Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Implications of Metal Nanoparticles on Aquatic Fauna: A Review

Author(s): Kamlesh Kumari, Prashant Singh*, Kuldeep Bauddh*, Sweta, Sadhucharan Mallick and Ramesh Chandra

Volume 9, Issue 1, 2019

Page: [30 - 43] Pages: 14

DOI: 10.2174/2210681208666171205101112

Price: $65

Abstract

Introduction: Nanomaterials are attractive because of these exhibits catalytic activity, optical, magnetic, electrically conducting properties and biological activities. Besides the potential economic values, the benefits offered by nanomaterials are expected to have significant impacts on almost all sectors of our society. The industries are releasing the nanoparticles into nearby water bodies like ponds, rivers, which causes toxicity to aquatic flora as well as fauna. Nanoparticles, especially which are prepared using heavy metals being toxic to organisms, ranging from phytoplankton (at the bottom of the food chain) to marine invertebrates such as oysters, snails and different types of fish, especially in their immature stages. Many species of fish and shellfish disrupts the ecosystem health on exposure to metals nanoparticles. Albeit, the academicians and researchers are trying to understand the toxicity of metal nanoparticles, particularly with respect to cascade pathways that lead to inflammatory responses, there is need to prepare and urgent implement laws to manage potential risks of nanomaterials which might become a major catastrophe in coming future.

Conclusion: In the present review, the emphasis has given on the synthesis, characterization and toxic effects of metal nanoparticles on aquatic fauna and also the future tremendous prospects of these toxicants.

Keywords: Aquatic life, ecotoxicity, heavy metals, nanoparticle, contamination, nanomaterials.

Graphical Abstract

[1]
Biswas, P.; Wu, C.Y. Nanoparticles and the environment. J. Air Waste Manag. Assoc., 2005, 55, 708-746.
[2]
Hakim, L.F.; Portman, J.L.; Casper, M.D.; Weimer, A.W. Aggregation behavior of nanoparticles in fluidized beds. Powder Technol., 2005, 160(3), 149-160.
[3]
Wiesner, M.R.; Lowry, G.V.; Alvarez, P.; Dionysiou, D.; Biswas, P. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol., 2006, 40, 4336-4345.
[4]
Barnett, B.P.; Arepally, A.; Karmarkar, P.V.; Qian, D.; Gilson, W.D.; Walczak, P.; Howland, V.; Lawler, L.; Lauzon, C.; Stuber, M.; Kraitchman, D.L.; Bulte, J.W. Magnetic resonance-guided, real-time targeted delivery and imaging of magneto capsules immune protecting pancreatic islet cells. Nat. Med., 2007, 13, 986-991.
[5]
Dong, Y.; Feng, S.S. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (mpeg-pla) nanoparticles for small-molecule drug chemotherapy. Biomaterials, 2007, 28, 4154-4160.
[6]
Sun, H.; Zhang, X.; Zhang, Z.; Chen, Y.; Crittenden, J.C. Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite. Environ. Pollut., 2009, 157, 1165-1170.
[7]
Lens, M. Use of fullerenes in cosmetics. Recent Pat. Biotechnol., 2009, 3, 118-123.
[8]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (sln) and nanostructured lipid carriers (nlc) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54, S131-S155.
[9]
Dhanirama, D.; Gronow, J.; Voulvoulis, N. Cosmetics as a potential source of environmental contamination in the UK. Environ. Technol., 2012, 33(14), 1597-1608.
[10]
Pavasupree, S.; Ngamsinlapasathian, S.; Nakajima, M.; Suzuki, Y.; Yoshikawa, S. Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J. Photochem. Photobiol. A., 2006, 184, 163-169.
[11]
Wei, W.; Quanguo, H.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies nanoscale. Res. Lett., 2008, 3, 397-415.
[12]
Tungittiplakorn, W.; Lion, L.W.; Cohen, C.; Kim, J.Y. Engineered polymeric nanoparticles for soil remediation. Environ. Sci. Technol., 2004, 38, 1605-1610.
[13]
Zhang, W.X. Nanoscale iron particles for environmental remediation: An overview. J. Nanoparticle . Res., 2003, 5, 323-332.
[14]
(a) Singh, R.; Mishra, V.; Singh, R.P. Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles. Environ. Monit. Assess., 2011a, 184, 3684-3691.
(b) Singh, R.; Mishra, V.; Singh, R.P. Removal of Cr(VI) by nano scale Zero-valent iron (nZVI) from soil contaminated with tannery wastes. Bull. Environ. Contamin. Toxicol., 2011b, 88, 210-214.
(c) Singh, R.; Mishra, V.; Singh, R.P. Synthesis, characterization and role of zerovalentiron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J. Nanopart. Res., 2011c, 13, 4063-4073.
[15]
Singh, R.; Misra, V.; Reddy, M.K.; Chauhan, L.K.S.; Singh, R.P. Degradation of γ-HCH spiked soil using stabilized Pd/Fe(0) bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions. J. Hazard. Mat., 2012, 237-238, 355-364.
[16]
Kachynski, A.V.; Kuzmin, A.N.; Nyk, M.; Roy, I.; Prasad, P.N. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J. Phys. Chem. C, 2008, 112, 10721-10724.
[17]
Angel, B.M.; Vallotton, P.; Apte, S.C. On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae. Aquat. Toxicol., 2015, 168, 90-97.
[18]
Bharde, A.A.; Parikh, R.Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B.L.; Shouche, Y.S.; Ogale, S.; Sastry, M. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir, 2008, 24, 5787-5794.
[19]
Kumari, K.; Singh, P.; Ravi, C.S.; Kumar, P.; Mehrotra, G.K.; Mohd, S.; Chandra, R.; Mordhwaj, A. Green approach for the synthesis of thiazolidine-2,4-dione and its analogues using gold NPs as catalyst in water. Int. Conf. Chem. CPHEE, 2011, pp. 329-333.
[20]
(a) Singh, B.K.; Bhojak, N.; Mishra, P.; Garg, B.S. Copper(II) complexes with bioactive carboxyamide: synthesis, characterization and biological activity. Spectrochim. Acta A, 2008, 70, 758-765.
(b) Singh, P.; Kumari, A.; Kumari, R.; Chandra, R. Copper nanoparticles in an ionic liquid: An efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxothiazolyl) methanes. Tetrahedron Lett., 2008, 49, 727-730.
(c) Singh, P.; Kumari, A.; Kumari, R.; Chandra, R. Copper nanoparticles in ionic liquid: An easy and efficient catalyst for the coupling of thiazolidine-2,4-dione, aromatic aldehyde and ammonium acetate. Catal. Commun., 2008, 9, 1618-1623.
[21]
(a) Singh, P.; Kumari, K.; Kumari, A.; Kumari, R.; Chandra, R. Copper nanoparticles in ionic liquid: an easy and efficient catalyst for selective cara-michael addition reaction. Catal. Lett., 2009, 127, 119-125.
(b) Singh, P.; Kumari, K.; Kumari, A.; Kumari, R.; Chandra, R. Cu nanoparticles in ionic liquid: an easy and efficient catalyst for addition–elimination reaction between active methylene compounds and imines in an ionic liquid. Catal. Lett., 2009, 130, 648-654.
(c) Singh, P.; Kumari, K.; Kumari, A.; Kumari, R.; Chandra, R. Synthesis and characterization of silver and gold nanoparticles in ionic liquid. Spectrochim. Acta Part A., 2009, 73, 218-220.
(d) Kamlesh, K.; Prashant, S.; Gopal, M.; Ramesh, C. Metal (Au, Ag & Cu) NPs in ionic liquid: Potential Catalytic system for organic reactions. J. Nanomed. Nanotechnol., 2017, 8(6), 1-11.
(e) Prashant, S. Rajan, P.; Kamlesh, K.; Gopal, M. Au/ Ag NPs decorated PANI for electrochemical and biomedical applications. J. Bioequival Bioavail., 2017, 9, 377-384.
(f) Prashant, S.; Kamlesh, K.; Vijay, V.; Sangeeta, A.; Anita, Y.; Ramesh, C. Contemporary Molecular Research on Insects. In: Nanotechnology and its impact on insects in agriculture in trends in insect molecular biology. 2017, Chapter 18
(g) Prashant, S.; Kamlesh, K.; Vijay, V.; Gopal, M.; Durgesh, K.; Vaishali, S.; Ramesh, C. Green Technologies and Environmental Sustainability. In: Metal NPs (Au, Ag, and Cu): Synthesis, Stabilization, and Their Role in Green Chemistry and Drug Delivery. 2017, Chapter 14
[22]
Moazeni, M.; Rashidi, N.; Shahverdi, A.R.; Noorbakhsh, F.; Rezaie, S. Extracellular production of silver nanoparticles by using three common species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. Iran. Biomed, 2012, 16(1), 52-58.
[23]
Kumar, R.S.; Arunachalam, S. DNA binding and antimicrobial studies of polymer–copper(II) complexes containing 1,10- phenanthroline and L-phenylalanine ligands. Eur. J. Med. Chem, 2009, 44, 1 878-1883.
[24]
Roh, Y.; Vali, H.; Phelps, T.J.; Moon, J.W. Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J. Nanosci. Nanotechnol., 2006, 11, 3517-3520.
[25]
Das, I.; Ansari, S.A. Nanomaterials in Science and Technology. J. Sci. Indus. Res, 2009, 68, 657-667.
[26]
Capek, I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci., 2004, 110, 49-74.
[27]
Frattini, A.; Pellegri, N.; Nicastro, D.; Sanctis, O.D. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys., 2005, 94, 148-152.
[28]
Perelaer, J.; Hendriks, C.E.; de Laat, A.W.M.; Schubert, U.S. One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology, 2009, 20(16), 165303.
[29]
Wu, H.P.; Liu, J.F.; Wu, X.J.; Ge, M.Y.; Wang, Y.W.; Zhang, G.Q.; J.Z, Jiang. High conductivity of isotropic conductive adhesives filled with silver nanowires. Intl. J. Adhes. Adhes., 2006, 26, 617-621.
[30]
Jain, P.K.; Huang, X.H.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008, 41, 1578-1586.
[31]
Luoma, S.N. Silver nanotechnologies and the environment: old problems and new challenges Washington, DC?; Woodraw Wilson International Center for Scholars & the Pew Charitable Trusts, 2008.
[32]
Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem., 1999, 18, 89-108.
[33]
Silver, S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev., 2003, 27, 341-353.
[34]
Silver, S.; Phung, L.T.; Silver, G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds Annual Meeting of the Society-for-Industrial- Microbiology. Chicago, IL,. 2005.
[35]
Banerjee, M.; Mallick, S.; Paul, A.; Chattopadhyay, A.; Ghosh, S.S. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan silver nanoparticle composite. Langmuir, 2010, 26(8), 5901-5908.
[36]
Mallick, S.; Sanpui, P.; Ghosh, S.S.; Chattopadhyay, A.; Paul, A. Synthesis, Characterization and enhanced Bactericidal action of Chitosan supported Core-shell Copper-Silver Nanoparticle Composite. RSC Adv., 2015, 5, 12268-12276.
[37]
United Nations Educational, Scientific, and Cultural Organization. The ethics and politics of nanotechnology. UNESCO; 2006.
[38]
Christina, M.P.; Slotkin, T.A.; Seidler, F.J.; Badireddy, A.R.; Padilla, S. Silver nanoparticles alter zebrafish development and larval behavior: Distinct roles for particle size, coating and composition. Neurotoxicol. Teratol., 2011, 33, 708-714.
[39]
Kamunde, C.; Wood, C.M. Environmental chemistry, physiological homeostasis, toxicology, and environmental regulation of copper, an essential element in freshwater fish. Austr. J. Ecotoxicol., 2004, 10, 1-20.
[40]
Lovern, S.B.; Klaper, R. Daphnia magna mortality when exposed to titaniun dioxided and fullerene (C60) nanoparticles. Environ. Toxicol. Chem., 2006, 25, 1132-1137.
[41]
Griffitt, R.J.; Weil, R.; Hyndman, K.A.; Denslow, N.D.; Powers, K.; Taylor, D.; Barber, D.S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol., 2007, 41, 8178-8186.
[42]
Baun, A.; Hartmann, N.B.; Grieger, K.D.; Hansen, S.F. Setting the limits for engineered nanoparticles in European surface waters - are current approaches appropriate? J. Environ. Monit., 2009, 11, 1774-1781.
[43]
(a) Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 2008a, 17, 372-386.
(b) Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol., 2008b, 42, 8959-8964.
[44]
Handy, R.D.; Owen, R.; Valsami-Jones, E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 2008, 17, 315-325.
[45]
Miao, A.J.; Schwehr, K.A.; Xu, C.; Zhang, S.J.; Luo, Z.; Quigg, A.; Santschi, P.H. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Pollut., 2009, 157, 3034-3041.
[46]
Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int., 2011, 37(2), 517-531.
[47]
Baker, T.J.; Tyler, C.R.; Galloway, T.S. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut., 2014, 186, 257-271.
[48]
Azizi, S.; Mohamad, M.; Abdul Rahim, R.; Moghaddam, A.B.; Moniri, M.; Ariff, A.; Saad, W.Z.; Namvab, F. ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Appl. Surf. Sci., 2016, 384, 517-524.
[49]
Fakhri, A.; Rashidi, S.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Dynamic adsorption behavior and mechanism of Cefotaxime, Cefradine and Cefazolin antibiotics on CdS-MWCNT nanocomposites. J. Mol. Liq., 2016, 215, 269-275.
[50]
Jeannet, N.; Fierz, M.; Schneider, S. Kü nzi, L.; Baumlin, N.; Salathe, M.; Burtscher, H.; Geiser, M. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology, 2016, 10(3), 279-291.
[51]
Jimeno-Romero, A.; Oron, M.; Cajaraville, M.P.; Soto, M.; Marigomez, I. Nanoparticle size and combined toxicity of TiO ́ 2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles. Nanotoxicology, 2016, 10, 1168-1176.
[52]
Daughton, C.G. Non-regulated water contaminants: emerging research. Environ. Impact Assess. Rev., 2004, 24, 711-732.
[53]
Lovern, S.B.; Strickler, J.R.; Klaper, R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C-60, and C(60)HxC(70)Hx). Environ. Sci. Technol., 2007, 41, 4465-4470.
[54]
Ju-Nam, Y.; Lead, J.R. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ., 2008, 400, 396-414.
[55]
Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, M.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem., 2008, 27, 1825-1851.
[56]
Ma, X.; Geiser-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 2010, 408(16), 3053-3061.
[57]
Warheit, D.B.; Hoke, R.; Finlay, C.; Donner, E.M.; Reed, K.L.; Sayes, C.M. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett., 2007, 171, 99-110.
[58]
Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 2005, 113, 823-839.
[59]
Federici, G.; Shaw, B.J.; Handy, R.D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol., 2007, 84, 415-430.
[60]
Smith, C.J.; Shaw, B.J.; Handy, R.D. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol., 2007, 82, 94-109.
[61]
Blaise, C.; Gagné, F.; Férard, J.F.; Eullaffroy, P. Ecotoxicity of selected nanomaterials to aquatic organisms. Environ. Toxicol., 2008, 223, 591-598.
[62]
King-Heiden, T.C.; Wiecinski, P.N.; Mangham, A.N.; Metz, K.M.; Nesbit, D.; Pedersen, J.A.; Hamers, R.J.; Heideman, W.; Peterson, R.E. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol., 2009, 43, 1605-1611.
[63]
Canesi, L.; Fabbri, R.; Gallo, G.; Vallotto, D.; Marcomini, A.; Pojana, G. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO(2), Nano-SiO(2)). Aquat. Toxicol., 2010, 100(2), 168-177.
[64]
Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16), 2078-2079.
[65]
Zhang, X.; Xing, J.Z.; Jie, C.; Ko, L.; Amanie, J.; Gulavita, S.; Pervez, N.; Yee, D.; Moore, R.; Roa, W. Enhanced radiation sensitivity in prostate cancer by gold nanoparticles. Clin. Invest. Med., 2008, 31, 160-167.
[66]
Cardinal, J.; Klune, J.R.; Chory, E.; Jeyabalan, G.; Kanzius, J.S.; Nalesnik, M.; Geller, D.A. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery, 2008, 144, 125-132.
[67]
Zhang, X.; Guo, Q.; Cui, D. Recent advances in nanotechnology applied to biosensors. Sensors., 2009, 9, 1033-1053.
[68]
Cagle, D.W.; Kennel, S.J.; Mirzadeh, S.; Alford, J.M.; Wilson, L.J. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Nat. Acad. Sci. USA, 1999, 96, 5182-5187.
[69]
Chen, X.; Tam, U.C.; Czlapinski, J.L.; Lee, G.S.; Rabuka, D.; Zettl, A.; Bertozzi, C.R. Interfacing Carbon Nanotubes with Living Cells. J. Am. Chem. Soc., 2006, 128, 6292-6293.
[70]
Kim, B.; Levard, C.; Murayama, M.; Brown, G.E.; Hochella, M.F., Jr Integrated approaches of X-Ray absorption spectroscopic and electron microscopic techniques on zinc speciation and characterization in a final sewage sludge product. J. Environ. Qual., 2014, 43, 908-916.
[71]
Li, G.; Nie, X.; Chen, J.; Wong, P.K.; An, T.; Yamashita, H.; Zhao, H. Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity 001 facets TiO2 mounted onto TiO2 nanotubular photoanode. Water Res., 2016, 101, 597-605.
[72]
Wang, Y.; Zhu, X.; Lao, Y.; Lv, X.; Tao, Y.; Huang, B.; Wang, J.; Zhou, J.; Cai, Z. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci. Total Environ., 2016, 565, 818-826.
[73]
Westerhoff, P.; Lee, S.; Yang, Y.; Gordon, G.W.; Hristovski, K.; Halden, R.U.; Herckes, P. Characterization, recovery opportunities, and valuation of metals in municipal sludges from U.S. wastewater treatment plants nationwide. Environ. Sci. Technol., 2015, 49, 9479-9488.
[74]
Yang, S.; Ye, R.; Han, B.; Wei, C.; Yang, X. Ecotoxicological Effect of Nano-silicon Dioxide Particles on Daphnia Magna. Integr. Ferroelectr., 2014, 154, 64-72.
[75]
Yang, Y.; Wang, Y.; Westerhoff, P.; Hristovski, K.; Jin, V.L.; Johnson, M.V.; Arnold, J.G. Metal and nanoparticle occurrence in biosolid-amended soils. Sci. Total Environ., 2014, 485-486, 441-449.
[76]
Bilberg, K.; Malte, H.; Wang, T.; Baatrup, E. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat. Toxicol., 2010, 96(2), 159-165.
[77]
Gogoi, S.K.; Gopinath, P.; Paul, A.; Ramesh, A.; Ghosh, S.S.; Chattopadhyay, A. Green Fluorescent Protein-Expressing Escherichia coli as a Model System for Investigating the Antimicrobial Activities of Silver Nanoparticles. Langmuir, 2006, 22(22), 9322-9328.
[78]
Kapoor, S.; Lawless, D.; Kennepohl, P.; Meisel, D.; Serpone, N. Reduction and aggregation of silver ions in aqueous gelating solutions. Langmuir, 1994, 10, 3018-3022.
[79]
Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces, 1994, 28, 313-318.
[80]
Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V.; Nachane, R.P.; Paralikar, K.M.; Balasubramanya, R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 2007, 61, 1413-1418.
[81]
Ingle, A.; Gade, A.; Pierrat, S.; Sonnichsen, C.; Rai, M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci., 2008, 4, 141-144.
[82]
Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol., 2009, 48, 173-179.
[83]
Purcell, T.W.; Peters, J.J. Sources of silver in the environment. Environ. Toxicol. Chem., 1998, 17, 539-546.
[84]
Janes, N.; Playle, R.C. Modeling silver-binding to gills of rainbow trout (Onchorrynchus mykiss). Environ. Toxicol. Chem., 1995, 14, 1847-1858.
[85]
Wood, C.M.; Hogstrand, C.; Galvez, F.; Munger, R.S. The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of silver thiosulfate. Aquat. Toxicol., 1996, 35, 93-109.
[86]
Zhou, B.; Nichols, J.; Playle, R.C.; Wood, C.M. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharmacol., 2005, 202, 225.
[87]
Boxall, A.B.; Tiede, K.; Chaudhry, Q. Engineered nanomaterials in soils andwater: howdo they behave and could they pose a risk to human health? Nanomedicine, 2007, 2, 919-927.
[88]
Lapresta-Fernández, A.; Fernández, A.; Blasco, J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Anal. Chem., 2012, 32, 40-59.
[89]
Rozan, T.F.; Hunter, K.S.; Benoit, G. Silver in fresh water: sources, transport and fate in Connecticut rivers. In: Proceedings of the 3th Argentum International Conference on the Transport, Fate and Effects of Silver in the Environment, Washington, DC, USA1995, Volume 6 Issue 9,, pp. 181-184.
[90]
Choi, O.; Yu, C.P.; Fernandez, G.E.; Hu, Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res., 2010, 44, 6095-6103.
[91]
Walters, C.R.; Pool, E.J.; Somerset, V.S. Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research. J. Environ. Sci. Health Part A, 2014, 49, 1588-1601.
[92]
Powers, C.M.; Yen, J.; Linney, E.A.; Seidler, F.J.; Slotkin, T.A. Silver exposure in developing zebrafish (Danio rerio): persistent effect on larval behavior and survival. Neurotoxicol. Teratol., 2010, 32, 391-397.
[93]
Asharani, P.V.; Wu, Y.L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in Zebra fish models. Nanotechnology, 2008, 19(25), 255102.
[94]
Johari, A.; Zaidi, N.H.; Bokhari, R.F.; Altaf, A. Effectiveness of teaching operation notes to surgical residents. Saudi Surg. J., 2013, 1(1), 8-12.
[95]
Rao, C.N.R.; Kulkarni, G.U.; Thomasa, P.J.; Edwards, P.P. Metal nanoparticles and their assemblies. Chem. Soc. Rev., 2000, 29, 27-35.
[96]
Christian, P.; Kammer, F.V.; Baalousha, M.; Hofmann, T. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008, 17, 326-343.
[97]
Shah, V.; Belozerova, I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut., 2009, 197, 143-148.
[98]
Chang, W. Manufacture of container for drinks involves adding precious metal nanoparticles and inter medium particles to solution, permeating particles from solution into pores of porous container, and sintering the particles. KUOC, 2008, US2007297931-A1.
[99]
Zhang, J.; Jimin, D.; Buxing, H.; Zhimin, L.; Tao, J.; Zhaofu, Z. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem., 2006, 118(7), 1134-1137.
[100]
Tedescoa, S.; Doyleb, H.; Blascoc, J.; Redmond, G.; Sheehan, D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat. Toxicol., 2010, 100, 178-186.
[101]
Ferry, J.L.; Craig, P.; Hexel, C.; Sisco, P.; Frey, R.; Pennington, P.L. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat. Nanotechnol., 2009, 4, 441-444.
[102]
Farkas, J.; Christian, P.; Urrea, J.A.G.; Roos, N.; Hassellövd, M.; Tollefsen, K.E.; Thomas, K.V. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol., 2010, 96, 44-52.
[103]
Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E.; Furgeson, D.Y. Toxicity assessments of multisized gold and silver nanoparticles in Zebra fish embryos. Small, 2009, 5, 1897-1910.
[104]
Hu, C.W.; Li, M.; Cui, Y.B.; Li, D.S.; Chen, J.; Yang, L.Y. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol. Biochem., 2010, 42, 586-591.
[105]
Seitza, F.; Rosenfeldta, R.R.; Schneidera, S.; Schulza, R.; Bundschuh, M. Size, surface and crystalline structure composition-related effects of titanium dioxide nanoparticles during their aquatic life cycle. Sci. Total Environ., 2014, 493, 891-897.
[106]
Fujishima, A.; Zhang, X.; Tryk, D. Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy, 2007, 32, 2664-2672.
[107]
Fotiadis, C.; Xekoukoulotakis, N.P.; Mantzavinos, D. Photocatalytic treatment of wastewater from cottonseed processing: effect of operating conditions, aerobic biodegradability and ecotoxicity. Catal. Today, 2007, 124, 247-253.
[108]
Raki, Beaudoin. J.; Alizadeh, R.; Makar, J.; Sato, T. Cement and concrete nanoscience and nanotechnology. Materials , 2010, 3, 918-942.
[109]
Bessekhouad, Y.; Robert, D.; Weber, J.V. Preparation of TiO2 nanoparticles by Sol-Gel route. Int. J. Photoenergy, 2003, 3, 153-158.
[110]
García, A.; Espinosa, R.; Delgado, L.; Casals, E.; González, E.; Puntes, V.; Barata, C.; Font, X.; Sánchez, A. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination, 2011, 269, 136-141.
[111]
Jovanovic´, B.; Ji, T.; Palic´, D. Gene expression of zebrafish embryos exposed to titanium dioxide nanoparticles and hydroxylated fullerenes. Ecotoxicol. Environ. Safety., 2011, 74, 1518-1525.
[112]
Moore, M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Intl., 2006, 32, 967-976.
[113]
Scown, T.M.; Santos, E.M.; Johnston, B.D.; Gaiser, B.; Baalousha, M.; Mitov, S.; Lead, J.R.; Stone, V.; Fernandes, T.F.; Jepson, M.; van Aerle, R.; Tyler, C.R. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci., 2010, 115, 521-534.
[114]
Tratnyek, P.G.; Johnson, R.L. Nanotechnologies for environmental cleanup. Nanotechnol. Today, 2006, 1, 44-48.
[115]
Kurniawan, T.A. Sillanp¨A¨A, M.E.T.; Sillanp¨A¨A, M. Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems. Crit. Rev. Environ. Sci. Technol., 42, 1233-1295.
[116]
Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71, 1308-1316.
[117]
Wallis, L.K.; Diamond, S.A.; Mac, H.; Hoffa, D.J.; Al-Abedd, S.R.; Li, S. Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalell azteca: impact of solar UV radiation and material surface coatings on toxicity. Sci. Total Environ., 2014, 499, 356-362.
[118]
Zhu, X.S.; Wang, J.X.; Zhang, X.Z.; Chang, Y.; Chen, Y.S. Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere, 2010, 79, 928-933.
[119]
Wiench, K.; Wohlleben, W.; Hisgen, V.; Radke, K.; Salinas, E.; Zok, S.; Landsiedel, R. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 2009, 76, 1356-1365.
[120]
Bury, N.R.; Wood, C.M. Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. Am. J. Physiol., 1999, 277, R1385-R1391.
[121]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[122]
Chen, J.; Dong, X.; Xin, Y.; Zhao, M. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat. Toxicol., 2011, 101, 493-499.
[123]
Griffitt, R.J.; Hyndman, K.; Denslow, N.D.; Barber, D.S. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci., 2009, 107, 404-415.
[124]
Hao, L.; Wang, Z.; Xing, B. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J. Environ. Sci., 2009, 21, 1459-1466.
[125]
Linhua, H.; Zhenyu, W.; Baoshan, X. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J. Environ. Sci., 2009, 21, 1459-1466.
[126]
Arnold, W.R.; Santore, R.C.; Cotsifas, J.S. Predicting copper toxicity in estuarine and marine waters using the biotic ligand model. Marine . Pollut. Bull., 2005, 50, 1634-1640.
[127]
Zhou, K.; Wang, R.; Xu, B.; Li, Y. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology, 2000, 17, 3939-3943.
[128]
Cox, C. Chromated copper arsenate. J. Pesticide . Reform, 1991, 11, 2-6.
[129]
Gölcü, A.; Dolaz, M.; Dağcı, E.K. Synthesis of binuclear copper (II) complex of the Antihypertensive Drug Pindolol. KSU J. Sci. Eng.,, 1991, 8, 4-9.
[130]
Shakir, M.; Azim, Y.; Chishti, H.T.N.; Parveen, S. Synthesis, characterization of complexes of Co(II), Ni(II), Cu(II) and Zn(II) with 12-membered Schiff base tetraazamacrocyclic ligand and the study of their antimicrobial and reducing power. Spectrochim. Acta A, 2006, 65, 490-496.
[131]
Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J-C.; Barber, D.S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem., 2008, 27, 1972-1978.
[132]
Singh, P.; Kumar, S.; Kumari, A.; Kumar, R.; Chandra, R. A novel route for the synthesis of indium nanoparticles in ionic liquid. Mater. Lett., 2008, 62, 4164-4166.
[133]
Suksrichavalit, T.; Prachayasittikul, S.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities. Eur. J. Med. Chem., 2009, 44, 3259-3265.
[134]
Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplin. Rev, 2010, 2, 544-568.
[135]
Mallick, S.; Sharma, S.; Ghosh, S.S.; Chattopadhyay, A.; Paul, A. Iodine-Stabilized Cu Nanoparticle Chitosan Composite for Antibacterial Applications. ACS Appl. Mater. Interfaces, 2012, 4(3), 1313-1323.
[136]
Chang, Y.C.; Chen, D.H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci., 2005, 283, 446-451.
[137]
Yoon, K.Y.; Hoon, B.J.; Park, J.H.; Hwang, J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 2007, 373, 572-575.
[138]
Karlsson, H.K.; Cronholm, P.; Gustafsson, J.; Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol., 2008, 21(9), 1726-1732.
[139]
Heinlaan, M.; Kahru, A.; Kasemets, K.; Arbeille, B.; Prensier, G.; Dubourguier, H. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res., 2011, 45, 179-190.
[140]
Mortimer, M.; Kasemets, K.; Kahru, A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 2010, 269(2-3), 182-189.
[141]
Baker, G.L.; Gupta, A.; Clark, M.L.; Valenzhuela, B.R.; Staska, L.M.; Harbo, S.J.; Pierce, J.T.; Dill, J.A. Inhalation toxicity and lung toxicokinetics of C60 fullerence nanoparticles and microparticles. Toxicol. Sci., 2008, 1001(1), 122-131.
[142]
Buffet, P.E.; Tankoua, O.F.; Pan, J.F.; Berhanu, D.; Herrenknecht, C.; Poirier, L.; Amiard-Triquet, C.; Amiard, J.C.; Bérard, J.B.; Risso, C.; Guibbolini, M.; Roméo, M.; Reip, P.; Valsami-Jones, E.; Beh, M.C. Avioral and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere, 2011, 84, 166-174.
[143]
Zhao, J.; Wang, Z.; Liu, X.; Xie, X.; Zhang, K.; Xing, B. Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J. Hazard. Mater., 2011, 197, 304-310.
[144]
Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metals ions. Free Rad. Biol. Med., 1995, 2, 321-336.
[145]
Valko, M.; Morris, H.; Cronin, M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem., 2005, 12, 1161-1208.
[146]
(a) Li, J.L.; Wang, L.; Liu, X.Y.; Zhang, Z.P.; Guo, H.C.; Liu, W.M.; Tang, S.H. In vitro cancer cell imaging and therapy using transferring conjugated gold nanoparticles. Cancer Lett., 2009a, 274, 319-326.
(b) Li, H.C.; Zhou, Q.; Wu, Y.; Fu, J.; Wang, T.; Jiang, G. Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. Safety., 2009b, 72, 3684-3692.
[147]
Baker, A.S.J.; Brown, A.S.C.; Edwards, M.A.; Hargreaves, J.S.J.; Kiely, C.J.; Meagher, A.; Pankhurst, Q.A. A structural study of hematite samples prepared from sulfated goethite precursors: The generation of axial mesoporous voids. J. Mater. Chem., 2000, 10, 761-766.
[148]
Butter, K.; Kassapidou, K.; Vroege, G.J.; Philipse, A.P. Preparation and properties of colloidal iron dispersions. J. Colloid Interface Sci., 2005, 287(2), 485-495.
[149]
Mohapatra, M.; Anand, S. Synthesis and applications of nano-structured iron oxides/hydroxides-a review. Intl. J. Engin. Sci. Technol., 2010, 2(8), 127-146.
[150]
Cundy, A.B.; Hopkinson, L.; Whitby, R.L.D. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ., 2008, 400, 42-51.
[151]
Lodhia, J.; Mandarano, G.; Eu, P.; Cowell, S.F. Development and use of iron oxide nanoparticles (Part 1):Synthesis of iron oxide nanoparticles for MRI. Biomed. Imag. Interven. J., 2010, 6(2), 1-11.
[152]
Liu, X.; Qiu, G.; Yan, A.; Wang, Z.; Li, X. Hydrothermal synthesis and characterization of -FeOOH and -Fe2O3 uniform nanocrystallines. J. Alloys Comp., 2007, 433, 216-220.
[153]
Bomatı´-Miguel, O.; Mazeina, L.; Navrotsky, A.; Veintemillas-Verdaguer, S. Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem. Mater., 2008, 20, 591-598.
[154]
Zhu, X.; Tian, S.; Cai, Z. Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Ies. PLoS One, 2012, 7(9), e46286.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy