[1]
Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; Hamadeh, R.R.; Moore, A.; Werdecker, A.; Gessner, B.D.; Te Ao, B.; McMahon, B.; Karimkhani, C.; Yu, C.; Cooke, G.S.; Schwebel, D.C.; Carpenter, D.O.; Pereira, D.M.; Nash, D.; Kazi, D.S.; De Leo, D.; Plass, D.; Ukwaja, K.N.; Thurston, G.D.; Yun, Jin K.; Simard, E.P.; Mills, E.; Park, E.K.; Catalá-López, F.; deVeber, G.; Gotay, C.; Khan, G.; Hosgood, H.D., III; Santos, I.S.; Leasher, J.L.; Singh, J.; Leigh, J.; Jonas, J.B.; Sanabria, J.; Beardsley, J.; Jacobsen, K.H.; Takahashi, K.; Franklin, R.C.; Ronfani, L.; Montico, M.; Naldi, L.; Tonelli, M.; Geleijnse, J.; Petzold, M.; Shrime, M.G.; Younis, M.; Yonemoto, N.; Breitborde, N.; Yip, P.; Pourmalek, F.; Lotufo, P.A.; Esteghamati, A.; Hankey, G.J.; Ali, R.; Lunevicius, R.; Malekzadeh, R.; Dellavalle, R.; Weintraub, R.; Lucas, R.; Hay, R.; Rojas-Rueda, D.; Westerman, R.; Sepanlou, S.G.; Nolte, S.; Patten, S.; Weichenthal, S.; Abera, S.F.; Fereshtehnejad, S.M.; Shiue, I.; Driscoll, T.; Vasankari, T.; Alsharif, U.; Rahimi-Movaghar, V.; Vlassov, V.V.; Marcenes, W.S.; Mekonnen, W.; Melaku, Y.A.; Yano, Y.; Artaman, A.; Campos, I.; MacLachlan, J.; Mueller, U.; Kim, D.; Trillini, M.; Eshrati, B.; Williams, H.C.; Shibuya, K.; Dandona, R.; Murthy, K.; Cowie, B.; Amare, A.T.; Antonio, C.A.; Castañeda-Orjuela, C.; van Gool, C.H.; Violante, F.; Oh, I.H.; Deribe, K.; Soreide, K.; Knibbs, L.; Kereselidze, M.; Green, M.; Cardenas, R.; Roy, N.; Tillmann, T.; Li, Y.; Krueger, H.; Monasta, L.; Dey, S.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Kumar, G.A.; Sreeramareddy, C.T.; Dandona, L.; Wang, H.; Vollset, S.E.; Mokdad, A.; Salomon, J.A.; Lozano, R.; Vos, T.; Forouzanfar, M.; Lopez, A.; Murray, C.; Naghavi, M. The global burden of cancer 2013. JAMA Oncol., 2015, 1(4), 505-527.
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2015.
[4]
Screening, I.U.P.B.C. The benefits and harms of breast cancer screening: an independent review. Lancet, 2012, 380(9855), 1778-1786.
[5]
Loeb, S.; Bjurlin, M.A.; Nicholson, J.; Tammela, T.L.; Penson, D.F.; Carter, H.B.; Carroll, P.; Etzioni, R. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol., 2014, 65(6), 1046-1055.
[6]
Vickers, A.J.; Roobol, M.J.; Lilja, H. Screening for prostate cancer: early detection or overdetection? Annu. Rev. Med., 2012, 63, 161-170.
[7]
Ong, M-S.; Mandl, K.D. National expenditure for false-positive mammograms and breast cancer overdiagnoses estimated at $4 billion a year. Health Aff. (Millwood), 2015, 34(4), 576-583.
[8]
Ong, M-S.; Mandl, K.D. New Guidelines For Breast Cancer Screening. Health Aff. (Millwood), 2016, 35(1), 180-180.
[9]
Bennett, B.D.; Kimball, E.H.; Gao, M.; Osterhout, R.; Van Dien, S.J.; Rabinowitz, J.D. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol., 2009, 5(8), 593-599.
[10]
Amantonico, A.; Urban, P.L.; Zenobi, R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem., 2010, 398(6), 2493-2504.
[11]
Blow, N. Metabolomics: Biochemistry’s new look. Nature, 2008, 455(7213), 697-700.
[12]
Griffin, J.L.; Shockcor, J.P. Metabolic profiles of cancer cells. Nat. Rev. Cancer, 2004, 4(7), 551-561.
[13]
Costello, L.C.; Franklin, R.B. ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol. Cell. Biochem., 2005, 280(1-2), 1-8.
[14]
Glunde, K.; Serkova, N.J. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism, 2006.
[15]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[16]
Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J. Pharm. Biomed. Anal., 2014, 87, 1-11.
[17]
Patel, S.; Ahmed, S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J. Pharm. Biomed. Anal., 2015, 107, 63-74.
[18]
Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal., 2014, 87, 12-25.
[19]
Amann, A. Costello, Bde.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile Organic Compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res., 2014, 8(3), 034001.
[20]
Zhang, T.; Watson, D.G.; Wang, L.; Abbas, M.; Murdoch, L.; Bashford, L.; Ahmad, I.; Lam, N-Y.; Ng, A.C.; Leung, H.Y. Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery. PLoS One, 2013, 8(6), e65880.
[21]
Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst (Lond.), 2012, 137(2), 293-300.
[22]
Boyland, E.; Williams, D. The estimation of tryptophan metabolites in the urine of patients with cancer of the bladder. Biochem. J., 1955, 60, p. 60(Annual General Meeting), v.
[23]
Haverback, B.J.; Sjoerdsma, A.; Terry, L.L. Urinary excretion of the serotonin metabolite, 5-hydroxyindoleacetic acid, in various clinical conditions. N. Engl. J. Med., 1956, 255(6), 270-272.
[24]
Monteiro, M.; Carvalho, M.; Henrique, R.; Jerónimo, C.; Moreira, N.; de Lourdes Bastos, M.; de Pinho, P.G. Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography-mass spectrometry for biomarker discovery: application in a pilot study to discriminate patients with renal cell carcinoma. Eur. J. Cancer, 2014, 50(11), 1993-2002.
[25]
Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z.T.; Poelzer, J.; Huynh, J.; Yallou, F.S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D.S. The human urine metabolome. PLoS One, 2013, 8(9), e73076.
[26]
Emwas, A-H.; Luchinat, C.; Turano, P.; Tenori, L.; Roy, R.; Salek, R.M.; Ryan, D.; Merzaban, J.S.; Kaddurah-Daouk, R.; Zeri, A.C.; Nagana Gowda, G.A.; Raftery, D.; Wang, Y.; Brennan, L.; Wishart, D.S. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics, 2015, 11(4), 872-894.
[27]
Chan, E.C.Y.; Pasikanti, K.K.; Nicholson, J.K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc., 2011, 6(10), 1483-1499.
[28]
Dudley, E.; Tuytten, R.; Lemiere, F.; Esmans, E.E.; Newton, R.P. The bioanalysis of urinary modified nucleosides by mass spectrometry: their study as potential metabolomic biomarkers of cancer development. Collect. Czech. Chem. Commun., 2015, 10, 229-233.
[29]
Contrepois, K.; Jiang, L.; Snyder, M. Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry. Mol. Cell. Proteomics, 2015, 14(6), 1684-1695.
[30]
Beckonert, O.; Keun, H.C.; Ebbels, T.M.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc., 2007, 2(11), 2692-2703.
[31]
Miao, Z.; Jin, M.; Liu, X.; Guo, W.; Jin, X.; Liu, H.; Wang, Y. The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices. Anal. Bioanal. Chem., 2015, 407(12), 3405-3416.
[32]
Vinther, J.M.; Wubshet, S.G.; Staerk, D. NMR-based Metabolomics and Hyphenated NMR Techniques: A Perfect Match in Natural Products Research. Ethnopharmacology, 2015, 2500, 63.
[33]
Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res., 2013, gks1065.
[34]
Ellinger, J.J.; Chylla, R.A.; Ulrich, E.L.; Markley, J.L. Databases and software for NMR-based metabolomics. Curr. Metabolomics, 2013, 1(1)
[35]
Ludwig, C.; Easton, J.M.; Lodi, A.; Tiziani, S.; Manzoor, S.E.; Southam, A.D.; Byrne, J.J.; Bishop, L.M.; He, S.; Arvanitis, T.N. Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics, 2012, 8(1), 8-18.
[36]
Zhang, A.H.; Sun, H.; Qiu, S.; Wang, X.J. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magn. Reson. Chem., 2013, 51(9), 549-556.
[37]
Chan, A.W.; Mercier, P.; Schiller, D.; Bailey, R.; Robbins, S.; Eurich, D.T.; Sawyer, M.B.; Broadhurst, D. 1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br. J. Cancer, 2015.
[38]
Gil, A.M.; de Pinho, P.G.; Monteiro, M.S.; Duarte, I.F. NMR metabolomics of renal cancer: an overview. Bioanalysis, 2015, 7(18), 2361-2374.
[39]
Rodrigues, D.; Jerónimo, C.; Henrique, R.; Belo, L.; de Lourdes Bastos, M.; de Pinho, P.G.; Carvalho, M. Biomarkers in bladder cancer: A metabolomic approach using in vitro and ex vivo model systems. Int. J. Cancer, 2016, 139(2), 256-268.
[40]
Roux, A.; Thévenot, E.A.; Seguin, F.; Olivier, M-F.; Junot, C. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy. Metabolomics, 2015, 11(5), 1095-1105.
[41]
Qi, Y.; Geib, T.; Schorr, P.; Meier, F.; Volmer, D.A. On the isobaric space of 25-hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues. Rapid Commun. Mass Spectrom., 2015, 29(1), 1-9.
[42]
Vogeser, M.; Seger, C. Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory. Clin. Chem., 2010, 56(8), 1234-1244.
[43]
Theodoridis, G.A.; Gika, H.G.; Want, E.J.; Wilson, I.D. Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal. Chim. Acta, 2012, 711, 7-16.
[44]
Vogeser, M.; Kirchhoff, F. Progress in automation of LC-MS in laboratory medicine. Clin. Biochem., 2011, 44(1), 4-13.
[45]
Burton, C.; Shi, H.; Ma, Y. Simultaneous detection of six urinary pteridines and creatinine by high-performance liquid chromatography-tandem mass spectrometry for clinical breast cancer detection. Anal. Chem., 2013, 85(22), 11137-11145.
[46]
Jablonski, K.L.; Klawitter, J.; Chonchol, M.; Bassett, C.J.; Racine, M.L.; Seals, D.R. Effect of dietary sodium restriction on human urinary metabolomic profiles. Clin. J. Am. Soc. Nephrol., 2015, 10(7), 1227-1234.
[47]
Dunn, W.B.; Erban, A.; Weber, R.J.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9(1), 44-66.
[48]
Kaever, A.; Landesfeind, M.; Feussner, K.; Mosblech, A.; Heilmann, I.; Morgenstern, B.; Feussner, I.; Meinicke, P. MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics, 2015, 11(3), 764-777.
[49]
Tautenhahn, R.; Cho, K.; Uritboonthai, W.; Zhu, Z.; Patti, G.J.; Siuzdak, G. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol., 2012, 30(9), 826-828.
[50]
Ernest, B.; Gooding, J.R.; Campagna, S.R.; Saxton, A.M.; Voy, B.H.; Metab, R. MetabR: an R script for linear model analysis of quantitative metabolomic data. BMC Res. Notes, 2012, 5(1), 596.
[51]
Warrack, B.M.; Hnatyshyn, S.; Ott, K-H.; Reily, M.D.; Sanders, M.; Zhang, H.; Drexler, D.M. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(5-6), 547-552.
[52]
Wu, Y.; Li, L. Sample normalization methods in quantitative metabolomics. J. Chromatogr. A, 2016, 1430, 80-95.
[53]
Burton, C.; Shi, H.; Ma, Y. Normalization of urinary pteridines by urine specific gravity for early cancer detection. Clin. Chim. Acta, 2014, 435, 42-47.
[54]
Purohit, P.V.; Rocke, D.M.; Viant, M.R.; Woodruff, D.L. Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS, 2004, 8(2), 118-130.
[55]
van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 2006, 7(1), 142.
[56]
Saccenti, E.; Hoefsloot, H.C.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 2014, 10(3), 361-374.
[57]
Hendriks, M.M.; van Eeuwijk, F.A.; Jellema, R.H.; Westerhuis, J.A.; Reijmers, T.H.; Hoefsloot, H.C.; Smilde, A.K. Data-processing strategies for metabolomics studies. TrAC Trends in Analytical Chemistry, 2011, 30(10), 1685-1698.
[58]
Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.P. Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed. Engl., 2010, 49(32), 5426-5445.
[59]
Antoniewicz, M.R. Methods and advances in metabolic flux analysis: a mini-review. J. Ind. Microbiol. Biotechnol., 2015, 42(3), 317-325.
[60]
Lu, H.; Yu, J.; Wang, J.; Wu, L.; Xiao, H.; Gao, R. Simultaneous quantification of neuroactive dopamine serotonin and kynurenine pathway metabolites in gender-specific youth urine by ultra performance liquid chromatography tandem high resolution mass spectrometry. J. Pharm. Biomed. Anal., 2016, 122, 42-51.
[61]
Moreno, I.; Barroso, M.; Martinho, A.; Cruz, A.; Gallardo, E. Determination of ketamine and its major metabolite, norketamine, in urine and plasma samples using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1004, 67-78.
[62]
Michopoulos, F.; Gika, H.; Palachanis, D.; Theodoridis, G.; Wilson, I.D. Solid phase extraction methodology for UPLC-MS based metabolic profiling of urine samples. Electrophoresis, 2015, 36(18), 2170-2178.
[63]
Peng, J.; Chen, Y-T.; Chen, C-L.; Li, L. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal. Chem., 2014, 86(13), 6540-6547.
[64]
Khamis, M.M.; Adamko, D.J.; El‐Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev., 2015.
[65]
Wallemacq, P. Mass spectrometry in laboratory medicine: When “high-tech” meets routine needs. Clin. Biochem., 2011, 44(1), 2-3.
[66]
Cook, J.A.; Chandramouli, G.V.; Anver, M.R.; Sowers, A.L.; Thetford, A.; Krausz, K.W.; Gonzalez, F.J.; Mitchell, J.B.; Patterson, A.D. Mass spectrometry-based metabolomics identifies longitudinal urinary metabolite profiles predictive of radiation-induced cancer. Cancer Res., 2016, 76(6), 1569-1577.
[67]
Struck-Lewicka, W.; Kordalewska, M.; Bujak, R.; Yumba Mpanga, A.; Markuszewski, M.; Jacyna, J.; Matuszewski, M.; Kaliszan, R.; Markuszewski, M.J. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. J. Pharm. Biomed. Anal., 2015, 111, 351-361.
[68]
Zhang, S.; Raftery, D. Headspace SPME-GC-MS metabolomics
analysis of urinary Volatile Organic Compounds
(VOCs) Mass Spectrometry in Metabolomics: Methods and
Protocols, 2014, 265-272.
[69]
Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C.S.; Ratcliffe, N. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer. PLoS One, 2015, 10(11), e0143283.
[70]
Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile organic compounds as new biomarkers for colorectal cancer: a review. Colorectal Dis., 2016, 18(7), 654-663.
[71]
Aggio, R.B.; Mayor, A.; Coyle, S.; Reade, S.; Khalid, T.; Ratcliffe, N.M.; Probert, C.S. Freeze-drying: an alternative method for the analysis of volatile organic compounds in the headspace of urine samples using solid phase micro-extraction coupled to gas chromatography - mass spectrometry. Chem. Cent. J., 2016, 10(1), 9.
[72]
Abbiss, H.; Rawlinson, C.; Maker, G.L.; Trengove, R. Assessment of automated trimethylsilyl derivatization protocols for GC–MS-based untargeted metabolomic analysis of urine. Metabolomics, 2015, 11(6), 1908-1921.
[73]
Christou, C.; Gika, H.G.; Raikos, N.; Theodoridis, G. GC-MS analysis of organic acids in human urine in clinical settings: a study of derivatization and other analytical parameters. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 964, 195-201.
[74]
Tsikas, D.; Rothmann, S.; Schneider, J.Y.; Suchy, M-T.; Trettin, A.; Modun, D.; Stuke, N.; Maassen, N.; Frölich, J.C. Development, validation and biomedical applications of stable-isotope dilution GC–MS and GC–MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15 (S)-8-iso-prostaglandin F 2α and nitric oxide (NO). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015.
[75]
Kayacelebi, A.A.; Knöfel, A-K.; Beckmann, B.; Hanff, E.; Warnecke, G.; Tsikas, D. Measurement of unlabeled and stable isotope-labeled homoarginine, arginine and their metabolites in biological samples by GC-MS and GC-MS/MS. Amino Acids, 2015, 47(9), 2023-2034.
[76]
Lamani, X.; Horst, S.; Zimmermann, T.; Schmidt, T.C. Determination of aromatic amines in human urine using comprehensive multi-dimensional gas chromatography mass spectrometry (GCxGC-qMS). Anal. Bioanal. Chem., 2015, 407(1), 241-252.
[77]
Zhao, G.; Chen, Y.; Wang, S.; Yu, J.; Wang, X.; Xie, F.; Liu, H.; Xie, J. Simultaneous determination of 11 monohydroxylated PAHs in human urine by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry. Talanta, 2013, 116, 822-826.
[78]
Burton, C.; Shi, H.; Ma, Y. Development of a high-performance liquid chromatography - Tandem mass spectrometry urinary pterinomics workflow. Anal. Chim. Acta, 2016, 927, 72-81.
[79]
Gamagedara, S.; Shi, H.; Ma, Y. Quantitative determination of taurine and related biomarkers in urine by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2012, 402(2), 763-770.
[80]
Burton, C.; Gamagedara, S.; Ma, Y. Partial enzymatic elimination and quantification of sarcosine from alanine using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2013, 405(10), 3153-3158.
[81]
Chen, S.; Burton, C.; Kaczmarek, A.; Shi, H.; Ma, Y. Simultaneous determination of urinary quinolinate, gentisate, 4-hydroxybenzoate, and α-ketoglutarate by high-perfor-mance liquid chromatography-tandem mass spectrometry. Anal. Methods, 2015, 7(16), 6572-6578.
[82]
Zhang, T.; Creek, D.J.; Barrett, M.P.; Blackburn, G.; Watson, D.G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Anal. Chem., 2012, 84(4), 1994-2001.
[83]
Pesek, J.J.; Matyksa, M.T.; Modereger, B.; Hasbun, A.; Phan, V.T.; Mehr, Z.; Guzman, M.; Watanable, S. The separation and analysis of symmetric and asymmetric dimethylarginine and other hydrophilic isobaric compounds using aqueous normal phase chromatography. J. Chromatogr. A, 2016, 1441, 52-59.
[84]
Hellmuth, C.; Koletzko, B.; Peissner, W. Aqueous normal phase chromatography improves quantification and qualification of homocysteine, cysteine and methionine by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(1), 83-89.
[85]
Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal. Bioanal. Chem., 2012, 402(1), 231-247.
[86]
Spagou, K.; Tsoukali, H.; Raikos, N.; Gika, H.; Wilson, I.D.; Theodoridis, G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci., 2010, 33(6-7), 716-727.
[87]
Konieczna, L.; Roszkowska, A.; Niedźwiecki, M.; Bączek, T. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J. Chromatogr. A, 2016, 1431, 111-121.
[88]
Xiong, X.; Liu, Y. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry. Talanta, 2016, 150, 493-502.
[89]
Pluym, N.; Gilch, G.; Scherer, G.; Scherer, M. Analysis of 18 urinary mercapturic acids by two high-throughput multiplex-LC-MS/MS methods. Anal. Bioanal. Chem., 2015, 407(18), 5463-5476.
[90]
Gray, N.; Lewis, M.R.; Plumb, R.S.; Wilson, I.D.; Nicholson, J.K. High-Throughput Microbore UPLC-MS Metabolic Phenotyping of Urine for Large-Scale Epidemiology Studies. J. Proteome Res., 2015, 14(6), 2714-2721.
[91]
R.; Miyoshi, Y.; Sato, Y.; Mita, M.; Konno, R.; Lindner, W.; Hamase, K. Enantioselective Determination of Phenylalanine, tyrosine and 3, 4-dihydroxyphenylalanine in the urine of D-amino acid oxidase deficient mice using two-dimensional high-performance liquid chromatography. Chromatography (Basel), 2016, 37(1), 15-22.
[92]
Stoll, D.R. Recent advances in 2D-LC for bioanalysis. Bioanalysis, 2015, 7(24), 3125-3142.
[93]
Wan, E.C.H.; Yu, J.Z. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. J. Chromatogr. A, 2006, 1107(1-2), 175-181.
[94]
Gaudin, M.; Imbert, L.; Libong, D.; Chaminade, P.; Brunelle, A.; Touboul, D.; Laprévote, O. Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies. J. Am. Soc. Mass Spectrom., 2012, 23(5), 869-879.
[95]
Brouwers, J.F. Liquid chromatographic-mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim. Biophys. Acta, 2011, 1811(11), 763-775.
[96]
Tang, K.; Page, J.S.; Smith, R.D. Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2004, 15(10), 1416-1423.
[97]
Gangl, E.T.; Annan, M.M.; Spooner, N.; Vouros, P. Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal. Chem., 2001, 73(23), 5635-5644.
[98]
Heemskerk, A.A.; Busnel, J-M.; Schoenmaker, B.; Derks, R.J.; Klychnikov, O.; Hensbergen, P.J.; Deelder, A.M.; Mayboroda, O.A. Ultra-low flow electrospray ionization-mass spectrometry for improved ionization efficiency in phosphoproteomics. Anal. Chem., 2012, 84(10), 4552-4559.
[99]
Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev., 2011, 40(1), 387-426.
[100]
Guo, K.; Li, L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal. Chem., 2009, 81(10), 3919-3932.
[101]
Ramautar, R. CE-MS in metabolomics: status quo and the way forward. Bioanalysis, 2016, 8(5), 371-374.
[102]
Ramautar, R.; Somsen, G.W.; de Jong, G.J. CE-MS for metabolomics: developments and applications in the period 2012-2014. Electrophoresis, 2015, 36(1), 212-224.
[103]
Wang, C.; Lee, C.S.; Smith, R.D.; Tang, K. Ultrasensitive sample quantitation via selected reaction monitoring using CITP/CZE-ESI-triple quadrupole MS. Anal. Chem., 2012, 84(23), 10395-10403.
[104]
Knox, J.; Grant, I. Electrochromatography in packed tubes using 1.5 to 50 μm silica gels and ODS bonded silica gels. Chromatographia, 1991, 32(7-8), 317-328.
[105]
Wu, Q.; Yu, X.; Wang, Y.; Gu, X.; Ma, X.; Lv, W.; Chen, Z.; Yan, C. Pressurized CEC coupled with QTOF-MS for urinary metabolomics. Electrophoresis, 2014, 35(17), 2470-2478.
[106]
Chen, Z.; Zhang, L.; Lu, Q.; Ye, Q.; Zhang, L. On-line concentration and pressurized capillary electrochromatography analysis of five β-agonists in human urine using a methacrylate monolithic column. Electrophoresis, 2015, 36(21-22), 2720-2726.
[107]
Hao, L.; Zhong, X.; Greer, T.; Ye, H.; Li, L. Relative quantification of amine-containing metabolites using isobaric N,N-dimethyl leucine (DiLeu) reagents via LC-ESI-MS/MS and CE-ESI-MS/MS. Analyst (Lond.), 2015, 140(2), 467-475.
[108]
Hodáková, J.; Preisler, J.; Foret, F.; Kubáň, P. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection. J. Chromatogr. A, 2015, 1391, 102-108.
[109]
Liang, Q.; Chen, H.; Li, F.; Du, X. Simultaneous Sensitive MEKC–LIF Determination of Homocysteine, Homoarginine, and Six Arginine Metabolic Derivatives in Fluids from Type 2 Diabetics with Peptic Ulcer Bleeding. Chromatographia, 2015, 78(15-16), 1049-1056.
[110]
Gibbons, S.E.; Stayton, I.; Ma, Y. Optimization of urinary pteridine analysis conditions by CE-LIF for clinical use in early cancer detection. Electrophoresis, 2009, 30(20), 3591-3597.
[111]
Mounicou, S.; Szpunar, J.; Lobinski, R. Metallomics: the concept and methodology. Chem. Soc. Rev., 2009, 38(4), 1119-1138.
[112]
Ogra, Y. Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies. Anal. Sci., 2009, 25(10), 1189-1195.
[113]
Suzuki, K.T. Metabolomics of selenium: Se metabolites based on speciation studies. J. Health Sci., 2005, 51(2), 107-114.
[114]
Watanabe, T.; Hirano, S. Metabolism of arsenic and its toxicological relevance. Arch. Toxicol., 2013, 87(6), 969-979.
[115]
Heitland, P.; Köster, H.D. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin. Chim. Acta, 2006, 365(1-2), 310-318.
[116]
Goullé, J-P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Bouige, D.; Lacroix, C. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci. Int., 2005, 153(1), 39-44.
[117]
Burton, C.; Dan, Y.; Donovan, A.; Liu, K.; Shi, H.; Ma, Y.; Bosnak, C.P. Urinary metallomics as a novel biomarker discovery platform: Breast cancer as a case study. Clin. Chim. Acta, 2016, 452, 142-148.
[118]
Wei, X-L.; He, J-R.; Cen, Y-L.; Su, Y.; Chen, L-J.; Lin, Y.; Wu, B-H.; Su, F-X.; Tang, L-Y.; Ren, Z-F. Modified effect of urinary cadmium on breast cancer risk by selenium. Clin. Chim. Acta, 2015, 438, 80-85.
[119]
Mathé, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; Kazandjian, D.G.; Hatzakis, E.; Gonzalez, F.J.; Harris, C.C. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res., 2014, 74(12), 3259-3270.
[120]
Wu, Q.; Wang, Y.; Gu, X.; Zhou, J.; Zhang, H.; Lv, W.; Chen, Z.; Yan, C. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Sep. Sci., 2014, 37(14), 1728-1735.
[121]
Mazzone, P.J.; Wang, X-F.; Lim, S.; Choi, H.; Jett, J.; Vachani, A.; Zhang, Q.; Beukemann, M.; Seeley, M.; Martino, R.; Rhodes, P. Accuracy of volatile urine biomarkers for the detection and characterization of lung cancer. BMC Cancer, 2015, 15(1), 1001.
[122]
Yuan, J-M.; Gao, Y-T.; Wang, R.; Chen, M.; Carmella, S.G.; Hecht, S.S. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis, 2012, 33(4), 804-809.
[123]
Yuan, J-M.; Butler, L.M.; Gao, Y-T.; Murphy, S.E.; Carmella, S.G.; Wang, R.; Nelson, H.H.; Hecht, S.S. Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis, 2014, 35(2), 339-345.
[124]
Yuan, J-M.; Butler, L.M.; Stepanov, I.; Hecht, S.S. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer. Cancer Res., 2014, 74(2), 401-411.
[125]
Silva, C.L.; Passos, M.; Câmara, J.S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers--a powerful strategy for breast cancer diagnosis. Talanta, 2012, 89, 360-368.
[126]
Lee, J.; Woo, H.M.; Kong, G.; Nam, S.J.; Chung, B.C. Discovery of Urinary Biomarkers in Patients with Breast Cancer Based on Metabolomics. Mass Spectrometry Letters, 2013, 4(4), 59-66.
[127]
Burton, C.; Shi, H.; Ma, Y. Daily variation and effect of dietary folate on urinary pteridines. Metabolomics, 2016, 12(5), 1-10.
[128]
Gamagedara, S.; Gibbons, S.; Ma, Y. Investigation of urinary pteridine levels as potential biomarkers for noninvasive diagnosis of cancer. Clin. Chim. Acta, 2011, 412(1-2), 120-128.
[129]
Struck-Lewicka, W.; Kaliszan, R.; Markuszewski, M.J. Analysis of urinary nucleosides as potential cancer markers determined using LC-MS technique. J. Pharm. Biomed. Anal., 2014, 101, 50-57.
[130]
Cho, S-H.; Choi, M.H.; Lee, W-Y.; Chung, B.C. Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal. Clin. Biochem., 2009, 42(6), 540-543.
[131]
Hsu, W-Y.; Lin, W-D.; Tsai, Y.; Lin, C-T.; Wang, H-C.; Jeng, L-B.; Lee, C-C.; Lin, Y-C.; Lai, C-C.; Tsai, F-J. Analysis of urinary nucleosides as potential tumor markers in human breast cancer by high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Clin. Chim. Acta, 2011, 412(19-20), 1861-1866.
[132]
Hsu, W-Y.; Chen, C-J.; Huang, Y-C.; Tsai, F-J.; Jeng, L-B.; Lai, C-C. Urinary nucleosides as biomarkers of breast, colon, lung, and gastric cancer in Taiwanese. PLoS One, 2013, 8(12), e81701.
[133]
Seidel, A.; Seidel, P.; Manuwald, O.; Herbarth, O. Modified nucleosides as biomarkers for early cancer diagnose in exposed populations. Environ. Toxicol., 2015, 30(8), 956-967.
[134]
Woo, H.M.; Kim, K.M.; Choi, M.H.; Jung, B.H.; Lee, J.; Kong, G.; Nam, S.J.; Kim, S.; Bai, S.W.; Chung, B.C. Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin. Chim. Acta, 2009, 400(1-2), 63-69.
[135]
Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; Nyati, M.K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G.S.; Ghosh, D.; Pennathur, S.; Alexander, D.C.; Berger, A.; Shuster, J.R.; Wei, J.T.; Varambally, S.; Beecher, C.; Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231), 910-914.
[136]
Jentzmik, F.; Stephan, C.; Miller, K.; Schrader, M.; Erbersdobler, A.; Kristiansen, G.; Lein, M.; Jung, K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol., 2010, 58(1), 12-18.
[137]
Struys, E.A.; Heijboer, A.C.; van Moorselaar, J.; Jakobs, C.; Blankenstein, M.A. Serum sarcosine is not a marker for prostate cancer. Ann. Clin. Biochem., 2010, 47(Pt 3), 282-282.
[138]
Burton, C.; Gamagedara, S.; Ma, Y. A novel enzymatic technique for determination of sarcosine in urine samples. Anal. Methods, 2012, 4(1), 141-146.
[139]
Cernei, N.; Heger, Z.; Gumulec, J.; Zitka, O.; Masarik, M.; Babula, P.; Eckschlager, T.; Stiborova, M.; Kizek, R.; Adam, V. Sarcosine as a potential prostate cancer biomarker--a review. Int. J. Mol. Sci., 2013, 14(7), 13893-13908.
[140]
Lan, J.; Xu, W.; Wan, Q.; Zhang, X.; Lin, J.; Chen, J.; Chen, J. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal. Chim. Acta, 2014, 825, 63-68.
[141]
Truong, M.; Yang, B.; Jarrard, D.F. Toward the detection of prostate cancer in urine: a critical analysis. J. Urol., 2013, 189(2), 422-429.
[142]
Gamagedara, S.; Kaczmarek, A.T.; Jiang, Y.; Cheng, X.; Rupasinghe, M.; Ma, Y. Validation study of urinary metabolites as potential biomarkers for prostate cancer detection. Bioanalysis, 2012, 4(10), 1175-1183.
[143]
Rosser, C.J.; Urquidi, V.; Goodison, S. Urinary biomarkers of bladder cancer: an update and future perspectives. Biomarkers Med., 2013, 7(5), 779-790.
[144]
Huang, Z.; Lin, L.; Gao, Y.; Chen, Y.; Yan, X.; Xing, J.; Hang, W. Bladder cancer determination via two urinary metabolites: A biomarker pattern approach. Molecular & Cellular Proteomics Proteomics, 2011, 10(10), M111-M007922.
[145]
Jin, X.; Yun, S.J.; Jeong, P.; Kim, I.Y.; Kim, W-J.; Park, S. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget, 2014, 5(6), 1635-1645.
[146]
Shen, C.; Sun, Z.; Chen, D.; Su, X.; Jiang, J.; Li, G.; Lin, B.; Yan, J. Developing urinary metabolomic signatures as early bladder cancer diagnostic markers. OMICS, 2015, 19(1), 1-11.
[147]
Kośliński, P.; Daghir-Wojtkowiak, E.; Szatkowska-Wandas, P.; Markuszewski, M.; Markuszewski, M.J. The metabolic profiles of pterin compounds as potential biomarkers of bladder cancer-Integration of analytical-based approach with biostatistical methodology. J. Pharm. Biomed. Anal., 2016, 127, 256-262.
[148]
Wittmann, B.M.; Stirdivant, S.M.; Mitchell, M.W.; Wulff, J.E.; McDunn, J.E.; Li, Z.; Dennis-Barrie, A.; Neri, B.P.; Milburn, M.V.; Lotan, Y.; Wolfert, R.L. Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLoS One, 2014, 9(12), e115870.
[149]
Pasikanti, K.K.; Esuvaranathan, K.; Hong, Y.; Ho, P.C.; Mahendran, R.; Raman Nee Mani, L.; Chiong, E.; Chan, E.C.Y. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Proteome Res., 2013, 12(9), 3865-3873.
[150]
Alberice, J.V.; Amaral, A.F.; Armitage, E.G.; Lorente, J.A.; Algaba, F.; Carrilho, E.; Márquez, M.; García, A.; Malats, N.; Barbas, C. Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J. Chromatogr. A, 2013, 1318, 163-170.
[151]
Holschneider, C.H.; Berek, J.S. In Seminars in surgical oncology. Wiley Online Library, 2000, 19, 3-10.
[152]
Turkoglu, O.; Zeb, A.; Graham, S.; Szyperski, T.; Szender, J.B.; Odunsi, K.; Bahado-Singh, R. Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics, 2016, 12(4), 1-16.
[153]
Jiang, T.; Lin, Y.; Yin, H.; Wang, S.; Sun, Q.; Zhang, P.; Bi, W. Correlation analysis of urine metabolites and clinical staging in patients with ovarian cancer. Int. J. Clin. Exp. Med., 2015, 8(10), 18165-18171.
[154]
Zhang, T.; Wu, X.; Ke, C.; Yin, M.; Li, Z.; Fan, L.; Zhang, W.; Zhang, H.; Zhao, F.; Zhou, X.; Lou, G.; Li, K. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J. Proteome Res., 2013, 12(1), 505-512.
[155]
Chen, J.; Zhou, L.; Zhang, X.; Lu, X.; Cao, R.; Xu, C.; Xu, G. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer. Electrophoresis, 2012, 33(22), 3361-3369.
[156]
Folin, O. Laws governing the chemical composition of urine, Am. J. Physiol.-. Legacy Content, 1905, 13(1), 66-115.
[157]
Boeniger, M.F.; Lowry, L.K.; Rosenberg, J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am. Ind. Hyg. Assoc. J., 1993, 54(10), 615-627.
[158]
Alessio, L.; Berlin, A.; Dell’Orto, A.; Toffoletto, F.; Ghezzi, I. Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators. Int. Arch. Occup. Environ. Health, 1985, 55(2), 99-106.
[159]
Vestergaard, P.; Leverett, R. Constancy of urinary creatinine excretion. J. Lab. Clin. Med., 1958, 51(2), 211-218.
[160]
Camara, A.A.; Arn, K.D.; Reimer, A.; Newburgh, L.H. The twenty-four hourly endogenous creatinine clearance as a clinical measure of the functional state of the kidneys. J. Lab. Clin. Med., 1951, 37(5), 743-763.
[161]
Davison, J.M.; Noble, M.C. Serial changes in 24 hour creatinine clearance during normal menstrual cycles and the first trimester of pregnancy. Br. J. Obstet. Gynaecol., 1981, 88(1), 10-17.
[162]
Launay-Vacher, V.; Gligorov, J.; Le Tourneau, C.; Janus, N.; Spano, J-P.; Ray-Coquard, I.; Oudard, S.; Pourrat, X.; Morere, J-F.; Deray, G.; Beuzeboc, P. Prevalence of renal insufficiency in breast cancer patients and related pharmacological issues. Breast Cancer Res. Treat., 2010, 124(3), 745-753.
[163]
James, G.D.; Sealey, J.E.; Alderman, M.; Ljungman, S.; Mueller, F.B.; Pecker, M.S.; Laragh, J.H. A longitudinal study of urinary creatinine and creatinine clearance in normal subjects. Race, sex, and age differences. Am. J. Hypertens., 1988, 1(2), 124-131.
[164]
Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ. Health Perspect., 2005, 113(2), 192-200.
[165]
Verhave, J.C.; Fesler, P.; Ribstein, J.; du Cailar, G.; Mimran, A. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am. J. Kidney Dis., 2005, 46(2), 233-241.
[166]
Heymsfield, S.B.; Arteaga, C.; McManus, C.; Smith, J.; Moffitt, S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr., 1983, 37(3), 478-494.
[167]
Lykken, G.I.; Jacob, R.A.; Munoz, J.M.; Sandstead, H.H. A mathematical model of creatine metabolism in normal males--comparison between theory and experiment. Am. J. Clin. Nutr., 1980, 33(12), 2674-2685.
[168]
Ix, J.H.; Wassel, C.L.; Stevens, L.A.; Beck, G.J.; Froissart, M.; Navis, G.; Rodby, R.; Torres, V.E.; Zhang, Y.L.; Greene, T.; Levey, A.S. Equations to estimate creatinine excretion rate: the CKD epidemiology collaboration. Clin. J. Am. Soc. Nephrol., 2011, 6(1), 184-191.
[169]
Walser, M. Creatinine excretion as a measure of protein nutrition in adults of varying age. JPEN J. Parenter. Enteral Nutr., 1987, 11(5)(Suppl.), 73S-78S.
[170]
Jacob, C.C.; Dervilly-Pinel, G.; Biancotto, G.; Le Bizec, B. Evaluation of specific gravity as normalization strategy for cattle urinary metabolome analysis. Metabolomics, 2014, 10(4), 627-637.
[171]
Miller, R.C.; Brindle, E.; Holman, D.J.; Shofer, J.; Klein, N.A.; Soules, M.R.; O’Connor, K.A. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin. Chem., 2004, 50(5), 924-932.
[172]
Joung, J.Y.; Park, S.; Yoon, H.; Kwon, W-A.; Cho, I-C.; Seo, H.K.; Chung, J.; Hwang, S-H.; Lee, C.W.; Lee, K.H. Overestimation of nuclear matrix protein 22 in concentrated urine. Urology, 2013, 82(5), 1059-1064.
[173]
Parikh, C.R.; Gyamlani, G.G.; Carvounis, C.P. Screening for microalbuminuria simplified by urine specific gravity. Am. J. Nephrol., 2002, 22(4), 315-319.
[174]
Voinescu, G.C.; Shoemaker, M.; Moore, H.; Khanna, R.; Nolph, K.D. The relationship between urine osmolality and specific gravity. Am. J. Med. Sci., 2002, 323(1), 39-42.
[175]
Ayoub, J.A.; Beaufrere, H.; Acierno, M.J. Association between urine osmolality and specific gravity in dogs and the effect of commonly measured urine solutes on that association. Am. J. Vet. Res., 2013, 74(12), 1542-1545.
[176]
George, J.W. The usefulness and limitations of hand-held refractometers in veterinary laboratory medicine: an historical and technical review. Vet. Clin. Pathol., 2001, 30(4), 201-210.
[177]
Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J.K.; Lindon, J.C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem., 2006, 78(7), 2262-2267.
[178]
Chen, G.Y.; Liao, H.W.; Tseng, Y.J.; Tsai, I.L.; Kuo, C.H. A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry. Anal. Chim. Acta, 2015, 864, 21-29.
[179]
Chadha, V.; Garg, U.; Alon, U.S. Measurement of urinary concentration: a critical appraisal of methodologies. Pediatr. Nephrol., 2001, 16(4), 374-382.
[180]
Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.; Shah, S.; Greiner, R.; Sykes, B.D.; Marrie, T.J. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem., 2007, 79(18), 6995-7004.
[181]
Giskeødegård, G.F.; Davies, S.K.; Revell, V.L.; Keun, H.; Skene, D.J. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci. Rep., 2015, 5, 14843.
[182]
Kim, K.; Mall, C.; Taylor, S.L.; Hitchcock, S.; Zhang, C.; Wettersten, H.I.; Jones, A.D.; Chapman, A.; Weiss, R.H. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS One, 2014, 9(1), e86223.