Review Article

蛋白质聚集倾向的预测研究进展

卷 26, 期 21, 2019

页: [3911 - 3920] 页: 10

弟呕挨: 10.2174/0929867324666170705121754

价格: $65

摘要

背景:发现蛋白质聚集到富含β-折叠的不溶性组装物中,与越来越多的使人衰弱的人体疾病(例如阿尔茨海默氏病或2型糖尿病)有关,但也与早衰有关。此外,蛋白质聚集代表了基于蛋白质的疗法的生产和销售中的主要瓶颈。因此,开发准确预测某种蛋白质聚集倾向的方法具有很大的价值。 方法/结果:大量的体外和体内聚集研究表明,某些多肽序列的聚集倾向高度依赖于其固有特性,并且在大多数情况下,是由高聚集倾向的特定短区驱动的。这些观察结果促进了旨在从蛋白质序列预测蛋白质聚集倾向的第一代算法的发展。能够在蛋白质结构上绘制蛋白质聚集图的第二代程序正在兴起。在此,我们回顾最具代表性的在线可访问预测工具,重点介绍其主要特色和应用范围。 结论:在这篇综述中,我们描述了代表性的生物计算方法,以评估蛋白质序列和结构的聚集特性,同时说明了它们如何成为非常有用的工具,可用于靶向生物医学和生物技术中的蛋白质聚集。

关键词: 淀粉样蛋白,生物信息学,蛋白质聚集,蛋白质结构,治疗性蛋白质,生物计算方法。

[1]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[2]
Fowler, D.M.; Koulov, A.V.; Balch, W.E.; Kelly, J.W. Functional amyloid--from bacteria to humans. Trends Biochem. Sci., 2007, 32(5), 217-224.
[http://dx.doi.org/10.1016/j.tibs.2007.03.003] [PMID: 17412596]
[3]
Ventura, S.; Villaverde, A. Protein quality in bacterial inclusion bodies. Trends Biotechnol., 2006, 24(4), 179-185.
[http://dx.doi.org/10.1016/j.tibtech.2006.02.007] [PMID: 16503059]
[4]
Rosenberg, A.S. Effects of protein aggregates: An immunologic perspective. AAPS J., 2006, 8(3), E501-E507.
[http://dx.doi.org/10.1208/aapsj080359] [PMID: 17025268]
[5]
Goldschmidt, L.; Teng, P.K.; Riek, R.; Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3487-3492.
[http://dx.doi.org/10.1073/pnas.0915166107] [PMID: 20133726]
[6]
Chiti, F.; Calamai, M.; Taddei, N.; Stefani, M.; Ramponi, G.; Dobson, C.M. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc. Natl. Acad. Sci. USA, 2002, 99(Suppl. 4), 16419-16426.
[http://dx.doi.org/10.1073/pnas.212527999] [PMID: 12374855]
[7]
Ventura, S.; Zurdo, J.; Narayanan, S.; Parreño, M.; Mangues, R.; Reif, B.; Chiti, F.; Giannoni, E.; Dobson, C.M.; Aviles, F.X.; Serrano, L. Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proc. Natl. Acad. Sci. USA, 2004, 101(19), 7258-7263.
[http://dx.doi.org/10.1073/pnas.0308249101] [PMID: 15123800]
[8]
Teng, P.K.; Eisenberg, D. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng. Des. Sel., 2009, 22(8), 531-536.
[http://dx.doi.org/10.1093/protein/gzp037] [PMID: 19602569]
[9]
Sabaté, R.; Espargaró, A.; de Groot, N.S.; Valle-Delgado, J.J.; Fernàndez-Busquets, X.; Ventura, S. The role of protein sequence and amino acid composition in amyloid formation: Scrambling and backward reading of IAPP amyloid fibrils. J. Mol. Biol., 2010, 404(2), 337-352.
[http://dx.doi.org/10.1016/j.jmb.2010.09.052] [PMID: 20887731]
[10]
Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C.M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 2003, 424(6950), 805-808.
[http://dx.doi.org/10.1038/nature01891] [PMID: 12917692]
[11]
DuBay, K.F.; Pawar, A.P.; Chiti, F.; Zurdo, J.; Dobson, C.M.; Vendruscolo, M. Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol., 2004, 341(5), 1317-1326.
[http://dx.doi.org/10.1016/j.jmb.2004.06.043] [PMID: 15302561]
[12]
Pawar, A.P.; Dubay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol., 2005, 350(2), 379-392.
[http://dx.doi.org/10.1016/j.jmb.2005.04.016] [PMID: 15925383]
[13]
Tartaglia, G.G.; Vendruscolo, M. The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev., 2008, 37(7), 1395-1401.
[http://dx.doi.org/10.1039/b706784b] [PMID: 18568165]
[14]
Tartaglia, G.G.; Pawar, A.P.; Campioni, S.; Dobson, C.M.; Chiti, F.; Vendruscolo, M. Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol., 2008, 380(2), 425-436.
[http://dx.doi.org/10.1016/j.jmb.2008.05.013] [PMID: 18514226]
[15]
Tartaglia, G.G.; Cavalli, A.; Vendruscolo, M. Prediction of local structural stabilities of proteins from their amino acid sequences. Structure, 2007, 15(2), 139-143.
[http://dx.doi.org/10.1016/j.str.2006.12.007] [PMID: 17292832]
[16]
Guerois, R.; Nielsen, J.E.; Serrano, L. Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J. Mol. Biol., 2002, 320(2), 369-387.
[http://dx.doi.org/10.1016/S0022-2836(02)00442-4] [PMID: 12079393]
[17]
Sánchez de Groot, N.; Pallarés, I.; Avilés, F.X.; Vendrell, J.; Ventura, S. Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct. Biol., 2005, 5, 18.
[http://dx.doi.org/10.1186/1472-6807-5-18] [PMID: 16197548]
[18]
de Groot, N.S.; Aviles, F.X.; Vendrell, J.; Ventura, S. Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J., 2006, 273(3), 658-668.
[http://dx.doi.org/10.1111/j.1742-4658.2005.05102.x] [PMID: 16420488]
[19]
Conchillo-Solé, O.; de Groot, N.S.; Avilés, F.X.; Vendrell, J.; Daura, X.; Ventura, S. AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 2007, 8, 65.
[http://dx.doi.org/10.1186/1471-2105-8-65] [PMID: 17324296]
[20]
Zambrano, R.; Jamroz, M.; Szczasiuk, A.; Pujols, J.; Kmiecik, S.; Ventura, S. AGGRESCAN3D (A3D): Server for prediction of aggregation properties of protein structures. Nucleic Acids Res., 2015, 43(W1)W306-13
[http://dx.doi.org/10.1093/nar/gkv359] [PMID: 25883144]
[21]
Chou, P.Y.; Fasman, G.D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry, 1974, 13(2), 211-222.
[http://dx.doi.org/10.1021/bi00699a001] [PMID: 4358939]
[22]
Zibaee, S.; Makin, O.S.; Goedert, M.; Serpell, L.C. A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci., 2007, 16(5), 906-918.
[http://dx.doi.org/10.1110/ps.062624507] [PMID: 17456743]
[23]
Garbuzynskiy, S.O.; Lobanov, M.Y.; Galzitskaya, O.V. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics, 2010, 26(3), 326-332.
[http://dx.doi.org/10.1093/bioinformatics/btp691] [PMID: 20019059]
[24]
Galzitskaya, O.V.; Garbuzynskiy, S.O.; Lobanov, M.Y. Prediction of amyloidogenic and disordered regions in protein chains. PLOS Comput. Biol., 2006, 2(12)e177
[http://dx.doi.org/10.1371/journal.pcbi.0020177] [PMID: 17196033]
[25]
Balbirnie, M.; Grothe, R.; Eisenberg, D.S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2375-2380.
[http://dx.doi.org/10.1073/pnas.041617698] [PMID: 11226247]
[26]
Saunders, H.M.; Bottomley, S.P. Multi-domain misfolding: Understanding the aggregation pathway of polyglutamine proteins. Protein Eng. Des. Sel., 2009, 22(8), 447-451.
[http://dx.doi.org/10.1093/protein/gzp033] [PMID: 19589877]
[27]
Trovato, A.; Seno, F.; Tosatto, S.C. The PASTA server for protein aggregation prediction. Protein Eng. Des. Sel., 2007, 20(10), 521-523.
[http://dx.doi.org/10.1093/protein/gzm042] [PMID: 17720750]
[28]
Walsh, I.; Seno, F.; Tosatto, S. C.; Trovato, A. PASTA 2.0: An improved server for protein aggregation prediction Nucleic Acids Res, 2014, 42(Web Server issue), W301-7.
[29]
Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.O.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, 435(7043), 773-778.
[http://dx.doi.org/10.1038/nature03680] [PMID: 15944695]
[30]
Nelson, R.; Eisenberg, D. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol., 2006, 16(2), 260-265.
[http://dx.doi.org/10.1016/j.sbi.2006.03.007] [PMID: 16563741]
[31]
Thompson, M.J.; Sievers, S.A.; Karanicolas, J.; Ivanova, M.I.; Baker, D.; Eisenberg, D. The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4074-4078.
[http://dx.doi.org/10.1073/pnas.0511295103] [PMID: 16537487]
[32]
Kuhlman, B.; Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA, 2000, 97(19), 10383-10388.
[http://dx.doi.org/10.1073/pnas.97.19.10383] [PMID: 10984534]
[33]
Rousseau, F.; Schymkowitz, J.; Serrano, L. Protein aggregation and amyloidosis: Confusion of the kinds? Curr. Opin. Struct. Biol., 2006, 16(1), 118-126.
[http://dx.doi.org/10.1016/j.sbi.2006.01.011] [PMID: 16434184]
[34]
States, A.; Wang, L.; Schubert, D.; Sawaya, M. R.; Eisenberg, D.; Riek, R. Multidimensional Structure – Activity Relationship of a Protein in Its;, 2010, 49, 3904-3908.
[35]
Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; Lopez de la Paz, M.; Martins, I.C.; Reumers, J.; Morris, K.L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J.W.; Rousseau, F. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods, 2010, 7(3), 237-242.
[http://dx.doi.org/10.1038/nmeth.1432] [PMID: 20154676]
[36]
Esteras-Chopo, A.; Serrano, L.; López de la Paz, M. The amyloid stretch hypothesis: Recruiting proteins toward the dark side. Proc. Natl. Acad. Sci. USA, 2005, 102(46), 16672-16677.
[http://dx.doi.org/10.1073/pnas.0505905102] [PMID: 16263932]
[37]
Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol., 2004, 22(10), 1302-1306.
[http://dx.doi.org/10.1038/nbt1012] [PMID: 15361882]
[38]
Sabate, R.; Rousseau, F.; Schymkowitz, J.; Ventura, S. What makes a protein sequence a prion? PLOS Comput. Biol., 2015, 11(1)e1004013
[http://dx.doi.org/10.1371/journal.pcbi.1004013] [PMID: 25569335]
[39]
Tsolis, A.C.; Papandreou, N.C.; Iconomidou, V.A.; Hamodrakas, S.J. A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One, 2013, 8(1)e54175
[http://dx.doi.org/10.1371/journal.pone.0054175] [PMID: 23326595]
[40]
Frousios, K.K.; Iconomidou, V.A.; Karletidi, C.M.; Hamodrakas, S.J. Amyloidogenic determinants are usually not buried. BMC Struct. Biol., 2009, 9, 44.
[http://dx.doi.org/10.1186/1472-6807-9-44] [PMID: 19589171]
[41]
Emily, M.; Talvas, A.; Delamarche, C. MetAmyl: A METa-predictor for AMYLoid proteins. PLoS One, 2013, 8(11)e79722
[http://dx.doi.org/10.1371/journal.pone.0079722] [PMID: 24260292]
[42]
Chennamsetty, N.; Voynov, V.; Kayser, V.; Helk, B.; Trout, B.L. Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 11937-11942.
[http://dx.doi.org/10.1073/pnas.0904191106] [PMID: 19571001]
[43]
Black, S.D.; Mould, D.R. Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal. Biochem., 1991, 193(1), 72-82.
[http://dx.doi.org/10.1016/0003-2697(91)90045-U] [PMID: 2042744]
[44]
Tiwari, M.K.; Kepp, K.P. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants. J. Alzheimers Dis., 2015, 47(1), 215-229.
[http://dx.doi.org/10.3233/JAD-150046] [PMID: 26402770]
[45]
Sormanni, P.; Aprile, F.A.; Vendruscolo, M. The CamSol method of rational design of protein mutants with enhanced solubility. J. Mol. Biol., 2015, 427(2), 478-490.
[http://dx.doi.org/10.1016/j.jmb.2014.09.026] [PMID: 25451785]
[46]
De Baets, G.; Van Durme, J.; van der Kant, R.; Schymkowitz, J.; Rousseau, F. Solubis: Optimize your protein. Bioinformatics, 2015, 31(15), 2580-2582.
[http://dx.doi.org/10.1093/bioinformatics/btv162] [PMID: 25792555]
[47]
Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids Res,, 2005, 33(Web Server issue), W382-388.
[http://dx.doi.org/10.1093/nar/gki387]
[48]
Van Durme, J.; De Baets, G.; Van Der Kant, R.; Ramakers, M.; Ganesan, A.; Wilkinson, H.; Gallardo, R.; Rousseau, F.; Schymkowitz, J. Solubis: A webserver to reduce protein aggregation through mutation. Protein Eng. Des. Sel., 2016, 29(8), 285-289.
[http://dx.doi.org/10.1093/protein/gzw019] [PMID: 27284085]
[49]
Jamroz, M.; Kolinski, A.; Kmiecik, S. CABS-flex: Server for fast simulation of protein structure fluctuations. Nucleic Acids Res., 2013, 41(Web Server issue), W427-431.
[http://dx.doi.org/10.1093/nar/gkt332] [PMID: 23658222]
[50]
Chen, Y.; Dokholyan, N.V. Natural selection against protein aggregation on self-interacting and essential proteins in yeast, fly, and worm. Mol. Biol. Evol., 2008, 25(8), 1530-1533.
[http://dx.doi.org/10.1093/molbev/msn122] [PMID: 18503047]
[51]
Tartaglia, G.G.; Vendruscolo, M. Proteome-level interplay between folding and aggregation propensities of proteins. J. Mol. Biol., 2010, 402(5), 919-928.
[http://dx.doi.org/10.1016/j.jmb.2010.08.013] [PMID: 20709078]
[52]
Ciryam, P.; Tartaglia, G.G.; Morimoto, R.I.; Dobson, C.M.; Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep., 2013, 5(3), 781-790.
[http://dx.doi.org/10.1016/j.celrep.2013.09.043] [PMID: 24183671]
[53]
Walther, D.M.; Kasturi, P.; Zheng, M.; Pinkert, S.; Vecchi, G.; Ciryam, P.; Morimoto, R.I.; Dobson, C.M.; Vendruscolo, M.; Mann, M.; Hartl, F.U. Widespread Proteome Remodeling and Aggregation in Aging C. elegans. Cell, 2015, 161(4), 919-932.
[http://dx.doi.org/10.1016/j.cell.2015.03.032] [PMID: 25957690]
[54]
Castillo, V.; Ventura, S. Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLOS Comput. Biol., 2009, 5(8)e1000476
[http://dx.doi.org/10.1371/journal.pcbi.1000476] [PMID: 19696882]
[55]
Agrawal, N.J.; Kumar, S.; Wang, X.; Helk, B.; Singh, S.K.; Trout, B.L. Aggregation in protein-based biotherapeutics: Computational studies and tools to identify aggregation-prone regions. J. Pharm. Sci., 2011, 100(12), 5081-5095.
[http://dx.doi.org/10.1002/jps.22705] [PMID: 21789769]
[56]
Carter, P.J. Potent antibody therapeutics by design. Nat. Rev. Immunol., 2006, 6(5), 343-357.
[http://dx.doi.org/10.1038/nri1837] [PMID: 16622479]
[57]
Kumar, S.; Thangakani, A.M.; Nagarajan, R.; Singh, S.K.; Velmurugan, D.; Gromiha, M.M. Autoimmune responses to soluble aggregates of amyloidogenic proteins involved in neurodegenerative diseases: Overlapping aggregation prone and autoimmunogenic regions. Sci. Rep., 2016, 6, 22258.
[http://dx.doi.org/10.1038/srep22258] [PMID: 26924748]
[58]
Cendron, L.; Trovato, A.; Seno, F.; Folli, C.; Alfieri, B.; Zanotti, G.; Berni, R. Amyloidogenic potential of transthyretin variants: Insights from structural and computational analyses. J. Biol. Chem., 2009, 284(38), 25832-25841.
[http://dx.doi.org/10.1074/jbc.M109.017657] [PMID: 19602727]
[59]
Bickle, L.; Hopwood, J.J.; Karageorgos, L. Analysis of sheep α-synuclein provides a molecular strategy for the reduction of fibrillation. Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(3), 261-273.
[http://dx.doi.org/10.1016/j.bbapap.2016.12.008] [PMID: 28007442]
[60]
McCorvie, T.J.; Kopec, J.; Pey, A.L.; Fitzpatrick, F.; Patel, D.; Chalk, R.; Shrestha, L.; Yue, W.W. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase. Hum. Mol. Genet., 2016, 25(11), 2234-2244.
[http://dx.doi.org/10.1093/hmg/ddw091] [PMID: 27005423]
[61]
Cheruvara, H.; Allen-Baume, V.L.; Kad, N.M.; Mason, J.M. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation. J. Biol. Chem., 2015, 290(12), 7426-7435.
[http://dx.doi.org/10.1074/jbc.M114.620484] [PMID: 25616660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy