摘要
近年来,附加醛的荧光探针引起了越来越多的关注。 荧光生物成像在生物医学研究中包括细胞和组织成像的许多现代应用。 同时,亲核机理是制备醛传感探针的非常简单方便的方法。 本教程的重点是基于基于亲核加成机理的含醛化学传感器及其生物学应用。
关键词: 乙醛,生物应用,传感机制,荧光探针,细胞和组织成像,亲核机制。
[1]
Das, A.; Biswas, S. A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p-nitrophenol. Sens. Actuators B Chem., 2017, 250, 121-131.
[http://dx.doi.org/10.1016/j.snb.2017.04.047]
[http://dx.doi.org/10.1016/j.snb.2017.04.047]
[2]
Kang, J.; Huo, F.J.; Ning, P.; Meng, X.M.; Chao, J.B.; Yin, C.X. Two red-emission single and double ‘arms’ fluorescent materials stemed from ‘one-pot’ reaction for hydrogen sulfide vivo imaging. Sens. Actuators B Chem., 2017, 250, 342-350.
[http://dx.doi.org/10.1016/j.snb.2017.04.180]
[http://dx.doi.org/10.1016/j.snb.2017.04.180]
[3]
Zhang, Y.X.; Zhao, M.Y.; Chao, D.B. A cyclometalated iridium(III) complex for selective luminescent detection of hydrogen sulfide. Sens. Actuators B Chem., 2017, 248, 19-23.
[http://dx.doi.org/10.1016/j.snb.2017.03.132]
[http://dx.doi.org/10.1016/j.snb.2017.03.132]
[4]
Deng, B.B.; Ren, M.G.; Wang, J.Y.; Zhou, K.; Lin, W.Y. A mitochondrial-targeted two-photon fluorescent probe for imaging hydrogen sulfide in the living cells and mouse liver tissues. Sens. Actuators B Chem., 2017, 248, 50-56.
[http://dx.doi.org/10.1016/j.snb.2017.03.135]
[http://dx.doi.org/10.1016/j.snb.2017.03.135]
[5]
Zhang, Y.X.; Zhao, M.Y.; Chao, D.B. Rational designed benzochalcone-based fluorescent probe for molecular imaging of hydrogen peroxide in live cells and tissues. Sen. Actuators B, 2017, 248, 257-264.
[6]
Ma, W.W.; Wang, M.Y.; Yin, D.; Zhang, X. Facile preparation of naphthol AS-based fluorescent probe for highly selective detection of cysteine in aqueous solution and its imaging application in living cells. Sens. Actuators B Chem., 2017, 248, 19-23.
[http://dx.doi.org/10.1016/j.snb.2017.03.169]
[http://dx.doi.org/10.1016/j.snb.2017.03.169]
[7]
Wang, K.; Leng, T.H.; Liu, Y.J.; Wang, C.Y.; Shi, P.; Shena, Y.J.; Zhu, W. A novel near-infrared fluorescent probe with a large stokes shift for the detection and imaging of biothiols. Sens. Actuators B Chem., 2017, 248, 338-345.
[http://dx.doi.org/10.1016/j.snb.2017.03.127]
[http://dx.doi.org/10.1016/j.snb.2017.03.127]
[8]
Kim, I.J.; Ramalingam, M.; Son, Y. A reaction based colorimetric chemosensor for the detection of cyanide ion in aqueous solution. Sens. Actuators B Chem., 2017, 246, 319-326.
[http://dx.doi.org/10.1016/j.snb.2017.02.015]
[http://dx.doi.org/10.1016/j.snb.2017.02.015]
[9]
Yina, C.X.; Li, X.Q.; Yue, Y.K.; Chao, J.B.; Zhang, Y.B.; Huo, F.J. A new fluorescent material and its application in sulfite and bisulfite Bioimaging. Sens. Actuators B Chem., 2017, 246, 615-622.
[http://dx.doi.org/10.1016/j.snb.2017.02.127]
[http://dx.doi.org/10.1016/j.snb.2017.02.127]
[10]
Goel, R.; Sharma, S.; Paul, K.D.; Luxam, V. Naphthalimide based chromofluorescent sensor and DNA intercalator: Triggered by Hg2+/HSO4− cleavage reaction. Sens. Actuators B Chem., 2017, 246, 776-782.
[http://dx.doi.org/10.1016/j.snb.2017.02.090]
[http://dx.doi.org/10.1016/j.snb.2017.02.090]
[11]
Yue, Y.; Huo, F.; Ning, P.; Zhang, Y.; Chao, J.; Meng, X.; Yin, C. Dual-site fluorescent probe for visualizing the metabolism of cys in living cells. J. Am. Chem. Soc., 2017, 139(8), 3181-3185.
[http://dx.doi.org/10.1021/jacs.6b12845] [PMID: 28170238]
[http://dx.doi.org/10.1021/jacs.6b12845] [PMID: 28170238]
[12]
Liu, Y.; Yu, D.; Ding, S.; Xiao, Q.; Guo, J.; Feng, G. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe. ACS Appl. Mater. Interfaces, 2014, 6(20), 17543-17550.
[http://dx.doi.org/10.1021/am505501d] [PMID: 25253409]
[http://dx.doi.org/10.1021/am505501d] [PMID: 25253409]
[13]
Wang, J.F.; Li, B.; Zhao, W.Y.; Zhang, X.F.; Luo, X.; Corkins, M.E.; Cole, S.L.; Wang, C.; Xiao, Y.; Bi, X.M.; Pang, Y.; McElroy, C.A.; Bird, A.J.; Dong, Y.Z. Two-photon near infrared fluorescent turn-on probe toward cysteine and its imaging applications. ACS Sens., 2016, 1, 882-887.
[http://dx.doi.org/10.1021/acssensors.5b00271]
[http://dx.doi.org/10.1021/acssensors.5b00271]
[14]
Tang, Y.; Kong, X.; Liu, Z.R.; Xu, A.; Lin, W. Lysosome-targeted turn-on fluorescent probe for endogenous formaldehyde in living cells. Anal. Chem., 2016, 88(19), 9359-9363.
[http://dx.doi.org/10.1021/acs.analchem.6b02879] [PMID: 27653930]
[http://dx.doi.org/10.1021/acs.analchem.6b02879] [PMID: 27653930]
[15]
Niu, W.; Guo, L.; Li, Y.; Shuang, S.; Dong, C.; Wong, M.S. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal. Chem., 2016, 88(3), 1908-1914.
[http://dx.doi.org/10.1021/acs.analchem.5b04329] [PMID: 26717855]
[http://dx.doi.org/10.1021/acs.analchem.5b04329] [PMID: 26717855]
[16]
Feng, W.; Liu, D.; Feng, S.; Feng, G. Readily available fluorescent probe for carbon monoxide imaging in living cells. Anal. Chem., 2016, 88(21), 10648-10653.
[http://dx.doi.org/10.1021/acs.analchem.6b03073] [PMID: 27728973]
[http://dx.doi.org/10.1021/acs.analchem.6b03073] [PMID: 27728973]
[17]
Bouffard, J.; Kim, Y.; Swager, T.M.; Weissleder, R.; Hilderbrand, S.A. A highly selective fluorescent probe for thiol bioimaging. Org. Lett., 2008, 10(1), 37-40.
[http://dx.doi.org/10.1021/ol702539v] [PMID: 18062694]
[http://dx.doi.org/10.1021/ol702539v] [PMID: 18062694]
[18]
Han, C.; Yang, H.; Chen, M.; Su, Q.; Feng, W.; Li, F. Mitochondria-targeted near-infrared fluorescent off-on probe for selective detection of cysteine in living cells and in vivo. ACS Appl. Mater. Interfaces, 2015, 7(50), 27968-27975.
[http://dx.doi.org/10.1021/acsami.5b10607] [PMID: 26618279]
[http://dx.doi.org/10.1021/acsami.5b10607] [PMID: 26618279]
[19]
Zhang, H.; Liu, R.; Tan, Y.; Xie, W.H.; Lei, H.; Cheung, H.Y.; Sun, H. A FRET-based ratiometric fluorescent probe for nitroxyl detection in living cells. ACS Appl. Mater. Interfaces, 2015, 7(9), 5438-5443.
[http://dx.doi.org/10.1021/am508987v] [PMID: 25658137]
[http://dx.doi.org/10.1021/am508987v] [PMID: 25658137]
[20]
Zhang, X.; Ren, X.; Xu, Q.H.; Loh, K.P.; Chen, Z.K. One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift. Org. Lett., 2009, 11(6), 1257-1260.
[http://dx.doi.org/10.1021/ol802979n] [PMID: 19236043]
[http://dx.doi.org/10.1021/ol802979n] [PMID: 19236043]
[21]
Dai, C.G.; Liu, X.L.; Du, X.J.; Zhang, Y.; Song, Q.H. Two-input fluorescent probe for thiols and hydrogen sulfide chemosensing and live cell imaging. ACS Sens., 2016, 1, 888-895.
[http://dx.doi.org/10.1021/acssensors.6b00291]
[http://dx.doi.org/10.1021/acssensors.6b00291]
[22]
Yu, D.; Huang, F.; Ding, S.; Feng, G. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells. Anal. Chem., 2014, 86(17), 8835-8841.
[http://dx.doi.org/10.1021/ac502227p] [PMID: 25102423]
[http://dx.doi.org/10.1021/ac502227p] [PMID: 25102423]
[23]
Yushchenko, D.A.; Fauerbach, J.A.; Thirunavukkuarasu, S.; Jares-Erijman, E.A.; Jovin, T.M. Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation. J. Am. Chem. Soc., 2010, 132(23), 7860-7861.
[http://dx.doi.org/10.1021/ja102838n] [PMID: 20491471]
[http://dx.doi.org/10.1021/ja102838n] [PMID: 20491471]
[24]
Chen, W.; Fang, Q.; Yang, D.; Zhang, H.; Song, X.; Foley, J. Selective, highly sensitive fluorescent probe for the detection of sulfur dioxide derivatives in aqueous and biological environments. Anal. Chem., 2015, 87(1), 609-616.
[http://dx.doi.org/10.1021/ac503281z] [PMID: 25407291]
[http://dx.doi.org/10.1021/ac503281z] [PMID: 25407291]
[25]
Gu, X.; Liu, C.; Zhu, Y.C.; Zhu, Y.Z. A boron-dipyrromethene-based fluorescent probe for colorimetric and ratiometric detection of sulfite. J. Agric. Food Chem., 2011, 59(22), 11935-11939.
[http://dx.doi.org/10.1021/jf2032928] [PMID: 21999770]
[http://dx.doi.org/10.1021/jf2032928] [PMID: 21999770]
[26]
Li, G.; Zhu, D.; Xue, L.; Jiang, H. Quinoline-based fluorescent probe for ratiometric detection of lysosomal pH. Org. Lett., 2013, 15(19), 5020-5023.
[http://dx.doi.org/10.1021/ol4023547] [PMID: 24040756]
[http://dx.doi.org/10.1021/ol4023547] [PMID: 24040756]
[27]
Jin, X.; Wu, S.; She, M.; Jia, Y.; Hao, L.; Yin, B.; Wang, L.; Obst, M.; Shen, Y.; Zhang, Y.; Li, J. Novel fluorescein-based fluorescent probe for detecting H2S and its real applications in blood plasma and biological imaging. Anal. Chem., 2016, 88(22), 11253-11260.
[http://dx.doi.org/10.1021/acs.analchem.6b04087] [PMID: 27780356]
[http://dx.doi.org/10.1021/acs.analchem.6b04087] [PMID: 27780356]
[28]
Pak, Y.L.; Li, J.; Ko, K.C.; Kim, G.; Lee, J.Y.; Yoon, J. Mitochondria-targeted reaction-based fluorescent probe for hydrogen sulfide. Anal. Chem., 2016, 88(10), 5476-5481.
[http://dx.doi.org/10.1021/acs.analchem.6b00956] [PMID: 27094621]
[http://dx.doi.org/10.1021/acs.analchem.6b00956] [PMID: 27094621]
[29]
Cao, X.; Lin, W.; Yu, Q. A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold. J. Org. Chem., 2011, 76(18), 7423-7430.
[http://dx.doi.org/10.1021/jo201199k] [PMID: 21815660]
[http://dx.doi.org/10.1021/jo201199k] [PMID: 21815660]
[30]
Yin, J.; Kwon, Y.; Kim, D.; Lee, D.; Kim, G.; Hu, Y.; Ryu, J.H.; Yoon, J. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc., 2014, 136(14), 5351-5358.
[http://dx.doi.org/10.1021/ja412628z] [PMID: 24649915]
[http://dx.doi.org/10.1021/ja412628z] [PMID: 24649915]
[31]
Lim, S.Y.; Hong, K.H.; Kim, D.I.; Kwon, H.; Kim, H.J. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine. J. Am. Chem. Soc., 2014, 136(19), 7018-7025.
[http://dx.doi.org/10.1021/ja500962u] [PMID: 24754635]
[http://dx.doi.org/10.1021/ja500962u] [PMID: 24754635]
[32]
Li, H.D.; Yao, Q.C.; Fan, J.L.; Hu, C.; Xu, F.; Du, J.J.; Wang, J.Y.; Peng, X.P. A fluorescent probe for ratiometric imaging of SO2 derivatives in mitochondria of living cells. Ind. Eng. Chem. Res., 2016, 55, 1477-1483.
[http://dx.doi.org/10.1021/acs.iecr.5b04530]
[http://dx.doi.org/10.1021/acs.iecr.5b04530]
[33]
Yang, J.; Li, K.; Hou, J.T.; Li, L.L.; Lu, C.Y.; Xie, Y.M.; Wang, X.; Yu, X.Q. Novel Tumor-Specific and Mitochondria-Targeted near InfraredEmission Fluorescent Probe for SO2 Derivatives in Living Cells. ACS Sens., 2016, 1, 166-172.
[http://dx.doi.org/10.1021/acssensors.5b00165]
[http://dx.doi.org/10.1021/acssensors.5b00165]
[34]
Wang, X.B.; Hao, X.; Zhang, D.T.; Jiang, Y. Reaction-based fluorescent turn-on probe for selective detection of thiophenols in aqueous solution and living cellsOriginal Research Article. Dyes Pigm., 2017, 142, 167-174.
[http://dx.doi.org/10.1016/j.dyepig.2017.03.033]
[http://dx.doi.org/10.1016/j.dyepig.2017.03.033]
[35]
Qiu, X.Y.; Jiao, X.J.; Liu, C.; Zheng, D.S.; Huang, K.; Wang, Q.; He, S.; Zhao, L.C.; Zeng, X.S. A selective and sensitive fluorescent probe for homocysteine and its application in living cells. Dyes Pigm., 2017, 140, 212-221.
[http://dx.doi.org/10.1016/j.dyepig.2017.01.047]
[http://dx.doi.org/10.1016/j.dyepig.2017.01.047]
[36]
Fu, Y.J.; Li, Z.; Li, C.Y.; Li, Y.F.; Wu, Z.H.; Wen, P. Borondipyrrolemethene-based fluorescent probe for distinguishing cysteine from biological thiols and its application in cell image. Dyes Pigm., 2017, 139, 381-387.
[http://dx.doi.org/10.1016/j.dyepig.2016.12.033]
[http://dx.doi.org/10.1016/j.dyepig.2016.12.033]
[37]
Su, W.; Gu, B.; Hu, X.J.; Duan, X.L.; Zhang, Y.Y.; Li, T.T.; Yao, S.Z. A near-infrared and colorimetric fluorescent probe for palladium detection and bioimaging. Dyes Pigm., 2017, 137, 293-298.
[http://dx.doi.org/10.1016/j.dyepig.2016.10.052]
[http://dx.doi.org/10.1016/j.dyepig.2016.10.052]
[38]
Huang, Q.; Yang, X.F.; Li, H. A ratiometric fluorescent probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism. Dyes Pigm., 2013, 99, 871-877.
[http://dx.doi.org/10.1016/j.dyepig.2013.07.033]
[http://dx.doi.org/10.1016/j.dyepig.2013.07.033]
[39]
Geng, L.H.; Yang, X.F.; Zhong, Y.G.; Li, Z.; Li, H. “Quinone-phenol” transduction activated excited-state intramolecular proton transfer: A new strategy toward ratiometric fluorescent probe for sulfite in living cells. Dyes Pigm., 2015, 120, 213-219.
[http://dx.doi.org/10.1016/j.dyepig.2015.04.016]
[http://dx.doi.org/10.1016/j.dyepig.2015.04.016]
[40]
Shu, H.; Wu, X.L.; Zhou, B.J.; Han, Y.B.; Jin, M.J.; Zhu, J.; Bao, X.F. Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine B and N-[4-(carbonyl) phenyl]maleimide conjugate and its application in living cell imaging Original Research Article. Dyes Pigm., 2017, 136, 535-542.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.063]
[http://dx.doi.org/10.1016/j.dyepig.2016.08.063]
[41]
Singha, S.; Kim, D.; Rao, A.S.; Wang, T.; Kim, K.H.; Lee, K.H.; Kim, K.T.; Ahn, K.H. Two-photon probes based on arylsulfonyl azides: Fluorescence detection and imaging of biothiols. Dyes Pigm., 2013, 9, 308-315.
[http://dx.doi.org/10.1016/j.dyepig.2013.05.008]
[http://dx.doi.org/10.1016/j.dyepig.2013.05.008]
[42]
Chen, W.Q.; Yue, X.X.; Li, W.X.; Hao, Y.Q.; Zhang, L.L.; Zhu, L.L.; Sheng, J.; Song, X.J. A phenothiazine coumarin-based red emitting fluorescent probe for nanomolar detection of thiophenol with a large Stokes shift. Sens. Actuators B Chem., 2017, 245, 702-710.
[http://dx.doi.org/10.1016/j.snb.2017.01.167]
[http://dx.doi.org/10.1016/j.snb.2017.01.167]
[43]
Yang, C.; Wang, X.; Liu, H.Y.; Ge, S.G.; Yan, M.; Yu, J.H.; Song, X.R. An inner filter effect fluorescent sensor based on g-C3N4 nanosheets/chromogenic probe for simple detection of glutathione. Sens. Actuators B Chem., 2017, 248, 639-645.
[http://dx.doi.org/10.1016/j.snb.2017.04.056]
[http://dx.doi.org/10.1016/j.snb.2017.04.056]
[44]
Li, Z.X.; Zhang, W.Y.; Liu, C.X.; Yu, M.M.; Zhang, H.Y.; Guo, L.; Wei, L.H. A colorimetric and ratiometric fluorescent probe for hydrazine and its application in living cells with low dark toxicity. Sens. Actuators B Chem., 2017, 241, 665-671.
[http://dx.doi.org/10.1016/j.snb.2016.10.141]
[http://dx.doi.org/10.1016/j.snb.2016.10.141]
[45]
Liao, Y.C.; Venkatesan, P.; Wei, L.F.; Wu, S.P. A coumarin-based fluorescent probe for thiols and its application in cell imaging. Sens. Actuators B Chem., 2016, 232, 732-737.
[http://dx.doi.org/10.1016/j.snb.2016.04.027]
[http://dx.doi.org/10.1016/j.snb.2016.04.027]
[46]
Hou, Y.; Yang, X.F.; Zhong, Y.G.; Li, Z. Development of fluorescent probes for hydrogen polysulfides by using cinnamate ester as the recognition unit. Sens. Actuators B Chem., 2016, 232, 531-537.
[http://dx.doi.org/10.1016/j.snb.2016.04.008]
[http://dx.doi.org/10.1016/j.snb.2016.04.008]
[47]
Khalaj, A.; Abdi, K.; Ostad, S.N.; Khoshayand, M.R.; Lamei, N.; Nedaie, H.A.; Nedaie, H.A. Synthesis, in vitro cytotoxicity and radiosensitizing activity of novel 3-[(2,4-dinitrophenylamino)alkyl] derivatives of 5-fluorouracil. Chem. Biol. Drug Des., 2014, 83(2), 183-190.
[http://dx.doi.org/10.1111/cbdd.12211] [PMID: 23964692]
[http://dx.doi.org/10.1111/cbdd.12211] [PMID: 23964692]
[48]
Mohammad, A.; Yaghoubi, S. Development of a highly selectiveandcolorimetric probe for simultaneous detection of Cu2+ and CN− based on an azo chromophore. Sen. Actuators B, 2017, 251, 264-271.
[http://dx.doi.org/10.1016/j.snb.2017.05.068]
[http://dx.doi.org/10.1016/j.snb.2017.05.068]
[49]
Duan, L.P.; Xu, Y.F.; Qian, X.H.; Wang, F.; Liu, J.W.; Cheng, T.F. Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: symmetrical naphthalimide aldehyde. Tetrahedron Lett., 2008, 49, 6624-6627.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.021]
[http://dx.doi.org/10.1016/j.tetlet.2008.09.021]
[50]
Goswami, S.; Manna, A.; Paul, S.; Das, A.K.; Nandi, P.K.; Maity, A.K.; Saha, P. A turn on ESIPT probe for rapid and ratiometric fluorogenic detection of homocysteine and cysteine in water with live cell-imaging. Tetrahedron Lett., 2014, 55, 490-494.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.055]
[http://dx.doi.org/10.1016/j.tetlet.2013.11.055]
[51]
Hou, X.F.; Guo, X.L.; Chen, B.; Liu, C.H.; Gao, F.; Zhao, J.; Wan, J.H. Rhodamine-based fluorescent probe for highly selective detection of glutathione over cysteine and homocysteine. Sens. Actuators B Chem., 2015, 209, 838-845.
[http://dx.doi.org/10.1016/j.snb.2014.12.009]
[http://dx.doi.org/10.1016/j.snb.2014.12.009]
[52]
Yang, C.; Wang, X.; Shen, L.; Deng, W.; Liu, H.; Ge, S.; Yan, M.; Song, X. An aldehyde group-based P-acid probe for selective fluorescence turn-on sensing of cysteine and homocysteine. Biosens. Bioelectron., 2016, 80, 17-23.
[http://dx.doi.org/10.1016/j.bios.2016.01.044] [PMID: 26802748]
[http://dx.doi.org/10.1016/j.bios.2016.01.044] [PMID: 26802748]
[53]
Chen, C.; Liu, W.; Xu, C.; Liu, W. A colorimetric and fluorescent probe for detecting intracellular biothiols. Biosens. Bioelectron., 2016, 85, 46-52.
[http://dx.doi.org/10.1016/j.bios.2016.04.098] [PMID: 27155115]
[http://dx.doi.org/10.1016/j.bios.2016.04.098] [PMID: 27155115]
[54]
Hu, M.; Fan, J.; Li, H.; Song, K.; Wang, S.; Cheng, G.; Peng, X. Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells. Org. Biomol. Chem., 2011, 9(4), 980-983.
[http://dx.doi.org/10.1039/C0OB00957A] [PMID: 21165468]
[http://dx.doi.org/10.1039/C0OB00957A] [PMID: 21165468]
[55]
Yuan, L.; Lin, W.; Yang, Y. A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Chem. Commun. (Camb.), 2011, 47(22), 6275-6277.
[http://dx.doi.org/10.1039/c1cc11316j] [PMID: 21503347]
[http://dx.doi.org/10.1039/c1cc11316j] [PMID: 21503347]
[56]
Zuo, Q.P.; Li, B.; Pei, Q.; Li, Z.; Liu, S.K. A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells. J. Fluoresc., 2010, 20(6), 1307-1313.
[http://dx.doi.org/10.1007/s10895-010-0673-6] [PMID: 20473559]
[http://dx.doi.org/10.1007/s10895-010-0673-6] [PMID: 20473559]
[57]
Shen, Y.M.; Zhang, X.Y.; Zhang, Y.Y.; Zhang, C.X.; Jin, J.L.; Li, H.T.; Yao, S.Z. A novel colorimetric/fluorescence dual-channel sensor based on NBD for the rapid and highlysensitive detection of cysteine and homocysteine in living cells. Anal. Methods, 2016, 8, 2420-2426.
[http://dx.doi.org/10.1039/C5AY02884A]
[http://dx.doi.org/10.1039/C5AY02884A]
[58]
Wang, P.; Liu, J.; Lv, X.; Liu, Y.; Zhao, Y.; Guo, W. A naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on sensing of Cys and Hcy. Org. Lett., 2012, 14(2), 520-523.
[http://dx.doi.org/10.1021/ol203123t] [PMID: 22220759]
[http://dx.doi.org/10.1021/ol203123t] [PMID: 22220759]
[59]
Das, P.; Mandal, A.K.; Chandar, N.B.; Baidya, M.; Bhatt, H.B.; Ganguly, B.; Ghosh, S.K.; Das, A. New chemodosimetric reagents as ratiometric probes for cysteine and homocysteine and possible detection in living cells and in blood plasma. Chemistry, 2012, 18(48), 15382-15393.
[http://dx.doi.org/10.1002/chem.201201621] [PMID: 23060260]
[http://dx.doi.org/10.1002/chem.201201621] [PMID: 23060260]
[60]
Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells. Chem. Commun. (Camb.), 2013, 49(80), 9176-9178.
[http://dx.doi.org/10.1039/c3cc45519j] [PMID: 23989532]
[http://dx.doi.org/10.1039/c3cc45519j] [PMID: 23989532]
[61]
Li, H.; Fan, J.; Wang, J.; Tian, M.; Du, J.; Sun, S.; Sun, P.; Peng, X. A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem. Commun. (Camb.), 2009, (39), 5904-5906.
[http://dx.doi.org/10.1039/b907511a] [PMID: 19787136]
[http://dx.doi.org/10.1039/b907511a] [PMID: 19787136]
[62]
Pullela, P.K.; Chiku, T.; Carvan, M.J., III; Sem, D.S. Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Anal. Biochem., 2006, 352(2), 265-273.
[http://dx.doi.org/10.1016/j.ab.2006.01.047] [PMID: 16527239]
[http://dx.doi.org/10.1016/j.ab.2006.01.047] [PMID: 16527239]
[63]
Yang, Z.; Zhao, N.; Sun, Y.; Miao, F.; Liu, Y.; Liu, X.; Zhang, Y.; Ai, W.; Song, G.; Shen, X.; Yu, X.; Sun, J.; Wong, W.Y. Highly selective red- and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem. Commun. (Camb.), 2012, 48(28), 3442-3444.
[http://dx.doi.org/10.1039/c2cc00093h] [PMID: 22366729]
[http://dx.doi.org/10.1039/c2cc00093h] [PMID: 22366729]
[64]
Xiong, L.; Zhao, Q.; Chen, H.; Wu, Y.; Dong, Z.; Zhou, Z.; Li, F. Phosphorescence imaging of homocysteine and cysteine in living cells based on a cationic iridium(III) complex. Inorg. Chem., 2010, 49(14), 6402-6408.
[http://dx.doi.org/10.1021/ic902266x] [PMID: 20565069]
[http://dx.doi.org/10.1021/ic902266x] [PMID: 20565069]
[65]
Lou, X.; Ou, D.; Li, Q.; Li, Z. An indirect approach for anion detection: the displacement strategy and its application. Chem. Commun. (Camb.), 2012, 48(68), 8462-8477.
[http://dx.doi.org/10.1039/c2cc33158f] [PMID: 22781135]
[http://dx.doi.org/10.1039/c2cc33158f] [PMID: 22781135]
[66]
Ma, Y.; Liu, S.J.; Yang, H.; Wu, Y.Q.; Yang, C.J.; Liu, X.M.; Zhao, Q.W. H.Z.; Liang, J.C., Li, F.Y.; Huang, W. Water-soluble phosphorescent iridium (III) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells. J. Mater. Chem., 2011, 21, 18974-18982.
[http://dx.doi.org/10.1039/c1jm13513a]
[http://dx.doi.org/10.1039/c1jm13513a]
[67]
Liu, X.M.; Xi, N.; Liu, S.J.; Ma, Y.; Yang, H.; Li, H.; He, J.H.; Zhao, Q.; Li, F.Y.; Huang, W. Highly selective phosphorescent nanoprobes for sensing and bioimaging of homocysteine and cysteine. J. Mater. Chem., 2012, 22, 7894-7901.
[http://dx.doi.org/10.1039/c2jm15946e]
[http://dx.doi.org/10.1039/c2jm15946e]
[68]
Yue, Y.; Huo, F.; Zhang, Y.; Chao, J.; Martínez-Máñez, R.; Yin, C. Curcumin-based “enhanced SNAr” promoted ultrafast fluorescent probe for thiophenols detection in aqueous solution and in living cells. Anal. Chem., 2016, 88(21), 10499-10503.
[http://dx.doi.org/10.1021/acs.analchem.6b02520] [PMID: 27690389]
[http://dx.doi.org/10.1021/acs.analchem.6b02520] [PMID: 27690389]
[69]
Park, K.M.; Blatchley, M.R.; Gerecht, S. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction. Macromol. Rapid Commun., 2014, 35(22), 1968-1975.
[http://dx.doi.org/10.1002/marc.201400369] [PMID: 25303104]
[http://dx.doi.org/10.1002/marc.201400369] [PMID: 25303104]
[70]
Bar, M.; Maity, D.; Das, K.; Baitalik, S. Asymmetric bimetallic ruthenium(II) complexes selectively sense cyanide in water through significant modulation of their ground and excited state properties. Sens. Actuator B, 2017, 251, 208-223.
[http://dx.doi.org/10.1016/j.snb.2017.05.025]
[http://dx.doi.org/10.1016/j.snb.2017.05.025]
[71]
Wang, D.; Zheng, J.Q.; Zheng, X.J.; Fang, D.C.; Yuan, D.Q.; Jin, L.P. A fluorescent chemosensor for the sequential detection of copper (II) and histidine and its biological applications. Sens. Actuators B Chem., 2016, 228, 387-394.
[http://dx.doi.org/10.1016/j.snb.2016.01.053]
[http://dx.doi.org/10.1016/j.snb.2016.01.053]
[72]
Zong, L.Y.; Song, Y.C.; Li, Q.Q.; Li, Z.A. “turn-on” fluorescence probe towards copper ions based on core-substitued naphthalene diimide. Sens. Actuators B Chem., 2016, 226, 239-244.
[http://dx.doi.org/10.1016/j.snb.2015.11.089]
[http://dx.doi.org/10.1016/j.snb.2015.11.089]
[73]
Chen, X.F.; Wang, J.Y.; Cui, J.N.; Xu, Z.C.; Peng, X.J. A ratiometric and exclusively selective CuII fluorescent probe based on internal charge transfer (ICT). Tetrahedron, 2011, 67, 4869-4873.
[http://dx.doi.org/10.1016/j.tet.2011.05.001]
[http://dx.doi.org/10.1016/j.tet.2011.05.001]
[74]
Kumar, A.; Vanita, V.; Walia, A.; Kumar, S.N. N-dimethylaminoethylaminoanthrone-A chromofluorogenic chemosensor for estimation of Cu2+ in aqueous medium and HeLa cells imaging. Sens. Actuators B Chem., 2013, 177, 904-912.
[http://dx.doi.org/10.1016/j.snb.2012.11.093]
[http://dx.doi.org/10.1016/j.snb.2012.11.093]
[75]
Ding, S.; Feng, W.Y.; Feng, G.Q. Rapid and highly selective detection of H2S by nitrobenzofurazan (NBD) ether-based fluorescent probes with an aldehyde group. Sens. Actuators B Chem., 2017, 238, 619-625.
[http://dx.doi.org/10.1016/j.snb.2016.07.117]
[http://dx.doi.org/10.1016/j.snb.2016.07.117]
[76]
Qian, Y.; Yang, B.Y.; Shen, Y.N.; Du, Q.R.; Lin, L.; Lin, J.; Zhu, H.L. A BODIPY-coumarin-based selective fluorescent probe for rapidly detecting hydrogen sulfide in blood plasma and living cells. Sens. Actuators B Chem., 2013, 182, 498-503.
[http://dx.doi.org/10.1016/j.snb.2013.03.031]
[http://dx.doi.org/10.1016/j.snb.2013.03.031]
[77]
Hou, X.F.; Guo, X.L.; Luo, Z.Y.; Zhao, H.J.; Chen, B.; Zhao, J.; Wang, J.H. A rhodamine-formaldehyde probe fluorescently discriminates H2S from biothiols. Anal. Methods, 2014, 6, 3223-3226.
[http://dx.doi.org/10.1039/C4AY00090K]
[http://dx.doi.org/10.1039/C4AY00090K]
[78]
Zhang, X.; Lomora, M.; Einfalt, T.; Meier, W.; Klein, N.; Schneider, D.; Palivan, C.G. Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols. Biomaterials, 2016, 89, 79-88.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.042] [PMID: 26950167]
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.042] [PMID: 26950167]
[79]
Kim, J.H.; Kim, H.J.; Kim, S.H.; Lee, J.H.; Do, J.H.; Kim, H.J.; Lee, J.H.; Kim, J.S. Fluorescent coumarinyldithiane as a selective chemodosimeter for mercury(II) ion in aqueous solution. Tetrahedron Lett., 2009, 50, 5958-5961.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.045]
[http://dx.doi.org/10.1016/j.tetlet.2009.08.045]
[80]
Mallya, A.N.; Ramamurthy, P.C. Investigation of selective sensing of a diamine for aldehyde by experimental and simulation studies. Analyst (Lond.), 2014, 139(24), 6456-6466.
[http://dx.doi.org/10.1039/C4AN01387E] [PMID: 25340644]
[http://dx.doi.org/10.1039/C4AN01387E] [PMID: 25340644]
[81]
Lee, K.S.; Kim, T.K.; Lee, J.H.; Kim, H.J.; Hong, J.I. Fluorescence turn-on probe for homocysteine and cysteine in water. Chem. Commun. (Camb.), 2008, (46), 6173-6175.
[http://dx.doi.org/10.1039/b814581d] [PMID: 19082110]
[http://dx.doi.org/10.1039/b814581d] [PMID: 19082110]
[82]
Shen, Y.; Zhang, Y.; Liu, M.; Liu, X.; Guo, H.; Zhang, X.; Zhang, C.; Li, H.; Yao, S. A simple and sensitive electrochemical immunosensor based on thiol aromatic aldehyde as a substrate for the antibody immobilization. Talanta, 2015, 141, 288-292.
[http://dx.doi.org/10.1016/j.talanta.2015.04.004] [PMID: 25966416]
[http://dx.doi.org/10.1016/j.talanta.2015.04.004] [PMID: 25966416]
[83]
Cheng, X.H.; Jia, H.Z.; Feng, J.J.; Qin, J.G. Li, Z. “Reactive” probe for hydrogen sulfite: “turn-on” fluorescent sensing and bioimaging application. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 4110-4114.
[http://dx.doi.org/10.1039/c3tb20159g]
[http://dx.doi.org/10.1039/c3tb20159g]
[84]
Yin, C.X.; Li, X.Q.; Yue, Y.K.; Chao, J.B.; Zhang, Y.B.; Huo, F.J. A new fluorescent material and its application in sulfite and bisulfite bioimaging. Sen. Actuators B, 2017, 246, 615-622.
[http://dx.doi.org/10.1016/j.snb.2017.02.127]
[http://dx.doi.org/10.1016/j.snb.2017.02.127]
[85]
Lv, J.; Wang, F.; Qiang, J.; Ren, X.; Chen, Y.; Zhang, Z.; Wang, Y.; Zhang, W.; Chen, X. Enhanced response speed and selectivity of fluorescein-based H2S probe via the cleavage of nitrobenzene sulfonyl ester assisted by ortho aldehyde groups. Biosens. Bioelectron., 2017, 87, 96-100.
[http://dx.doi.org/10.1016/j.bios.2016.08.018] [PMID: 27522482]
[http://dx.doi.org/10.1016/j.bios.2016.08.018] [PMID: 27522482]
[86]
Zhang, J.; Jiang, X.D.; Shao, X.M.; Zhao, J.L.; Su, Y.J.; Xi, D.M. g Yu, H.F.; Yue, S.; Xiao, L.J.; Zhao,W.L. A turn-on NIR fluorescent probe for the detection of homocysteine over cysteine. RSC Advances, 2014, 4, 54080-54083.
[http://dx.doi.org/10.1039/C4RA08771B]
[http://dx.doi.org/10.1039/C4RA08771B]
[87]
Gao, Y.L.; Zhang, C.; Peng, S.W.; Chen, H.Y. A fluorescent and colorimetric probe enables simultaneous differential detection of Hg2+ and Cu2+ by two different mechanisms. Sens. Actuators B Chem., 2017, 238, 455-461.
[http://dx.doi.org/10.1016/j.snb.2016.07.076]
[http://dx.doi.org/10.1016/j.snb.2016.07.076]
[88]
Feng, Y.; Yang, L.M.; Li, F. A novel sensing platform based on periodate-oxidized chitosan. Anal. Methods, 2010, 2, 2011-2016.
[http://dx.doi.org/10.1039/c0ay00499e]
[http://dx.doi.org/10.1039/c0ay00499e]
[89]
Guler, M.; Turkoglu, V.; Kivrak, A. Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environ. Sci. Pollut. Res. Int., 2016, 23(12), 12343-12351.
[http://dx.doi.org/10.1007/s11356-016-6385-y] [PMID: 26979315]
[http://dx.doi.org/10.1007/s11356-016-6385-y] [PMID: 26979315]
[90]
Sukato, R.; Sangpetch, N.; Palaga, T.; Jantra, S.; Vchirawongkwin, V.; Jongwohan, C.; Sukwattanasinitt, M.; Wacharasindhu, S. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging. J. Hazard. Mater., 2016, 314, 277-285.
[http://dx.doi.org/10.1016/j.jhazmat.2016.04.001] [PMID: 27136733]
[http://dx.doi.org/10.1016/j.jhazmat.2016.04.001] [PMID: 27136733]
[91]
Madhu, S.; Basu, S.K.; Jadhav, S.; Ravikanth, M. 3,5-Diformyl-borondipyrromethene for selective detection of cyanide anion. Analyst (Lond.), 2013, 138(1), 299-306.
[http://dx.doi.org/10.1039/C2AN36407G] [PMID: 23139931]
[http://dx.doi.org/10.1039/C2AN36407G] [PMID: 23139931]
[92]
Bera, M.K.; Chakraborty, C.; Singh, P.K.; Sahu, C.; Sen, K. Maji, S.; Dasc A.K.; Malik,S.; Fluorene-based chemodosimeter for “turn-on” sensing of cyanide by hampering ESIPT and live cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 4733-4739.
[http://dx.doi.org/10.1039/c4tb00388h]
[http://dx.doi.org/10.1039/c4tb00388h]
[93]
Huo, F.J.; Zhang, Y.Q.Y. Y.K.; Chao, J.B.; Zhang, Y.B.; Yin C.X. Isophorone-based aldehyde for “ratiometric” detection of cyanide by hampering ESIPT. Dyes Pigm, 2017, 143, 270-275.
[http://dx.doi.org/10.1016/j.dyepig.2017.04.050]
[http://dx.doi.org/10.1016/j.dyepig.2017.04.050]
[94]
Ma, Y.; Liu, S.J.; Yang, H.; Wu, Y.Q.; Sun, H.B.; Wang, J.X. Zhao, Q.; Li, F.Y.; Huang, W.; A water-soluble phosphorescent polymer for timeresolved assay and bioimaging of cysteine/homocysteine. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 319-329.
[http://dx.doi.org/10.1039/C2TB00259K]
[http://dx.doi.org/10.1039/C2TB00259K]
[95]
Zuo, Q.P.; Li, B.; Pei, Q.; Li, Z.; Liu, S.K. A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells. J. Fluoresc., 2010, 20(6), 1307-1313.
[http://dx.doi.org/10.1007/s10895-010-0673-6] [PMID: 20473559]
[http://dx.doi.org/10.1007/s10895-010-0673-6] [PMID: 20473559]
[96]
Madhu, S.; Basu, S.K.; Jadhav, S.; Ravikanth, M. 3,5-Diformyl-borondipyrromethene for selective detection of cyanide anion. Analyst (Lond.), 2013, 138(1), 299-306.
[http://dx.doi.org/10.1039/C2AN36407G] [PMID: 23139931]
[http://dx.doi.org/10.1039/C2AN36407G] [PMID: 23139931]
[97]
Wang, F.; Wang, L.; Chen, X.; Yoon, J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev., 2014, 43(13), 4312-4324.
[http://dx.doi.org/10.1039/c4cs00008k] [PMID: 24668230]
[http://dx.doi.org/10.1039/c4cs00008k] [PMID: 24668230]
[98]
Das, A.J.; Goswami, S.; Quah, C.K.; Fun, H.K. Neighbouring group participation of thiol through aldehyde group assisted thiolysis of active ether: ratiometric and vapor phase fast detection of hydrogen sulfide in mixed aqueous media. New J. Chem., 2015, 39, 5669-5675.
[http://dx.doi.org/10.1039/C5NJ00689A]
[http://dx.doi.org/10.1039/C5NJ00689A]
[99]
Maity, S.B.; Bharadwaj, P.K. A molecular dual fluorescence-ON probe for Mg2+ and Zn2+: Higher selectivity towards Mg2+ over Zn2+ in a mixture. J. Lumin., 2014, 155, 21-26.
[http://dx.doi.org/10.1016/j.jlumin.2014.06.020]
[http://dx.doi.org/10.1016/j.jlumin.2014.06.020]
[100]
Vo, E.; Murray, D.K.; Scott, T.L.; Attar, A.J. Development of a novel colorimetric indicator pad for detecting aldehydes. Talanta, 2007, 73(1), 87-94.
[http://dx.doi.org/10.1016/j.talanta.2007.03.014] [PMID: 19071854]
[http://dx.doi.org/10.1016/j.talanta.2007.03.014] [PMID: 19071854]
[101]
Jung, H.S.; Chen, X.; Kim, J.S.; Yoon, J. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem. Soc. Rev., 2013, 42(14), 6019-6031.
[http://dx.doi.org/10.1039/c3cs60024f] [PMID: 23689799]
[http://dx.doi.org/10.1039/c3cs60024f] [PMID: 23689799]
[102]
Yin, C.; Huo, F.; Zhang, J.; Martínez-Máñez, R.; Yang, Y.; Lv, H.; Li, S. Thiol-addition reactions and their applications in thiol recognition. Chem. Soc. Rev., 2013, 42(14), 6032-6059.
[http://dx.doi.org/10.1039/c3cs60055f] [PMID: 23703585]
[http://dx.doi.org/10.1039/c3cs60055f] [PMID: 23703585]
[103]
Jang, G.; Kim, J.H.; Kim, D.G.; Lee, T.S. Synthesis of triphenylamine-containing conjugated polyelectrolyte and fabrication of fluorescence color-changeable, paper-based sensor strips for biothiol detection. Polym. Chem., 2015, 6, 714-720.
[http://dx.doi.org/10.1039/C4PY01201A]
[http://dx.doi.org/10.1039/C4PY01201A]
[104]
Zhang, X.; Shen, G.; Shen, Y.; Yin, D.; Zhang, C. Direct immobilization of antibodies on a new polymer film for fabricating an electrochemical impedance immunosensor. Anal. Biochem., 2015, 485, 81-85.
[http://dx.doi.org/10.1016/j.ab.2015.06.007] [PMID: 26072006]
[http://dx.doi.org/10.1016/j.ab.2015.06.007] [PMID: 26072006]
[105]
Son, S.H.; Kim, Y.K.; Heo, M.B.; Lim, Y.T.; Lee, T.S. A fluorescence turn-on probe for the detection of thiol-containing amino acids in aqueous solution and bioimaging in cells. Tetrahedron, 2014, 70, 2034-2039.
[http://dx.doi.org/10.1016/j.tet.2014.01.060]
[http://dx.doi.org/10.1016/j.tet.2014.01.060]