Abstract
The epidermal growth factor receptor (EGFR) is a membrane-anchored, 170 kDa, protein tyrosine kinase that has been implicated in tumorigenesis. Recent sequence data from the publicly funded Human Genome Project has led to a revision in the structure of the EGFR gene, as well as an improved understanding of its mutations in tumor cells. The exons and introns of the EGFR gene are contained within 168 kilobases of DNA, including a completely sequenced 123-kilobase first intron. The EGFR gene is frequently amplified and rearranged in malignant gliomas with expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common mutant is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of intervening sequences. Some human gliomas express 185 kDa and 190 kDa EGFR tandem duplication mutants with constitutive functional activity. These tumors contain EGFR genes with an in-frame tandem duplication of exons 18 through 25 or exons 18 through 26 respectively. Th e TDM also arise from recombination between flanking introns 17 and either 25 or 26. DM and TDM have been found in the same tumors, suggesting that the mechanisms responsible for both types of mutants may be closely related. Each of the introns involved in tumor-specific recombination contain sequences with homology to the recombination signal sequence (RSS) heptamers present in the V(D)J region of the immunoglobulin and T lymphocyte antigen receptor genes. These observations suggest a possible mechanism for oncogenic EGFR gene recombination in malignant gliomas.
Current Genomics
Title: Structure of the Epidermal Growth Factor Receptor Gene and Intron Recombination in Human Gliomas
Volume: 4 Issue: 1
Author(s): Michael J. Ciesielski and Robert A. Fenstermaker
Affiliation:
Abstract: The epidermal growth factor receptor (EGFR) is a membrane-anchored, 170 kDa, protein tyrosine kinase that has been implicated in tumorigenesis. Recent sequence data from the publicly funded Human Genome Project has led to a revision in the structure of the EGFR gene, as well as an improved understanding of its mutations in tumor cells. The exons and introns of the EGFR gene are contained within 168 kilobases of DNA, including a completely sequenced 123-kilobase first intron. The EGFR gene is frequently amplified and rearranged in malignant gliomas with expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common mutant is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of intervening sequences. Some human gliomas express 185 kDa and 190 kDa EGFR tandem duplication mutants with constitutive functional activity. These tumors contain EGFR genes with an in-frame tandem duplication of exons 18 through 25 or exons 18 through 26 respectively. Th e TDM also arise from recombination between flanking introns 17 and either 25 or 26. DM and TDM have been found in the same tumors, suggesting that the mechanisms responsible for both types of mutants may be closely related. Each of the introns involved in tumor-specific recombination contain sequences with homology to the recombination signal sequence (RSS) heptamers present in the V(D)J region of the immunoglobulin and T lymphocyte antigen receptor genes. These observations suggest a possible mechanism for oncogenic EGFR gene recombination in malignant gliomas.
Export Options
About this article
Cite this article as:
Ciesielski J. Michael and Fenstermaker A. Robert, Structure of the Epidermal Growth Factor Receptor Gene and Intron Recombination in Human Gliomas, Current Genomics 2003; 4 (1) . https://dx.doi.org/10.2174/1389202033350092
DOI https://dx.doi.org/10.2174/1389202033350092 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Synthetic Lethality and PARP-Inhibitors in Oral and Head & Neck Cancer
Current Pharmaceutical Design Therapeutic Application of Natural Medicine Monomers in Cancer Treatment
Current Medicinal Chemistry Exosomes: A Promising Factor Involved in Cancer Hypoxic Microenvironments
Current Medicinal Chemistry Development of Amino Acid-Based Radiopharmaceuticals for Tumor Imaging
Mini-Reviews in Medicinal Chemistry BUB1B Promotes Proliferation of Prostate Cancer via Transcriptional Regulation of MELK
Anti-Cancer Agents in Medicinal Chemistry Coagulation and Cancer Therapy: The Potential of Natural Compounds
Current Genomics Development of Linker-Conjugated Nanosize Lipid Vesicles: A Strategy for Cell Selective Treatment in Breast Cancer
Current Cancer Drug Targets Nanoemulsions for Improved Efficacy of Phytotherapeutics- A Patent Perspective
Recent Patents on Nanotechnology Connexin Genes as Promising Therapeutic Targets in Cancers
Current Pharmacogenomics Colloidal Supramolecular Aggregates for Therapeutic Application in Neuromedicine
Current Medicinal Chemistry The Role of Integrins in Glioma Biology and Anti-Glioma Therapies
Current Pharmaceutical Design AKT-pathway Inhibition in Chronic Lymphocytic Leukemia Reveals Response Relationships Defined by TCL1
Current Cancer Drug Targets The HGF-Met Signaling Axis: Emerging Themes and Targets of Inhibition
Current Protein & Peptide Science The Arrestin Fold: Variations on a Theme
Current Genomics Glycogen Synthase Kinase 3 as an Anticancer Drug Target: Novel Experimental Findings and Trends in the Design of Inhibitors
Current Pharmaceutical Design Dendrimers As Vectors for Genetic Material Delivery to the Nervous System
Current Medicinal Chemistry The Synthesis and Use of Boronated Amino Acids for Boron Neutron Capture Therapy
Anti-Cancer Agents in Medicinal Chemistry Introduction: MMPs, ADAMs/ADAMTSs Research Products to Achieve Big Dream
Anti-Cancer Agents in Medicinal Chemistry Inhibitor at the Gates, Inhibitor in the Chamber: Allosteric and Competitive Inhibitors of the Proteasome as Prospective Drugs
Current Medicinal Chemistry - Immunology, Endocrine & Metabolic Agents Flavonoids as Anticancer Agents: Recent Progress and State of the Art?
Current Organic Chemistry