Generic placeholder image

Recent Patents on Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2212-7984
ISSN (Online): 1876-1429

Research Article

Potential of Macroalgae Ulva lactuca as a Source Feedstock for Biodiesel Production

Author(s): Hanaa H. Abd El Baky* and Gamal S. El Baroty

Volume 8, Issue 3, 2016

Page: [199 - 204] Pages: 6

DOI: 10.2174/2212798409666170602080725

Price: $65

Abstract

Background: The aim of this study was to investigate the possibility of growing of algae Ulva lactuca L under different salinity levels coupled with varied KNO3 concentrations (source of N) as a potential source of oil for biodiesel production.

Methods: U. lactuta was cultured in 10.0% NaCl coupled with either 2.5 g/L (S1+ 1N) or 1.0 g/L KNO3 (S1+ 2N) and in 30.0% NaCl coupled with 2.5 g/L (S2+ 1N) or 1.0 g/L KNO3 (S2+ 2N) nutrient medium. Among all algae cultures, biomass (dry weight) and lipid accumulation (total lipid content, TL) were significantly different (P>0.5%), with various degrees. The TL was increased (8.21% to 15.95%, g/100g) by increasing the NaCl % (from 10% to 30%) coupled with the depletion of KNO3 level (from 2.5% to 1%) in culture medium. High lipid content (15.95%) was obtained in S2+ 2N culture, this lipid showed physical (density, viscosity and average molecular weight) and chemical (iodine, acid, saponification and peroxide values) properties suitable for biodiesel production.

Results: The fatty acid methyl esters (FAME, biodiesel) prepared by trans-esterifiction reaction under acidic condition were mainly composed of saturated (50.33%), monounsaturated (MUFA, 36.12%) and polyunsaturated (13.55%) esters. C-18:1 was found to be the main MUFA, representing 25.76% of total FAME. On the other hand, the values of some critical of physiochemical parameter (density, kinematic viscosity, iodine value, acid value and oxidation stability) of biodiesel were found to meet the standards for a high quality biodiesel.

Conclusion: Hence, U. lactuta could be serving as a valuable renewable biomass of oil for biodiesel production. There are recent patents also suggesting use of oil of U. lactuta marine biomass for biodiesel production.

Keywords: Macroalgae, Ulva lactuca L, salt stress, biodiese, jatropha seed, lipids.

Graphical Abstract


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy