[1]
Volkow ND, Baler RD, Goldstein RZ. Addiction: Pulling at the neural threads of social behaviors. Neuron 2011; 69(4): 599-602.
[2]
Carroll KM. cognitive behavioral approach: Treating cocaine
addiction. National institute on drug abuse; Rockville, MD: 1998. 1998.
[3]
Dutra L, Stathopoulou G, Basden SL, et al. A meta-analytic review of psychosocial interventions for substance use disorders. Am J Psychiatry 2008; 165: 179-87.
[4]
Kopetz CE, Lejuez CW, Wiers RW, Kruglanski AW. Motivatin and self-regulation in addiction: A call for convergence. Perspect Psychol Sci 2013; 8(1): 3-24.
[5]
Olds J, Milner P. Positive reinforcement produced by electrical stimulation of the septal area and other regions of rat brain. J Comp Physiol Psychol 1954; 47: 419-27.
[6]
Olds J. Pleasure centers in the brain. Sci Am 1956; 195: 105-16.
[7]
Smith KS, Mahler SV, Pecina S, Berridge KC. Hedonic hotspots:
Generating sensory pleasure in the brain. In: Kringelbach ML, Berridge
KC, editors. Pleasures of the Brain. Oxford University Press;
New York, New York, USA, 2010. pp. 27-49.
[8]
Dreyer JL. New insights into the roles of microRNAs in drug addiction and neuroplasticity. Genome Med 2010; 2(12): 92.
[9]
Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007; 30: 289-316.
[10]
Wise RA. Brain reward circuitry: insights from unsensed incentives. Neuron 2002; 36: 229-40.
[11]
Kumar J, Hapidin H, Bee YTG, Ismail Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behav Brain Funct 2013; 9: 43.
[12]
Kumar J, Hapidin H, Bee YTG, Ismail Z. Effects of acute ethanol administration on ethanol withdrawal induced anxiety-like syndrome in rats: A Biochemical Study. Alcohol 2016; 50: 9-17.
[13]
Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012; 4(6): a005710.
[14]
Hebb DO. The organization of behavior. Wiley: New York 1949.
[15]
Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232(2): 331-56.
[16]
Lomo T. Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol Scand 1966; 68(277): 128.
[17]
Marr D. A theory of cerebellar cortex. J Physiol 1969; 202: 437-70.
[18]
Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 1982; 33(3): 253-8.
[19]
Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982; 324: 113-34.
[20]
Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain 2006; 129(7): 1659-73.
[21]
Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci 2007; 30(4): 176-84.
[22]
Calabresi P, Lacey MG, North RA. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol 1989; 98(1): 135-40.
[23]
Mansvelder HD, Keath JR, Mcgehee DS. Synaptic mechanisms underlie nicotine- induced excitability of brain reward areas. Neuron 2002; 33: 905-19.
[24]
Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE. Synaptic plasticity in the lateral amygdale: a cellular hypothesis of fear conditioning. Learn Mem 2001; 8: 229-42.
[25]
Maren S, Holt W. The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 2000; 110(1-2): 97-108.
[26]
Fuchs RA, See RE. Basolateral amygdala inactivation abolishes conditioned stimulus- and heroin-induced reinstatement of extinguished heroin-seeking behavior in rats. Psychopharmacology (Berl) 2002; 160: 425-33.
[27]
Childress AR, Ehrman RN, Wang Z, et al. Prelude to passion: Limbic activation by unseen drug and sexual cues. PLoS One 2008; 3: e1506.
[28]
Bonson KR, Grant SJ, Contoreggi CS, et al. Neural systems and cue induced cocaine craving. Neuropsychopharmacology 2002; 26: 376-86.
[29]
Caine SB, Humby T, Robbins TW, et al. Behavioral effects of psychomotor stimulants in rats with dorsal or ventralsubiculum lesions: Locomotion, cocaine selfadministration, and prepulse inhibition of startle. Behav Neurosci 2001; 115: 880-94.
[30]
Burns LH, Robbins TW, Everitt BJ, et al. Differential effects of excitotoxic lesions of the basolateral amygdala, ventralsubiculumandmedial prefrontal cortex on responding with conditioned reinforcement and locomotoractivity potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain Res 1993; 55: 167-83.
[31]
Müller P, Pohlmann A. Experimentelle beiträge zur lehre vom gedächtnis 1906.
[32]
Wm H. Burnham retroactive amnesia: Illustrative cases and a tentative explanation. Am J Psychol 1903; 14(3/4): 118-32.
[33]
Lechner H, Squire L, Byrne J. 100 years of consolidation--remembering Müller and Pilzecker. Learn Mem 1999; 6(2): 77-87.
[34]
Bartlett F. Sir Frederic Charles Bartlett, Bartlett, FC Remembering. Cambridge University Press 1995.
[35]
McGaugh J. Time-dependent processes in memory storage. Science 1966; 153(3742): 1351-8.
[36]
McGaugh J. Memory--a century of consolidation. Science 2000; 287(5451): 248-51.
[37]
Rogan M, Stäubli U, LeDoux J. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 1997; 390(6660): 604-7.
[38]
Nader K, Schafe G, Le D. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 2000; 406(6797): 722-6.
[39]
Dudai Y, Eisenberg M. Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis. Neuron 2004; 44(1): 93-100.
[40]
Cohen R, Blomberg F, Berzins K, Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 1977; 74(1): 181-203.
[41]
Matus A, Ackermann M, Pehling G, Byers H, Fujiwara K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 1982; 79(23): 7590-4.
[42]
Lattal K, Abel T. Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J Neurosci 2001; 21(15): 5773-80.
[43]
Antonova I, Arancio O, Trillat A, et al. Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science 2001; 294(5546): 1547-50.
[44]
Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J. Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 2004; 24(8): 1962-6.
[45]
Rochlin M, Itoh K, Adelstein R, Bridgman P. Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 1995; 3661-70.
[46]
Lin C, Espreafico E, Mooseker M, Forscher P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 1996; 16(4): 769-82.
[47]
Espreafico E, Cheney R, Matteoli M, et al. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol 1992; 119(6): 1541-57.
[48]
Rex C, Gavin C, Rubio M, et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 2010; 67(4): 603-17.
[49]
Rehberg K, Bergado-Acosta J, Koch J, Stork O. Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiol Learn Mem 2010; 94(2): 117-26.
[50]
Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778-90.
[51]
Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB. Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 2000; 275: 18366-74.
[52]
Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 2007; 29(4): 356-70.
[53]
Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2007; 24(1): 203-16.
[54]
Zhou Q, Homma KJ, Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 2004; 44: 749-57.
[55]
Gavin C, Rubio M, Young E, Miller C, Rumbaugh G. Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learn Mem 2011; 19(1): 9-14.
[56]
Young EJ, Aceti M, Griggs EM, et al. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol Psychiatry 2014; 75(2): 96-104.
[57]
Young E, Blouin A, Briggs S, et al. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use. Mol Psychiatry 2016; 21(5): 615-23.
[58]
Tran-Nguyen LT, Fuchs RA, Coffey GP, Baker DA, O’Dell LE, Neisewander JL. Time dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 1998; 19: 48-59.
[59]
West EA, Saddoris MP, Kerfoot EC, Carelli RM. Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur J Neurosci 2014; 39: 1891-902.
[60]
Wikler A. Dynamics of drug dependence, implication of a conditioningtheory for research and treatment. Arch Gen Psychiatry 1973; 28: 611-6.
[61]
O’Brien CP, Ehrman RN, Ternes JW. Classical conditioning in human opioid dependence.In: Behavioral analysis of drug dependence(Goldberg S, Stolerman I, eds). Orlando: Academic 1986; pp. pp. 329-356.
[62]
Hernandez AI, Blace N, Crary JF, et al. Protein kinase M zeta synthesisfrom a brain mRNA encoding an independent protein kinase C zeta catalyticdomain. Implications for the molecular mechanism of memory. J Biol Chem 2003; 278: 40305-16.
[63]
Sacktor TC, Osten P, Valsamis H, et al. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci USA 1993; 90: 8342-6.
[64]
Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC. Storage of spatial information by the maintenance mechanism of LTP. Science 2006; 313: 1141-4.
[65]
Serrano P, Friedman EL, Kenney J, et al. PKMzeta maintains spatial, instrumental, and classicallyconditioned long-term memories. PLoS Biol 2008; 6: 2698-706.
[66]
Li YQ, Xue YX, He YY, et al. Inhibition of PKMζ in Nucleus Accumbens Core Abolishes Long-Term Drug Reward Memory. J Neurosci 2011; 31(14): 5436-46.
[67]
Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009; 61: 340-50.
[68]
Frey U, Krug M, Reymann KG, Matthies H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 1988; 452: 57-65.
[69]
Zhu Ping J, Huang W, Kalikulov D, et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-g-mediated disinhibition. Cell 2011; 147: 1384-96.
[70]
Yao Y, Kelly MT, Sajikumar S, et al. PKMz maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci 2008; 28: 7820-7.
[71]
Migues PV, Hardt O, Wu DC, et al. PKMzeta maintains memories by regulating GluR2- dependent AMPA receptor trafficking. Nat Neurosci 2010; 13: 630-4.
[72]
Brebner K, Wong TP, Liu L, et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 2005; 310: 1340-3.
[73]
Lee AM, Kanter BR, Wang D, et al. Prkcz null mice show normal learning and memory. Nature 2013; 493(7432): 416-9.
[74]
Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL. PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature 2013; 493(7432): 420-3.
[75]
Deng Z, Lubinski AJ, Page TL. Zeta Inhibitory Peptide (ZIP) erases long-term memories in a cockroach. Neurobiol Learn Mem 2015; 118: 89-5.
[76]
Fitton A, Benfield P. Isradipine. Drugs 1990; 40(1): 31-74.
[77]
Martellotta MC, Kuzmin A, Zvartau E, Cossu G, Gessa GL, Fratta W. Isradipine inhibits nicotine intravenous self-administrationin drug-naive mice. Pharmacol Biochem Behav 1995; 52(2): 271-4.
[78]
Kuzmin A, Zvartau E, Gessa GL, Martellotta MC, Fratta W. Calcium antagonists isradipine and nimodipine suppress cocaine and morphine intravenousself-administrationin drug-naive mice. Pharmacol Biochem Behav 1992; 41(3): 497-500.
[79]
Lipscombe D, Helton TD, Xu W. L-type calcium channels: the low down. J Neurophysiol 2004; 92: 2633-41.
[80]
Rajadhyaksha A, Husson I, Satpute SS, et al. L-type Ca2+ channels mediate adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the ventral tegmental area after chronic amphetamine treatment. J Neurosci 2004; 24: 7464-76.
[81]
Chan CS, Guzman JN, Ilijic E, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007; 447: 1081-6.
[82]
Pucilowski O, Plaznik A, Overstreet DH. Isradipine suppresses amphetamine induced conditioned place preference and locomotor stimulation in the rat. Neuropsychopharmacology 1995; 12: 239-44.
[83]
Cramer CM, Hubbell CL, Reid LD. A combination of isradipine and naltrexone blocks cocaine’s enhancement of a cocaine place preference. Pharmacol Biochem Behav 1998; 60(4): 847-53.
[84]
Degoulet M, Stelly CE, Ahn KC, Morikawa H. L-type Ca2+ channel blockade with antihypertensive medication disrupts VTA synaptic plasticity and drug-associated contextual memory. Mol Psychiatry 2016; 21(3): 394-402.
[85]
Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998; 80: 1-27.
[86]
Johnson BA, Roache JD, Ait-Daoud N, et al. Effects of isradipine on cocaine-induced changes in cognitive performance in recently abstinent cocaine-dependent individuals. Int J Neuropsychopharmacol 2005; 8: 549-56.
[87]
Cao X, Wang H, Mei B, et al. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron 2008; 60: 353-66.
[88]
Sanhueza M, Lisman J. The CaMKII/NMDAR complex as a molecular memory. Mol Brain 2013; 6: 10.
[89]
Ren SQ, Yan JZ, Zhang XY, et al. PKClambda is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J 2013; 32: 1365-80.
[90]
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489: 391-9.