25707374]]
[30]
Ni, D.; Zhang, J.; Bu, W.; Zhang, C.; Yao, Z.; Xing, H.; Wang, J.; Duan, F.; Liu, Y.; Fan, W.; Feng, X.; Shi, J. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials, 2016, 76, 218-225.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.063] [PMID: 26546914]
[31]
Zheng, X.; Wang, Y.; Sun, L. TbF3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Res., 2016, 9(4), 1135-1147.
[http://dx.doi.org/10.1007/s12274-016-1008-y]
[32]
Louie, A. Multimodality imaging probes: design and challenges. Chem. Rev., 2010, 110(5), 3146-3195.
[http://dx.doi.org/10.1021/cr9003538] [PMID: 20225900]
[33]
Das, G.K.; Zhang, Y.; D’Silva, L.; Padmanabhan, P.; Heng, B.C.; Chye Loo, J.S.; Selvan, S.T.; Bhakoo, K.K.; Tan, Y.T.T. Single-phase Dy2O3:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater., 2011, 23(9), 2439-2446.
[http://dx.doi.org/10.1021/cm2003066]
[34]
Zhang, Y.; Vijayaragavan, V.; Das, G.K.; Bhakoo, K.K.; Tan, T.T.Y. Single-phase NaDyF4:Tb3+ nanocrystals as multifunctional contrast agents in high-field magnetic resonance and optical imaging. Eur. J. Inorg. Chem., 2012, 2012(12), 2044-2048.
[http://dx.doi.org/10.1002/ejic.201101203]
[35]
Bünzli, J-C.G. Lanthanide light for biology and medical diagnosis. J. Lumin., 2016, 170(Part 3), 866-878.
[http://dx.doi.org/10.1016/j.jlumin.2015.07.033]
[36]
Paik, T.; Gordon, T.R.; Prantner, A.M.; Yun, H.; Murray, C.B. Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano, 2013, 7(3), 2850-2859.
[http://dx.doi.org/10.1021/nn4004583] [PMID: 23432186]
[37]
Biju, S.; Harris, M.; Elst, L.V.; Wolberg, M.; Kirschhock, C.; Parac-Vogt, T.N. Multifunctional [small beta]-NaGdF4:Ln3+ (Ln = Yb, Er, Dy) nanoparticles with NIR to visible upconversion and high transverse relaxivity: a potential bimodal contrast agent for high-field MRI and optical imaging. RSC Advances, 2016, 6(66), 61443-61448.
[http://dx.doi.org/10.1039/C6RA09450C]
[38]
Feng, Y.; Xiao, Q.; Zhang, Y.; Li, F.; Li, Y.; Li, C.; Wang, Q.; Shi, L.; Lin, H. Neodymium-doped NaHoF4 nanoparticles as near-infrared luminescent/T2-weighted MR dual-modal imaging agents in vivo. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(3), 504-510.
[http://dx.doi.org/10.1039/C6TB01961G]
[39]
Yu, S-B.; Watson, A.D. Metal-based X-ray contrast media. Chem. Rev., 1999, 99(9), 2353-2378.
[http://dx.doi.org/10.1021/cr980441p] [PMID: 11749484]
[40]
X-Ray Mass Attenuation Coefficients. Available at:. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html (Accessed Date: July, 2004)
[41]
Wang, H.; Yi, Z.; Rao, L.; Liu, H.; Zeng, S. High quality multi-functional NaErF4 nanocrystals: structure-controlled synthesis, phase-induced multi-color emissions and tunable magnetic properties. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(35), 5520-5526.
[http://dx.doi.org/10.1039/c3tc30796d]
[42]
Wang, H.; Lu, W.; Zeng, T.; Yi, Z.; Rao, L.; Liu, H.; Zeng, S. Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging. Nanoscale, 2014, 6(5), 2855-2860.
[http://dx.doi.org/10.1039/C3NR05782H] [PMID: 24469246]
[43]
Kumar, R.; Nyk, M.; Ohulchanskyy, T.Y.; Flask, C.A.; Prasad, P.N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater., 2009, 19(6), 853-859.
[http://dx.doi.org/10.1002/adfm.200800765]
[44]
Im, G.H.; Kim, S.M.; Lee, D-G.; Lee, W.J.; Lee, J.H.; Lee, I.S. Fe(3)O(4)/MnO hybrid nanocrystals as a dual contrast agent for both T(1)- and T(2)-weighted liver MRI. Biomaterials, 2013, 34(8), 2069-2076.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.054] [PMID: 23246062]
[45]
Wang, X.; Zhou, Z.; Wang, Z.; Xue, Y.; Zeng, Y.; Gao, J.; Zhu, L.; Zhang, X.; Liu, G.; Chen, X. Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery. Nanoscale, 2013, 5(17), 8098-8104.
[http://dx.doi.org/10.1039/c3nr02797j] [PMID: 23884164]
[46]
Bae, K.H.; Kim, Y.B.; Lee, Y.; Hwang, J.; Park, H.; Park, T.G. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast t1- and T2-weighted magnetic resonance imaging. Bioconjug. Chem., 2010, 21(3), 505-512.
[http://dx.doi.org/10.1021/bc900424u] [PMID: 20166678]
[47]
Cheng, K.; Yang, M.; Zhang, R.; Qin, C.; Su, X.; Cheng, Z. Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano, 2014, 8(10), 9884-9896.
[http://dx.doi.org/10.1021/nn500188y] [PMID: 25283972]
[48]
Zhou, Z.; Wu, C.; Liu, H.; Zhu, X.; Zhao, Z.; Wang, L.; Xu, Y.; Ai, H.; Gao, J. Surface and interfacial engineering of iron oxide nanoplates for highly efficient magnetic resonance angiography. ACS Nano, 2015, 9(3), 3012-3022.
[http://dx.doi.org/10.1021/nn507193f] [PMID: 25670480]
[49]
Xu, W.; Park, J.Y.; Kattel, K.; Bony, B.A.; Heo, W.C.; Jin, S.; Park, J.W.; Chang, Y.; Do, J.Y.; Chae, K.S.; Kim, T.J.; Park, J.A.; Kwak, Y.W.; Lee, G.H.A. T1, T2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium-europium oxide nanoparticles. New J. Chem., 2012, 36(11), 2361-2367.
[http://dx.doi.org/10.1039/c2nj40149e]
[50]
Tegafaw, T.; Xu, W.; Ahmad, M.W.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Kim, T.J.; Lee, G.H.; Dual-mode, T. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application. Nanotechnology, 2015, 26(36)365102
[http://dx.doi.org/10.1088/0957-4484/26/36/365102] [PMID: 26291827]
[51]
Chen, F.; Bu, W.; Zhang, S.; Liu, J.; Fan, W.; Zhou, L.; Peng, W.; Shi, J. Gd3+-Ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization. Adv. Funct. Mater., 2013, 23(3), 298-307.
[http://dx.doi.org/10.1002/adfm.201201469]
[52]
Yi, Z.; Li, X.; Lu, W.; Liu, H.; Zeng, S.; Hao, J. Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T1/T2 dual-weighted MRI and synergistic tumor diagnosis. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(15), 2715-2722.
[http://dx.doi.org/10.1039/C5TB02375K]
[53]
Debroye, E.; Eliseeva, S.V.; Laurent, S.; Vander Elst, L.; Petoud, S.; Muller, R.N.; Parac-Vogt, T.N. Lanthanide(III) complexes of diethylenetriamine-pentaacetic acid (DTPA)-bisamide derivatives as potential agents for bimodal (optical/magnetic resonance) imaging. Eur. J. Inorg. Chem., 2013, 2013(14), 2629-2639.
[http://dx.doi.org/10.1002/ejic.201300196]
[54]
Debroye, E.; Eliseeva, S.V.; Laurent, S.; Vander Elst, L.; Muller, R.N.; Parac-Vogt, T.N. Micellar self-assemblies of gadolinium(III)/europium(III) amphiphilic complexes as model contrast agents for bimodal imaging. Dalton Trans., 2014, 43(9), 3589-3600.
[http://dx.doi.org/10.1039/c3dt52842a] [PMID: 24402380]
[55]
Debroye, E.; Laurent, S.; Vander Elst, L.; Muller, R.N.; Parac-Vogt, T.N. Dysprosium complexes and their micelles as potential bimodal agents for magnetic resonance and optical imaging. Chemistry, 2013, 19(47), 16019-16028.
[http://dx.doi.org/10.1002/chem.201302418] [PMID: 24123216]
[56]
Harris, M.; Vander Elst, L.; Laurent, S.; Parac-Vogt, T.N. Magnetofluorescent micelles incorporating Dy(III)-DOTA as potential bimodal agents for optical and high field magnetic resonance imaging. Dalton Trans., 2016, 45(11), 4791-4801.
[http://dx.doi.org/10.1039/C5DT04801J] [PMID: 26865457]
[57]
Harris, M.; Carron, S.; Vander Elst, L.; Laurent, S.; Muller, R.N.; Parac-Vogt, T.N. Magnetofluorescent micellar complexes of terbium(III) as potential bimodal contrast agents for magnetic resonance and optical imaging. Chem. Commun. (Camb.), 2015, 51(14), 2984-2986.
[http://dx.doi.org/10.1039/C4CC09759A] [PMID: 25597536]
[58]
Harris, M.; Carron, S.; Vander Elst, L.; Laurent, S.; Parac-Vogt, T.N. Magnetofluorescent nanoaggregates incorporating terbium(III) complexes as potential bimodal agents for magnetic resonance and optical imaging. Eur. J. Inorg. Chem., 2015, 2015(27), 4572-4578.
[http://dx.doi.org/10.1002/ejic.201500310]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy