[1]
Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2, 22-32.
[2]
Donglu. S. Nanoscience in Biomedicine. Tsinghua University
Press, Beijing and Springer-Verlag gmbh Berlin Heidelberg, 2009.
[3]
Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev., 2016, 116, 2826-2885.
[4]
Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 2003, 36, R167-R181.
[5]
Bhandare, N.; Narayana, A. Applications of nanotechnology in cancer: A literature review of imaging and treatment. J. Nucl. Med. Radiat. Ther., 2014, 5, 1-9.
[6]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62, 90-99.
[7]
Gunasekera, U.A.; Pankhurst, Q.A.; Douek, M. Imaging applications of nanotechnology in cancer. Target. Oncol., 2009, 4, 169-181.
[8]
Davis, M.E. Chen. Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7, 771-782.
[9]
Kamaleddin, M.A. Nano-opthalmology: Applications and considerations. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1459-1472.
[10]
Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles in diagnostic and therapeutic tools for highly prevalent viral infections. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 219-230.
[11]
Elkassas, D.; Arafa, A. The innovative applications of therapeutic nanostructures in dentistry. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1543-1562.
[12]
Ajdari, N.; Vyas, C.; Bogan, S.L.; Lwaleed, B.A.; Cousins, B.G. Nanoparticle interactions in human blood: A model evaluation. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1531-1542.
[15]
Savolainen, K. (coordinator), Backman, U.; Brouwer, D.; Fadeel, B.; Fernandes, T.; Kuhlbusch, T.; Landsiedel, R.; Lynch, I.; Pylkkänen, L., Nanosafety in Europe 2015-2025: Towards safe and sustainable nanomaterials and nanotechnology innovations; Nanosafety Research Center, Finnish Institute of Occupational Health: Helhsinki, Finland, 2013.
[16]
Shapiro, E.M.; Skrtic, S.; Koretsky, A.P. Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med., 2005, 53, 329-338.
[17]
Wu, W.T.; Aiello, M.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical ph-sensing, tumor cell imaging, and drug delivery. Biomaterials, 2010, 31, 3023-3031.
[18]
Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X.H. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev., 2013, 65, 703-718.
[19]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J. Sundaresan, G.; Wu, A.M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2007, 307, 538-544.
[20]
Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectr., 2013, 67, 215-252.
[21]
Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-rarth based nanoparticles. ACS Nano, 2011, 5, 8488-8505.
[22]
Li, R.; Ji, Z.X.; Dong, J.; Chang, C.H.; Wang, X.; Sun, B.; Wang, M.; Liao, Y.P.; Zink, J.I.; Nel, A.E.; Xia, T. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano, 2015, 9, 3293-3306.
[23]
Yan, H.; Teh, C.; Sreejith, S.; Zhu, L.; Kwok, A.; Fang, W.; Ma, X.; Nguyen, K.T.; Korzh, V.; Zhao, Y. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew. Chem., 2012, 51, 8373-8377.
[24]
Cao, M.; Wang, P.; Kou, Y.; Wang, J.; Liu, J.; Li, Y.; Li, J.; Wang, L.; Chen, C. Gadolinium(III)-chelated silica nanospheres integrating chemotherapy and photothermal therapy for cancer treatment and magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2015, 7, 25014-25023.
[25]
Singh, R.K.; Patel, K.D.; Mahapatra, C.; Kang, M.S.; Kim, H.W. C-Dot generated bioactive organosilica nanospheres in theranostics: Multicolor luminescent and photothermal properties combined with drug delivery capacity. ACS Appl. Mater. Interfaces, 2016, 8, 24433-24444.
[26]
Wang, X.; Zhang, J.; Wang, Y.; Wang, C.; Xiao, J.; Zhang, Q.; Cheng, Y. Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials, 2016, 81, 114-124.
[27]
Sano, D.; Berlin, J.M.; Pham, T.T.; Marcano, D.C.; Valdecanas, D.R.; Zhou, G.; Milas, L.; Myers, J.N.; Tour, J.M. Noncovalent assembly of targeted carbon nanovectors enables synergistic drug and radiation cancer therapy in vivo. ACS Nano, 2012, 6, 2497-2505.
[28]
Haque, F.; Shu, D.; Shu, Y.; Shlyakhtenko, L.S.; Rychahou, P.G.; Evers, B.M.; Guo, P. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today, 2012, 7, 245-257.
[29]
Shu, Y.; Pi, F.; Sharma, A.; Rajabi, M.; Haque, F.; Shua, D.; Leggas, M.; Evers, B.M.; Guo, P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Delivery . Rev., 2014, 66, 74-89.
[30]
Chou, L.Y.T.; Zagorovsky, K.; Chan, W.C.W. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nature . Nanotech., 2014, 9, 148-155.
[31]
Jones, M.R.; Macfarlane, R.J.; Lee, B.; Zhang, J.; Young, K.L.; Senesi, A.J.; Mirkin, C.A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater., 2010, 9, 913-917.
[32]
Afonin, K.A.; Viard, M.; Koyfman, A.Y. Martins. A.N.; Kasprzak, W.K.; Panigaj, M.; Desai, R.; Santhanam, A.; Grabow, W.W.; Jaeger, L.; Heldman, E.; Reiser, J.; Chiu. W.; Freed, E.O.; Shapiro, B.A. Multifunctional RNA nanoparticles. Nano Lett., 2014, 14, 5662-5671.
[33]
Rychahou, P.; Haque, F.; Shu, Y.; Zaytseva, Y.; Weiss, H.L.; Lee, E.Y.; Mustain, W.; Valentino, J.; Guo, P. Evers; B.M. Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration. ACS Nano, 2015, 9, 1108-1116.
[34]
Estrada, L.P.H.; Champion, J.A. Protein nanoparticles for therapeutic protein delivery. Biomater. Sci., 2015, 3, 787-799.
[36]
Swierczewska, M.; Han, H.S.; Kim, K.; Park, J.H.; Lee, S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev., 2016, 99, 70-84.
[37]
Palao-Suay, R.; Gómez-Mascaraque, L.G.; Aguilar, M.R.; Vázquez-Lasa, B.; Román, J.S. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog. Polym. Sci., 2016, 53, 207-248.
[38]
Park, J.H.; Lee, S.; Kim, J.H.; Park, K.; Kim, K.; Kwon, I.C. Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci., 2008, 33, 113-137.
[39]
Davis, M.E. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7, 771-782.
[40]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A. Tuček, Jiří.; Zbořil, R., Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116, 5338-5431.
[41]
Mccarthy, J.R.; Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Delivery . Rev., 2008, 60, 1241-1251.
[42]
Xu, F.; Inci, F.; Mullick, O.; Gurkan, U.A.; Sung, Y.; Kavaz, D.; Li, B.; Denkbas, E.B.; Demirci, U. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS Nano, 2012, 6(8), 6640-6649.
[43]
Horcajada, P.; Chalati, T.; Serre, C.; Baati, T.; Eubank, J.F.; Heurteux, D.; Clayette, P.; Krauz, C.; Chang, J-S. Hwang, K. Y.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9, 172-178.
[44]
Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. Chem. Soc, 2006, 128, 9024-9025.
[45]
Cai, W.; Chu, C.C.; Liu, G. Wang, Yì-Xiáng. J. Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small, 2015, 11, 4806-4822.
[46]
Rocca, J.D.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44, 957-968.
[47]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1, 482-501.
[48]
Tan, M.C.; Chow, G.M.; Ren, L.L.; Zhang, Q. NanoScience in
Biomedicine. In: Inorganic nanoparticles for biomedical applications., 2009, pp. 272-289.
[49]
Soenen, S.J.; Gil, P.R.; Montenegro, J.M.; Parak, W.J.; Smedt, S.C.D.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6, 446-465.
[50]
West, J.L.; Halas, N.J. Applications of nanotechnology to biotechnology. Curr. Opin. Biotechnol., 2000, 11, 215-217.
[51]
Rivera Gil, P.; Huhn, D. delmercato, L.L.; Sasse, D.; Parak, W.J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res., 2010, 62, 115-125.
[52]
Sun, C.; Lee, H.H.J.; Zhang, Q.M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60, 1252-1265.
[53]
Chithrani, D.B. Nanoparticles for improved therapeutics and imaging in cancer therapy. Recent Pat. Nanotechnol., 2010, 4, 171-180.
[54]
Fornara, A.; Johansson, P.; Petersson, K.; Gustafsson, S.; Qin, J.; Olsson, E.; Ilver, D.; Krozer, A.; Muhammed, M.; Johansson, C. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett., 2008, 8, 3423-3428.
[55]
Koneracka, M.; Kopcansky, P.; Antalk, M.; Timko, M.; Ramchand, C.N.; Lobo, D.; Mehta, R.V.; Upadhyay, R. Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater., 1999, 201, 427-430.
[56]
Koneracka, M.; Kopcansky, P.; Timko, M.; Ramchand, C.N.; de Sequeira, A.; Trevan, M. Direct binding procedure of proteins and enzymes to fine magnetic particles. J. Mol. Catal., B Enzym., 2002, 18, 13-18.
[57]
Alexiou, C.; Arnold, W.; Klein, R.J.; Parak, F.G.; Hulin, P.; Bergemann, C.; Erhardt, W.; Wagenpfeil, S.; Lubbe, A. Loco regional cancer treatment with magnetic drug targeting. Cancer Res., 2000, 60, 6641-6648.
[58]
Soenen, S.J.; Hodenius, M.; De Cuyper, M. Magnetoliposomes: Versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine, 2009, 4, 177-191.
[59]
Namiki, Y.; Namiki, T.; Yoshida, H.; Ishii, Y.; Tsubota, A.; Koido, S. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol., 2009, 4, 598-606.
[60]
Hergt, R. Dutz, S.; Muller, R.; Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2919.
[61]
Shen, S.; Ding, B.; Zhang, S.; Qi, X.; Wang, K.; Tian, J.; Yan, Y.; Ge, Y.; Wu, L. Near- infrared light- responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1607-1616.
[62]
Pankhurst, Q.A.; Thanh, N.K.T.; Jones, S.K.; Dobson, J. Progress
in applications of magnetic nanoparticles in biomedicine. J. Phys.
D Appl. Phys.,, 2009, 42, 224001 (1-15).
[63]
Berry, C.C.; Curtis, A.S.J. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2003, 36, 198-206.
[64]
Gilchrist, R.; Medal, R.; Shorey, W.; Hanselman, R.; Parrot, J.; Taylor, C. Selective inductive heating of lymph nodes. Ann. Surg., 1957, 146, 596-606.
[65]
Han, G.; Ghosh, P.; Rotello, V.M. Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond.), 2007, 2, 113-123.
[66]
Murphy, C.J.; Gole, A.M.; Hunyadi, S.E.; Stone, J.W.; Sisco, P.N.; Alkilany, A. Chemical sensing and imaging with metallic nanorods. Chem. Commun., 2008, 5, 544-557.
[67]
Au, L.; Zhang, Q.; Cobley, M.C.; Gidding, M.; Schwartz, G.A.; Chen, Y.J. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano, 2010, 4, 35-42.
[68]
Song, H.K.; Kim, H.C.; Cobley, M.C.; Xia, N.Y.; Wang, V.L. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett., 2009, 9, 183-188.
[69]
Jaque, D.; Martinez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Martin Rodriguez, E.; Garcia Sole, J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494-9530.
[70]
Hasan, W.; Stender, C.L.; Lee, M.H.; Nehl, C.L.; Lee, J.; Odom, T.W. Tailoring the structure of nanopyramids for optical heat generation. Nano Lett., 2009, 9, 1555-1558.
[71]
Hainfeld, J.F.; Smilowitz, H.M.; O’Connor, M.J.; Dilmanian, F.A.; Slatkin, D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine, 2013, 8, 1601-1609.
[72]
Kah, J.C.; Wong, K.Y.; Neoh, K.G.; Song, J.H.; Fu, J.W.; Mhaisalkar, S. Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. J. Drug Target., 2009, 17, 181-193.
[73]
Hainfeld, J.F.; Slatkin, D.N.; Smilowitz, H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol., 2004, 49, 309-315.
[74]
Zhang. X. Gold Nanoparticles: Recent advances in the biomedical applications. Cell Biochem. Biophys., 2015, 72, 771-775.
[75]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61, 250-281.
[76]
Abdoon, A.S.; Al-Ashkar, E.A.; Kandil, O.M.; Shaban, A.M.; Khaled, H.M.; Sayed, M.A.; Shaer, M.M.; Shaalan, A.H.; Eisa, W.H.; Eldin, A.A.G.; Hussein, H.A.; Ashkar, M.R.; Ali, M.R.; Shabaka, A.A. Efficacy and toxicity of plasmonic photothermal therapy (PPTT) using gold nanorods (GNRs) against mammary tumors in dogs and cats. Nanomed. Nanotech. Biol. Med., 2016, 12, 2291-2297.
[77]
Cheng, L.C.; Huang, J.H.; Chen, H.M.; Lai, T.C.; Yang, K.Y.; Liu, R.S.; Hsiao, M.; Chen, C.H.; Her, L.J.; Tsai, D.P. Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J. Mater. Chem., 2012, 22, 2244-2253.
[78]
Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.N. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Nat. Am. Sci., 2003, 100, 13549-13554.
[79]
Cheheltani, R.; Ezzibdeh, R.M.; Chhour, P.; Pulaparthi, K.; Kim, P.; Jurcova, M.; Hsu, J.C.; Blundell, C.; Litt, H.I.; Ferrari, V.A.; Allcock, H.R.; Sehgal, C.M.; Cormode, D.P. Tunable biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials, 2016, 102, 87-97.
[80]
Modo, M.; Beech, J.S.; Meade, T.J.; Williams, S.C.; Price, J. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage, 2009, 47, T133-T142.
[81]
Mogilireddy, V.; Dechamps-Olivier, I.; Alric, C.; Laurent, G.; Laurent, S.; Vander Elst, L.; Muller, R.; Bazzi, R.; Roux, S.; Tillement, O.; Chuburu, F. Thermodynamic stability and kinetic inertness of a Gd-DTPA bisamide complex grafted onto gold nanoparticles. Contrast Media Mol. Imag., 2015, 10, 179-187.
[82]
Nicholls, F.J.; Rotz, M.W.; Ghuman, H.; MacRenaris, K.W. Meade. T.J.; Modo, M. DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials, 2016, 77, 291-306.
[83]
Wu, C.D.; Hu, A.; Zhang, L.; Lin, W. A homochiral porous metal−organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc., 2005, 127, 8940-8941.
[84]
Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R.V.; Kobayashi, T.C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature, 2005, 436, 238-241.
[85]
Horcajada, P.; Serre, C.; Gref, R.; Férey, G.; Couvreur, P. Nanoparticules hybrids organiques inorganiques à base de carboxylates de fer PCT applications PCT/FR2008/001366, 01 October., 2008.
[86]
Liu, D.; Lu, K.; Poon, C.; Lin, W. Metal-organic frameworks as sensory materials and imaging agents. Inorg. Chem., 2014, 53(4), 1916-1924.
[87]
Dawson, K.A.; Salvati, A.; Lynch, I. Nanotoxicology: nanoparticles reconstruct lipids. Nat. Nanotechnol., 2009, 4, 84-85.
[88]
Balas, F.; Arruebo, M.; Urrutia, J.; Santamaria, J. Reported nanosafety practices in research laboratories worldwide. Nat. Nanotechnol., 2010, 5, 93-96.
[89]
Fischer, H.C.; Chan, W.C.W. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol., 2007, 18, 565-571.
[90]
Rivera Gil, P.; Oberdorster, G.; Elder, A.; Puntes, V.; Parak, W.J. Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future. ACS Nano, 2010, 4, 5527-5531.
[91]
Kahru, A.; Dubourguier, H.C.; Blinova, I.; Ivask, A.; Kasemets, K. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A mini review. Sensors., 2008, 8, 5153-5170.
[92]
Oberdorster, G.; Sharp, Z.; Atudorei, A.; Elder, A.; Gelein, G.; Luntsm, A.; Kreyling, W.; Cox, C. Extra pulmonary translocation of ultrafine carbon particles following whole body inhalation exposure of rats. J. Toxicol. Environ. Health Part A, 2002, 65, 1531-1543.
[93]
Oberdorster, G.; Sharp, Z.; Atudonrei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 2004, 16, 437-445.
[94]
Ávalos, A.; Haza, A.; Mateo, D.; Morales, P. Effects of silver and gold nanoparticles of different sizes in human pulmonary fibroblasts. Toxicol. Mech. Methods, 2015, 25, 287-295.
[95]
Whiteley, C.M.; Valle, M.D.; Jones, K.C.; Sweetman, A.J. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment. Environ. Sci. Process. Impacts, 2013, 15, 2050-2058.
[96]
Song, M.; Yuan, S.; Yin, J.; Wang, X.; Meng, Z.; Wang, H.; Jiang, G. Size-Dependent Toxicity of Nano-C60 Aggregates: More sensitive indication by apoptosis-related bax translocation in cultured human cells. Environ. Sci. Technol., 2012, 46, 3457-3464.
[97]
Sayes, C.M.; Marchione, A.A.; Reed, K.L.; Warheit, D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett., 2007, 7, 2399-2406.
[98]
Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechol., 2016, 11, 479-486.
[99]
L’Azou, B.; Passagne, I.; Mounicou, S.; Trequer-Delapierre, M.; Puljalté, I.; Szpunar, I.; Lobinski, R.; Ohayan-Courtès, C. Comparative cytotoxicity of cadmium forms (CdCl2, CdO, CdS micro- and nanoparticles) in renal cells. Toxicol. Res., 2014, 3, 32-41.
[100]
Zhu, X.; Hondroulis, E.; Liu, W.; Li, C.Z. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small, 2013, 9, 1821-1830.
[101]
Zhang, W.; Yang, L.; Kuang, H.; Yang, P.; Aguilar, P.Z.; Wang, A.; Fu, F.; Xu, H. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating. J. Hazard. Mater., 2016, 318, 61-69.
[102]
Shiohara, A.; Hoshino, A.; Hanaki, K.; Suzuki, K.; Yamamoto, K. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol., 2004, 48, 669-675.
[103]
Kahru, A.; Savolainen, K. Potential hazard of nanoparticles: From properties to biological and environmental effects. Toxicology, 2010, 269, 89-91.
[104]
Kahru, A.; Dubourguier, H.C. From ecotoxicology to nanoecotoxicology. Toxicology, 2010, 269, 105-119.
[105]
Bondarenko, O.; Ivask, A.; Käkinen, A.; Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut., 2012, 169, 81-89.
[106]
Zhang, H.; He, X.; Zhang, Z.; Zhang, P.; Li, Y.; Ma, Y.; Kuang, Y.; Zhao, Y.; Chai, Z. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ. Sci. Technol., 2011, 45, 3725-3730.
[107]
Yokel, R.A.; Florence, R.L.; Unrine, J.M.; Tseng, M.T.; Graham, U.M.; Wu, P.; Grulke, E.A. Biodistribution and oxidative stress effects of a systemically- introduced commercial ceria engineered nanomaterial. Nanotoxicology, 2009, 3, 234-248.
[108]
Auffan, M.; Rose, J.; Orsiere, T.; De Meo, M.; Thill, A.; Zeyons, O.; Proux, O.; Masion, A.; Chaurand, P.; Spalla, O.; Botta, A.; Wiesner, M.R.; Bottero, J.Y. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology, 2009, 3, 161-171.
[109]
Setyawati, M.I.; Tay, C.Y.; Chia, S.L.; Goh, S.L.; Fang, W.; Neo, M.J.; Chong, H.C.; Tan, S.M.; Loo, S.C.; Ng, K.W.; Xie, J.P.; Ong, C.N.; Tan, N.S.; Leong, D.T. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun., 2013, 4 1673(1-12).
[110]
Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 2012, 46, 2242-2250.
[111]
Tay, C.Y.; Fang, W.; Setyawati, M.I.; Chia, S.L.; Tan, K.S.; Hong, C.H.L.; Leong, D.T. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl. Mater. Interfaces, 2014, 6, 6248-6256.
[112]
Canas, J.E.; Qi, B.; Li, S.; Maul, J.D.; Cox, B.S.; Das, S.; Green, M.J. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eiseniafetida). J. Environ. Monit., 2011, 13, 3351-3357.
[113]
Yan, X.; Rong, R.; Zhu, S.; Guo, M.; Gao, S.; Wang, S.; Xu, X. Effects of ZnO nanoparticles on dimethoate-induced toxicity in mice. J. Agric. Food Chem., 2015, 63, 8292-8298.
[114]
Wu, T.; Tang, M. Toxicity of quantum dots on respiratory system. Inhal. Toxicol., 2014, 26, 128-139.
[115]
Zhang, W.; Yang, L.; Kuang, H.; Yang, P.; Aguilar, Z.P.; Wang, A.; Fu, F.; Xu, H. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating. J. Hazard. Mater., 2016, 318, 61-69.
[116]
Li, X.; Yang, X.; Yuwen, L.; Yang, W.; Weng, L.; Teng, Z.; Wang, L. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials, 2016, 96, 24-32.
[117]
Shiohara, A.; Hoshino, A.; Hanaki, K.; Suzuki, K.; Yamamoto, K. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol., 2004, 48, 669-675.
[118]
Lin, W.; Huang, Y.; Zhou, X.D.; Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol., 2006, 217, 252-259.
[119]
Wang, F.; Gao, F.; Lan, M.; Yuan, H.; Huang, Y.; Liu, J. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro, 2009, 23, 808-815.
[120]
McCarthy, J.; Inkielewicz-Stępniak, I.; Corbalan, J.J.; Radomski, M.W. Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: Protective effects of fisetin. Chem. Res. Toxicol., 2012, 25, 2227-2235.
[121]
Napierska, D.; Thomassen, L.C.; Rabolli, V.; Lison, D.; Gonzalez, L.; Kirsch-Volders, M.; Martens, J.A.; Hoet, P.H. Small size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small, 2009, 5, 846-853.
[122]
Choi, H.S.; Frangioni, J.V. Nanoparticles for biomedical imaging: Fundamentals of clinical translation. Mol. Imag, 2010, 9, 291-310.
[123]
Casarett, L.J. Doull. Toxicology: The Basic Science of Poisons
(Ed: C.D. Klaassen), McGraw-Hill, New York,. 2001.
[124]
Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, C.P.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal.,, 2014, 22, 64-75.
[125]
Wang, B.; Yin, J.J.; Zhou, X. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicro environment: catalytic activities mediated by surface chemical states. J. Phys. Chem. C, 2012, 117, 383-392.
[126]
Limbach, K.L.; Wick, P.; Manser, P. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol., 2007, 41, 4158-4163.
[127]
Borm, P.; Klaessig, F.C.; Landry, T.D.; Moudgil, B.; Pauluhn, J.; Thomas, K.; Trottier, R.; Wood, S. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci., 2006, 90, 23-32.
[128]
Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311, 622-627.
[129]
Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 2006, 6, 1794-1807.
[130]
Macaroff, P. P.; Simioni, A.R.; Lacava, Z.G.M.; Lima, E.C.D.; Morais, P.C.; Tedesco, A.C. Studies of cell toxicity and binding of
magnetic nanoparticles with blood stream macromolecules. J. Appl.
Phys.,, 2006, 99, 08S102.
[131]
Park, S.I.; Kim, J.H.; Kim, J.H.; Yun, H.I.; Kim, C.O. Toxicity estimation of magnetic fluids in a biological test. J. Magn. Magn. Mater., 2006, 304, 406-408.
[132]
Shvedova, A.A.; Kisin, E.R.; Mercer, R.; Murray, A.R.; Johnson, V.J.; Potapovich, A.I. Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 283, L698-L708.
[133]
Ray, P.C.; Yu, H.T.; Fu, P.P. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J. Environ. Sci. Health Part C, 2009, 27, 1-35.
[134]
Shvedova, A.A.; Murray, A.R.; Kisin, E.R.; Schwegler-Berry, D.; Kagan, V.E.; Gandelsman, V.Z. Exposure to carbon nanotube material: evidence of exposure-induced oxidant stress in human keratinocyte and bronchial epithelial cells. Free Radic. Res., 2003, 37, 97.
[135]
Neuberger, T.; Schöpf, B.; Hofmann, H.; Hofmann, M.; Von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery syste. J. Magn. Magn. Mater., 2005, 293, 483-496.
[136]
Lübbe, A.S.; Bergemann, C.; Brock, J.; McClure, D.G. Physiological aspects in magnetic drug-targeting. J. Magn. Magn. Mater., 1999, 194, 149-155.
[137]
Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S.H.; Wu, L.P.; Moghimi, S.M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy and safety issues. Nanomed. NBM, 2011, 7, 521-540.