Review Article

饮食中的多酚和线粒体功能:在健康和疾病中的作用

卷 26, 期 19, 2019

页: [3376 - 3406] 页: 31

弟呕挨: 10.2174/0929867324666170529101810

价格: $65

摘要

线粒体是细胞质的双膜细胞器,参与许多关键的细胞调节过程。线粒体功能的丧失与几种人类疾病的发病机理有关。在过去的几十年中,越来越多的研究表明,饮食中的多酚可以调节线粒体的氧化还原状态,在某些情况下可以预防或延缓疾病的进展。本文旨在综述四种饮食多酚(白藜芦醇,姜黄素,表没食子儿茶素-3-没食子酸酯和槲皮素)在线粒体调控的分子途径中的作用及其对人体健康的潜在影响。累积证据表明,上述多酚在不同的体内和体外实验中改善了线粒体功能。多酚有益效应的潜在机制包括:氧化应激的减弱,线粒体代谢和生物发生的调节以及细胞死亡信号级联的调节,以及其他与线粒体无关的效应。饮食中多酚与线粒体的化学生物学相互作用的理解可能对线粒体功能障碍相关疾病的治疗产生巨大影响。

关键词: 线粒体,饮食中的多酚,氧化应激,线粒体外膜,活性氧,电子传输链。

[1]
Sádaba, M.C.; Martín-Estal, I.; Puche, J.E.; Castilla-Cortázar, I. Insulin-like growth factor 1 (IGF-1) therapy: mitochondrial dysfunction and diseases. Biochim. Biophys. Acta, 2016, 1862(7), 1267-1278.
[http://dx.doi.org/10.1016/j.bbadis.2016.03.010] [PMID: 27020404]
[2]
Smith, R.A.; Hartley, R.C.; Cochemé, H.M.; Murphy, M.P. Mitochondrial pharmacology. Trends Pharmacol. Sci., 2012, 33(6), 341-352.
[http://dx.doi.org/10.1016/j.tips.2012.03.010] [PMID: 22521106]
[3]
Bolisetty, S.; Jaimes, E.A. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int. J. Mol. Sci., 2013, 14(3), 6306-6344.
[http://dx.doi.org/10.3390/ijms14036306] [PMID: 23528859]
[4]
Gibellini, L.; Bianchini, E.; De Biasi, S.; Nasi, M.; Cossarizza, A.; Pinti, M. Natural compounds modulating mitochondrial functions. Evid. Based Complement. Alternat. Med., 2015.2015527209
[http://dx.doi.org/10.1155/2015/527209] [PMID: 26167193]
[5]
Paillusson, S.; Stoica, R.; Gomez-Suaga, P.; Lau, D.H.W.; Mueller, S.; Miller, T.; Miller, C.C.J. There’s something wrong with my MAM; the er-mitochondria axis and neurodegenerative diseases. Trends Neurosci., 2016, 39(3), 146-157.
[http://dx.doi.org/10.1016/j.tins.2016.01.008] [PMID: 26899735]
[6]
Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J., 2011, 435(2), 297-312.
[http://dx.doi.org/10.1042/BJ20110162] [PMID: 21726199]
[7]
Nicolson, G.L. Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr. Med. (Encinitas), 2014, 13(4), 35-43.
[PMID: 26770107]
[8]
Wang, W.; Karamanlidis, G.; Tian, R. Novel targets for mitochondrial medicine. Sci. Transl. Med., 2016, 8(326)326rv3
[http://dx.doi.org/10.1126/scitranslmed.aac7410] [PMID: 26888432]
[9]
de Oliveira, M.R.; Nabavi, S.F.; Manayi, A.; Daglia, M.; Hajheydari, Z.; Nabavi, S.M. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim. Biophys. Acta, 2016, 1860(4), 727-745.
[http://dx.doi.org/10.1016/j.bbagen.2016.01.017] [PMID: 26802309]
[10]
Forbes-Hernández, T.Y.; Giampieri, F.; Gasparrini, M.; Mazzoni, L.; Quiles, J.L.; Alvarez-Suarez, J.M.; Battino, M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem. Toxicol., 2014, 68, 154-182.
[http://dx.doi.org/10.1016/j.fct.2014.03.017] [PMID: 24680691]
[11]
Howitz, K.T.; Sinclair, D.A. Xenohormesis: sensing the chemical cues of other species. Cell, 2008, 133(3), 387-391.
[http://dx.doi.org/10.1016/j.cell.2008.04.019] [PMID: 18455976]
[12]
Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav., 2010, 5(4), 359-368.
[http://dx.doi.org/10.4161/psb.5.4.10871] [PMID: 20400851]
[13]
Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem., 2011, 125(2), 288-306.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.012]
[14]
Barrajón-Catalán, E.; Herranz-López, M.; Joven, J.; Segura-Carretero, A.; Alonso-Villaverde, C.; Menéndez, J.A.; Micol, V. Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Adv. Exp. Med. Biol., 2014, 824, 141-159.
[http://dx.doi.org/10.1007/978-3-319-07320-0_11] [PMID: 25038998]
[15]
Visioli, F.; De La Lastra, C.A.; Andres-Lacueva, C.; Aviram, M.; Calhau, C.; Cassano, A.; D’Archivio, M.; Faria, A.; Favé, G.; Fogliano, V.; Llorach, R.; Vitaglione, P.; Zoratti, M.; Edeas, M. Polyphenols and human health: a prospectus. Crit. Rev. Food Sci. Nutr., 2011, 51(6), 524-546.
[http://dx.doi.org/10.1080/10408391003698677] [PMID: 21929330]
[16]
Obrenovich, M.E.; Nair, N.G.; Beyaz, A.; Aliev, G.; Reddy, V.P. The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res., 2010, 13(6), 631-643.
[http://dx.doi.org/10.1089/rej.2010.1043] [PMID: 20818981]
[17]
Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 2014, 559, 75-90.
[http://dx.doi.org/10.1016/j.abb.2014.05.017] [PMID: 24875147]
[18]
Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev., 2015, 2015504253
[http://dx.doi.org/10.1155/2015/504253] [PMID: 26180591]
[19]
Tsuji, P.A.; Stephenson, K.K.; Wade, K.L.; Liu, H.; Fahey, J.W. Structure-activity analysis of flavonoids: direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr. Cancer, 2013, 65(7), 1014-1025.
[http://dx.doi.org/10.1080/01635581.2013.809127] [PMID: 24087992]
[20]
Mladěnka, P.; Macáková, K.; Filipský, T.; Zatloukalová, L.; Jahodář, L.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem., 2011, 105(5), 693-701.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.02.003] [PMID: 21450273]
[21]
Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev., 2006, 26(6), 747-766.
[http://dx.doi.org/10.1002/med.20060] [PMID: 16710860]
[22]
Alves, D.S.; Pérez-Fons, L.; Estepa, A.; Micol, V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem. Pharmacol., 2004, 68(3), 549-561.
[http://dx.doi.org/10.1016/j.bcp.2004.04.012] [PMID: 15242821]
[23]
Menendez, J.A.; Joven, J.; Aragonès, G.; Barrajón-Catalán, E.; Beltrán-Debón, R.; Borrás-Linares, I.; Camps, J.; Corominas-Faja, B.; Cufí, S.; Fernández-Arroyo, S.; Garcia-Heredia, A.; Hernández-Aguilera, A.; Herranz-López, M.; Jiménez-Sánchez, C.; López-Bonet, E.; Lozano-Sánchez, J.; Luciano-Mateo, F.; Martin-Castillo, B.; Martin-Paredero, V.; Pérez-Sánchez, A.; Oliveras-Ferraros, C.; Riera-Borrull, M.; Rodríguez-Gallego, E.; Quirantes-Piné, R.; Rull, A.; Tomás-Menor, L.; Vazquez-Martin, A.; Alonso-Villaverde, C.; Micol, V.; Segura-Carretero, A. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle, 2013, 12(4), 555-578.
[http://dx.doi.org/10.4161/cc.23756] [PMID: 23370395]
[24]
Maulik, N.; McFadden, D.; Otani, H.; Thirunavukkarasu, M.; Parinandi, N.L. Antioxidants in longevity and medicine. Oxid. Med. Cell. Longev., 2013, 2013820679
[http://dx.doi.org/10.1155/2013/820679] [PMID: 24327827]
[25]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(Pt 2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[26]
Adam-Vizi, V.; Chinopoulos, C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci., 2006, 27(12), 639-645.
[http://dx.doi.org/10.1016/j.tips.2006.10.005] [PMID: 17056127]
[27]
Schrader, M.; Fahimi, H.D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta, 2006, 1763(12), 1755-1766.
[http://dx.doi.org/10.1016/j.bbamcr.2006.09.006] [PMID: 17034877]
[28]
Dahlgren, C.; Karlsson, A. Respiratory burst in human neutrophils. J. Immunol. Methods, 1999, 232(1-2), 3-14.
[http://dx.doi.org/10.1016/S0022-1759(99)00146-5] [PMID: 10618505]
[29]
Szewczyk, A.; Wojtczak, L. Mitochondria as a pharmacological target. Pharmacol. Rev., 2002, 54(1), 101-127.
[http://dx.doi.org/10.1124/pr.54.1.101] [PMID: 11870261]
[30]
Belyaeva, E.A.; Dymkowska, D.; Więckowski, M.R.; Wojtczak, L. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol. Appl. Pharmacol., 2008, 231(1), 34-42.
[http://dx.doi.org/10.1016/j.taap.2008.03.017] [PMID: 18501399]
[31]
de Grey, A.D. A proposed refinement of the mitochondrial free radical theory of aging. BioEssays, 1997, 19(2), 161-166.
[http://dx.doi.org/10.1002/bies.950190211] [PMID: 9046246]
[32]
Harman, D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology, 2009, 10(6), 773-781.
[http://dx.doi.org/10.1007/s10522-009-9234-2] [PMID: 19466577]
[33]
Kuehl, F.A., Jr; Egan, R.W. Prostaglandins, arachidonic acid, and inflammation. Science, 1980, 210(4473), 978-984.
[http://dx.doi.org/10.1126/science.6254151] [PMID: 6254151]
[34]
Gottlieb, R.A. Cytochrome P450: major player in reperfusion injury. Arch. Biochem. Biophys., 2003, 420(2), 262-267.
[http://dx.doi.org/10.1016/j.abb.2003.07.004] [PMID: 14654065]
[35]
Simoncini, C.; Orsucci, D.; Caldarazzo Ienco, E.; Siciliano, G.; Bonuccelli, U.; Mancuso, M. Alzheimer’s pathogenesis and its link to the mitochondrion. Oxid. Med. Cell. Longev., 2015, 2015803942
[http://dx.doi.org/10.1155/2015/803942] [PMID: 25973139]
[36]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[37]
Wojtczak, L.; Zabłocki, K. In:Drug-Induced Mitochondrial Dysfunction; John Wiley & Sons, Inc., 2008, pp. 1-35.
[http://dx.doi.org/10.1002/9780470372531.ch1]
[38]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[39]
Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res. Int., 2014, 2014761264
[http://dx.doi.org/10.1155/2014/761264] [PMID: 24587990]
[40]
Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: current status and future prospects. Curr. Med. Chem., 2011, 18(25), 3871-3888.
[http://dx.doi.org/10.2174/092986711803414368] [PMID: 21824100]
[41]
Schmidt, H.H.; Stocker, R.; Vollbracht, C.; Paulsen, G.; Riley, D.; Daiber, A.; Cuadrado, A. Antioxidants in Translational Medicine. Antioxid. Redox Signal., 2015, 23(14), 1130-1143.
[http://dx.doi.org/10.1089/ars.2015.6393] [PMID: 26154592]
[42]
Guerrero, R.F.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Wine, resveratrol and health: a review. Nat. Prod. Commun., 2009, 4(5), 635-658.
[http://dx.doi.org/10.1177/1934578X0900400503] [PMID: 19445315]
[43]
Huhn, S.; Kharabian Masouleh, S.; Stumvoll, M.; Villringer, A.; Witte, A.V. Components of a Mediterranean diet and their impact on cognitive functions in aging. Front. Aging Neurosci., 2015, 7, 132.
[http://dx.doi.org/10.3389/fnagi.2015.00132] [PMID: 26217224]
[44]
Benfeito, S.; Oliveira, C.; Soares, P.; Fernandes, C.; Silva, T.; Teixeira, J.; Borges, F. Antioxidant therapy: still in search of the ‘magic bullet’. Mitochondrion, 2013, 13(5), 427-435.
[http://dx.doi.org/10.1016/j.mito.2012.12.002] [PMID: 23246773]
[45]
Zini, R.; Morin, C.; Bertelli, A.; Bertelli, A.A.; Tillement, J.P. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp. Clin. Res., 1999, 25(2-3), 87-97.
[PMID: 10370869]
[46]
Moreira, A.C.; Silva, A.M.; Santos, M.S.; Sardão, V.A. Resveratrol affects differently rat liver and brain mitochondrial bioenergetics and oxidative stress in vitro: investigation of the role of gender. Food Chem. Toxicol., 2013, 53, 18-26.
[http://dx.doi.org/10.1016/j.fct.2012.11.031] [PMID: 23200887]
[47]
Valdecantos, M.P.; Pérez-Matute, P.; Quintero, P.; Martínez, J.A. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different. Redox Rep., 2010, 15(5), 207-216.
[http://dx.doi.org/10.1179/135100010X12826446921464] [PMID: 21062536]
[48]
Zheng, J.; Ramirez, V.D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br. J. Pharmacol., 2000, 130(5), 1115-1123.
[http://dx.doi.org/10.1038/sj.bjp.0703397] [PMID: 10882397]
[49]
Tinhofer, I.; Bernhard, D.; Senfter, M.; Anether, G.; Loeffler, M.; Kroemer, G.; Kofler, R.; Csordas, A.; Greil, R. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J., 2001, 15(9), 1613-1615.
[http://dx.doi.org/10.1096/fj.00-0675fje] [PMID: 11427503]
[50]
Dörrie, J.; Gerauer, H.; Wachter, Y.; Zunino, S.J. Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells. Cancer Res., 2001, 61(12), 4731-4739.
[PMID: 11406544]
[51]
Pozo-Guisado, E.; Merino, J.M.; Mulero-Navarro, S.; Lorenzo-Benayas, M.J.; Centeno, F.; Alvarez-Barrientos, A.; Fernandez-Salguero, P.M. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kappaB. Int. J. Cancer, 2005, 115(1), 74-84.
[http://dx.doi.org/10.1002/ijc.20856] [PMID: 15688415]
[52]
Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors, 2013, 39(1), 2-13.
[http://dx.doi.org/10.1002/biof.1079] [PMID: 23339055]
[53]
Metzler, M.; Pfeiffer, E.; Schulz, S.I.; Dempe, J.S. Curcumin uptake and metabolism. Biofactors, 2013, 39(1), 14-20.
[http://dx.doi.org/10.1002/biof.1042] [PMID: 22996406]
[54]
Huang, M.T.; Smart, R.C.; Wong, C.Q.; Conney, A.H. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res., 1988, 48(21), 5941-5946.
[PMID: 3139287]
[55]
Huang, M.T.; Wang, Z.Y.; Georgiadis, C.A.; Laskin, J.D.; Conney, A.H. Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis, 1992, 13(11), 2183-2186.
[http://dx.doi.org/10.1093/carcin/13.11.2183] [PMID: 1423891]
[56]
Huang, M.T.; Lou, Y.R.; Ma, W.; Newmark, H.L.; Reuhl, K.R.; Conney, A.H. Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res., 1994, 54(22), 5841-5847.
[PMID: 7954412]
[57]
Conney, A.H.; Lysz, T.; Ferraro, T.; Abidi, T.F.; Manchand, P.S.; Laskin, J.D.; Huang, M.T. Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv. Enzyme Regul., 1991, 31, 385-396.
[http://dx.doi.org/10.1016/0065-2571(91)90025-H] [PMID: 1908616]
[58]
Tanaka, T.; Makita, H.; Ohnishi, M.; Hirose, Y.; Wang, A.; Mori, H.; Satoh, K.; Hara, A.; Ogawa, H. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res., 1994, 54(17), 4653-4659.
[PMID: 8062259]
[59]
Rao, C.V.; Rivenson, A.; Simi, B.; Reddy, B.S. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res., 1995, 55(2), 259-266.
[PMID: 7812955]
[60]
Ruby, A.J.; Kuttan, G.; Babu, K.D.; Rajasekharan, K.N.; Kuttan, R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett., 1995, 94(1), 79-83.
[http://dx.doi.org/10.1016/0304-3835(95)03827-J] [PMID: 7621448]
[61]
Jiang, M.C.; Yang-Yen, H.F.; Yen, J.J.; Lin, J.K. Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr. Cancer, 1996, 26(1), 111-120.
[http://dx.doi.org/10.1080/01635589609514468] [PMID: 8844727]
[62]
Kuo, M.L.; Huang, T.S.; Lin, J.K. Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim. Biophys. Acta, 1996, 1317(2), 95-100.
[http://dx.doi.org/10.1016/S0925-4439(96)00032-4] [PMID: 8950193]
[63]
Jaruga, E.; Bielak-Zmijewska, A.; Sikora, E.; Skierski, J.; Radziszewska, E.; Piwocka, K.; Bartosz, G. Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. Biochem. Pharmacol., 1998, 56(8), 961-965.
[http://dx.doi.org/10.1016/S0006-2952(98)00144-0] [PMID: 9776306]
[64]
Piwocka, K.; Zabłocki, K.; Wieckowski, M.R.; Skierski, J.; Feiga, I.; Szopa, J.; Drela, N.; Wojtczak, L.; Sikora, E. A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp. Cell Res., 1999, 249(2), 299-307.
[http://dx.doi.org/10.1006/excr.1999.4480] [PMID: 10366429]
[65]
Shehzad, A.; Lee, J.; Lee, Y.S. Curcumin in various cancers. Biofactors, 2013, 39(1), 56-68.
[http://dx.doi.org/10.1002/biof.1068] [PMID: 23303705]
[66]
Shehzad, A.; Rehman, G.; Lee, Y.S. Curcumin in inflammatory diseases. Biofactors, 2013, 39(1), 69-77.
[http://dx.doi.org/10.1002/biof.1066] [PMID: 23281076]
[67]
Bradford, P.G. Curcumin and obesity. Biofactors, 2013, 39(1), 78-87.
[http://dx.doi.org/10.1002/biof.1074] [PMID: 23339049]
[68]
Zingg, J.M.; Hasan, S.T.; Meydani, M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors, 2013, 39(1), 101-121.
[http://dx.doi.org/10.1002/biof.1072] [PMID: 23339042]
[69]
Shen, L.R.; Parnell, L.D.; Ordovas, J.M.; Lai, C.Q. Curcumin and aging. Biofactors, 2013, 39(1), 133-140.
[http://dx.doi.org/10.1002/biof.1086] [PMID: 23325575]
[70]
Shehzad, A.; Lee, Y.S. Molecular mechanisms of curcumin action: signal transduction. Biofactors, 2013, 39(1), 27-36.
[http://dx.doi.org/10.1002/biof.1065] [PMID: 23303697]
[71]
Shishodia, S. Molecular mechanisms of curcumin action: gene expression. Biofactors, 2013, 39(1), 37-55.
[http://dx.doi.org/10.1002/biof.1041] [PMID: 22996381]
[72]
Marchese, A.; Coppo, E.; Sobolev, A.P.; Rossi, D.; Mannina, L.; Daglia, M. Influence of in vitro simulated gastroduodenal digestion on the antibacterial activity, metabolic profiling and polyphenols content of green tea (Camellia sinensis). Food Research International, 2014, 63 Part B,, 182-191.
[73]
Oliveira, M.R.; Nabavi, S.F.; Daglia, M.; Rastrelli, L.; Nabavi, S.M. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol. Res., 2016, 104, 70-85.
[http://dx.doi.org/10.1016/j.phrs.2015.12.027] [PMID: 26731017]
[74]
Higdon, J.V.; Frei, B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 2003, 43(1), 89-143.
[http://dx.doi.org/10.1080/10408690390826464] [PMID: 12587987]
[75]
Wong, I.L.; Wang, B.C.; Yuan, J.; Duan, L.X.; Liu, Z.; Liu, T.; Li, X.M.; Hu, X.; Zhang, X.Y.; Jiang, T.; Wan, S.B.; Chow, L.M. Potent and nontoxic chemosensitizer of p-glycoprotein-mediated multidrug resistance in cancer: synthesis and evaluation of methylated epigallocatechin, gallocatechin, and dihydromyricetin derivatives. J. Med. Chem., 2015, 58(11), 4529-4549.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00085] [PMID: 25985195]
[76]
Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev., 2016.20162986796
[http://dx.doi.org/10.1155/2016/2986796] [PMID: 26904161]
[77]
Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[78]
Liang, L.; Gao, C.; Luo, M.; Wang, W.; Zhao, C.; Zu, Y.; Efferth, T.; Fu, Y. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. J. Agric. Food Chem., 2013, 61(11), 2755-2761.
[http://dx.doi.org/10.1021/jf304768p] [PMID: 23419114]
[79]
Boesch-Saadatmandi, C.; Pospissil, R.T.; Graeser, A.C.; Canali, R.; Boomgaarden, I.; Doering, F.; Wolffram, S.; Egert, S.; Mueller, M.J.; Rimbach, G. Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes--role of quercetin metabolism. Int. J. Mol. Sci., 2009, 10(9), 4168-4177.
[http://dx.doi.org/10.3390/ijms10094168] [PMID: 19865538]
[80]
Costa, L.G.; Garrick, J.; Roque, P.J.; Pellacani, C. Nutraceuticals in CNS diseases: potential mechanisms of neuroprotection. In: Nutraceuticals; Academic Press: Boston, 2016; pp. 3-13.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00001-2]
[81]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[82]
EFSA Panel on Dietetic Products Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to quercetin and protection of DNA, proteins and lipids from oxidative damage (ID 1647), “cardiovascular system” (ID 1844), “mental state and performance” (ID 1845), and “liver, kidneys” (ID 1846) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J., 2011, 9(4), 2067.
[http://dx.doi.org/10.2903/j.efsa.2011.2067]
[83]
Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid. Redox Signal., 2013, 18(16), 2029-2074.
[http://dx.doi.org/10.1089/ars.2012.4729] [PMID: 23244576]
[84]
Forkink, M.; Smeitink, J.A.; Brock, R.; Willems, P.H.; Koopman, W.J. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim. Biophys. Acta, 2010, 1797(6-7), 1034-1044.
[http://dx.doi.org/10.1016/j.bbabio.2010.01.022] [PMID: 20100455]
[85]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[86]
Lagoa, R.; Graziani, I.; Lopez-Sanchez, C.; Garcia-Martinez, V.; Gutierrez-Merino, C. Complex I and cytochrome C are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim. Biophys. Acta, 2011, 1807(12), 1562-1572.
[http://dx.doi.org/10.1016/j.bbabio.2011.09.022] [PMID: 22015496]
[87]
Hong, S.; Pedersen, P.L. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol. Mol. Biol. Rev., 2008, 72(4), 590-641. [Table of Contents.
[http://dx.doi.org/10.1128/MMBR.00016-08] [PMID: 19052322]
[88]
Gledhill, J.R.; Montgomery, M.G.; Leslie, A.G.; Walker, J.E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13632-13637.
[http://dx.doi.org/10.1073/pnas.0706290104] [PMID: 17698806]
[89]
Kinnally, K.W.; Antonsson, B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis, 2007, 12(5), 857-868.
[http://dx.doi.org/10.1007/s10495-007-0722-z] [PMID: 17294079]
[90]
Trumbeckaite, S.; Bernatoniene, J.; Majiene, D.; Jakstas, V.; Savickas, A.; Toleikis, A. The effect of flavonoids on rat heart mitochondrial function. Biomed. Pharmacother., 2006, 60(5), 245-248.
[http://dx.doi.org/10.1016/j.biopha.2006.04.003] [PMID: 16777369]
[91]
McAnlis, G.T.; McEneny, J.; Pearce, J.; Young, I.S. Absorption and antioxidant effects of quercetin from onions, in man. Eur. J. Clin. Nutr., 1999, 53(2), 92-96.
[http://dx.doi.org/10.1038/sj.ejcn.1600682] [PMID: 10099940]
[92]
De Marchi, U.; Biasutto, L.; Garbisa, S.; Toninello, A.; Zoratti, M. Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. Biochim. Biophys. Acta, 2009, 1787(12), 1425-1432.
[http://dx.doi.org/10.1016/j.bbabio.2009.06.002] [PMID: 19523917]
[93]
Dorta, D.J.; Pigoso, A.A.; Mingatto, F.E.; Rodrigues, T.; Prado, I.M.; Helena, A.F.; Uyemura, S.A.; Santos, A.C.; Curti, C. The interaction of flavonoids with mitochondria: effects on energetic processes. Chem. Biol. Interact., 2005, 152(2-3), 67-78.
[http://dx.doi.org/10.1016/j.cbi.2005.02.004] [PMID: 15840381]
[94]
Amiot, M.J.; Riva, C.; Vinet, A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes. Rev., 2016, 17(7), 573-586.
[http://dx.doi.org/10.1111/obr.12409] [PMID: 27079631]
[95]
Wu, L.; Noyan Ashraf, M.H.; Facci, M.; Wang, R.; Paterson, P.G.; Ferrie, A.; Juurlink, B.H. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc. Natl. Acad. Sci. USA, 2004, 101(18), 7094-7099.
[http://dx.doi.org/10.1073/pnas.0402004101] [PMID: 15103025]
[96]
Mattson, M.P.; Cheng, A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci., 2006, 29(11), 632-639.
[http://dx.doi.org/10.1016/j.tins.2006.09.001] [PMID: 17000014]
[97]
Soobrattee, M.A.; Bahorun, T.; Aruoma, O.I. Chemopreventive actions of polyphenolic compounds in cancer. Biofactors, 2006, 27(1-4), 19-35.
[http://dx.doi.org/10.1002/biof.5520270103] [PMID: 17012761]
[98]
Parker, W.D., Jr; Parks, J.; Filley, C.M.; Kleinschmidt-DeMasters, B.K. Electron transport chain defects in Alzheimer’s disease brain. Neurology, 1994, 44(6), 1090-1096.
[http://dx.doi.org/10.1212/WNL.44.6.1090] [PMID: 8208407]
[99]
Parks, J.K.; Smith, T.S.; Trimmer, P.A.; Bennett, J.P., Jr; Parker, W.D. Jr Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J. Neurochem., 2001, 76(4), 1050-1056.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00112.x] [PMID: 11181824]
[100]
Kumar, A.; Singh, A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front. Pharmacol., 2015, 6, 206.
[http://dx.doi.org/10.3389/fphar.2015.00206] [PMID: 26441662]
[101]
Mathieu, L.; Lopes Costa, A.; Le Bachelier, C.; Slama, A.; Lebre, A.S.; Taylor, R.W.; Bastin, J.; Djouadi, F. Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radic. Biol. Med., 2016, 96, 190-198.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.027] [PMID: 27126960]
[102]
Lopes Costa, A.; Le Bachelier, C.; Mathieu, L.; Rotig, A.; Boneh, A.; De Lonlay, P.; Tarnopolsky, M.A.; Thorburn, D.R.; Bastin, J.; Djouadi, F. Beneficial effects of resveratrol on respiratory chain defects in patients’ fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Hum. Mol. Genet., 2014, 23(8), 2106-2119.
[http://dx.doi.org/10.1093/hmg/ddt603] [PMID: 24365713]
[103]
Desquiret-Dumas, V.; Gueguen, N.; Leman, G.; Baron, S.; Nivet-Antoine, V.; Chupin, S.; Chevrollier, A.; Vessières, E.; Ayer, A.; Ferré, M.; Bonneau, D.; Henrion, D.; Reynier, P.; Procaccio, V. Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells. J. Biol. Chem., 2013, 288(51), 36662-36675.
[http://dx.doi.org/10.1074/jbc.M113.466490] [PMID: 24178296]
[104]
Wu, Y.T.; Wu, S.B.; Wei, Y.H. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases. Curr. Pharm. Des., 2014, 20(35), 5510-5526.
[http://dx.doi.org/10.2174/1381612820666140306103401] [PMID: 24606797]
[105]
Bitterman, J.L.; Chung, J.H. Metabolic effects of resveratrol: addressing the controversies. Cell. Mol. Life Sci., 2015, 72(8), 1473-1488.
[http://dx.doi.org/10.1007/s00018-014-1808-8] [PMID: 25548801]
[106]
Raza, H.; John, A.; Brown, E.M.; Benedict, S.; Kambal, A. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol. Appl. Pharmacol., 2008, 226(2), 161-168.
[http://dx.doi.org/10.1016/j.taap.2007.09.002] [PMID: 17935746]
[107]
Zhu, Y.G.; Chen, X.C.; Chen, Z.Z.; Zeng, Y.Q.; Shi, G.B.; Su, Y.H.; Peng, X. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol. Sin., 2004, 25(12), 1606-1612.
[PMID: 15569404]
[108]
Kumar, A.; Prakash, A.; Dogra, S. Protective effect of curcumin (Curcuma longa) against D-galactose-induced senescence in mice. J. Asian Nat. Prod. Res., 2011, 13(1), 42-55.
[http://dx.doi.org/10.1080/10286020.2010.544253] [PMID: 21253949]
[109]
Rastogi, M.; Ojha, R.P.; Rajamanickam, G.V.; Agrawal, A.; Aggarwal, A.; Dubey, G.P. Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radic. Res., 2008, 42(11-12), 999-1005.
[http://dx.doi.org/10.1080/10715760802571988] [PMID: 19031318]
[110]
Burgos-Morón, E.; Calderón-Montaño, J.M.; Salvador, J.; Robles, A.; López-Lázaro, M. The dark side of curcumin. Int. J. Cancer, 2010, 126(7), 1771-1775.
[PMID: 19830693]
[111]
Kucera, O.; Mezera, V.; Moravcova, A.; Endlicher, R.; Lotkova, H.; Drahota, Z.; Cervinkova, Z. In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. Oxid. Med. Cell. Longev., 2015.2015476180
[http://dx.doi.org/10.1155/2015/476180] [PMID: 25918582]
[112]
Valenti, D.; Manente, G.A.; Moro, L.; Marra, E.; Vacca, R.A. Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem. J., 2011, 435(3), 679-688.
[http://dx.doi.org/10.1042/BJ20101908] [PMID: 21338338]
[113]
Valenti, D.; Tullo, A.; Caratozzolo, M.F.; Merafina, R.S.; Scartezzini, P.; Marra, E.; Vacca, R.A. Impairment of F1F0-ATPase, adenine nucleotide translocator and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy. Biochem. J., 2010, 431(2), 299-310.
[http://dx.doi.org/10.1042/BJ20100581] [PMID: 20698827]
[114]
Valenti, D.; De Rasmo, D.; Signorile, A.; Rossi, L.; de Bari, L.; Scala, I.; Granese, B.; Papa, S.; Vacca, R.A. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down’s syndrome. Biochim. Biophys. Acta, 2013, 1832(4), 542-552.
[http://dx.doi.org/10.1016/j.bbadis.2012.12.011] [PMID: 23291000]
[115]
Valenti, D.; de Bari, L.; Manente, G.A.; Rossi, L.; Mutti, L.; Moro, L.; Vacca, R.A. Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells. Biochim. Biophys. Acta, 2013, 1832(12), 2085-2096.
[http://dx.doi.org/10.1016/j.bbadis.2013.07.014] [PMID: 23911347]
[116]
Weng, Z.; Zhou, P.; Salminen, W.F.; Yang, X.; Harrill, A.H.; Cao, Z.; Mattes, W.B.; Mendrick, D.L.; Shi, Q. Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria. Biochem. Biophys. Res. Commun., 2014, 443(3), 1097-1104.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.110] [PMID: 24384371]
[117]
Lambert, J.D.; Kennett, M.J.; Sang, S.; Reuhl, K.R.; Ju, J.; Yang, C.S. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem. Toxicol., 2010, 48(1), 409-416.
[http://dx.doi.org/10.1016/j.fct.2009.10.030] [PMID: 19883714]
[118]
Galati, G.; Lin, A.; Sultan, A.M.; O’Brien, P.J. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic. Biol. Med., 2006, 40(4), 570-580.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.014] [PMID: 16458187]
[119]
Pohanka, M.; Sobotka, J.; Stetina, R. Sulfur mustard induced oxidative stress and its alteration by epigallocatechin gallate. Toxicol. Lett., 2011, 201(2), 105-109.
[http://dx.doi.org/10.1016/j.toxlet.2010.12.011] [PMID: 21172412]
[120]
Chowdhury, A.; Sarkar, J.; Chakraborti, T.; Pramanik, P.K.; Chakraborti, S. Protective role of epigallocatechin-3-gallate in health and disease: a perspective. Biomed. Pharmacother., 2016, 78, 50-59.
[http://dx.doi.org/10.1016/j.biopha.2015.12.013] [PMID: 26898424]
[121]
Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch. Biochem. Biophys., 2010, 501(1), 65-72.
[http://dx.doi.org/10.1016/j.abb.2010.06.013] [PMID: 20558130]
[122]
Kim, H.S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[123]
Denny Joseph, K.M. Muralidhara, Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: relevance to Parkinson’s disease. Neurochem. Res., 2015, 40(5), 894-905.
[http://dx.doi.org/10.1007/s11064-015-1542-0] [PMID: 25687767]
[124]
Waseem, M.; Parvez, S. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. Protoplasma, 2016, 253(2), 417-430.
[http://dx.doi.org/10.1007/s00709-015-0821-6] [PMID: 26022087]
[125]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[126]
Barbosa, I.A.; Machado, N.G.; Skildum, A.J.; Scott, P.M.; Oliveira, P.J. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim. Biophys. Acta, 2012, 1826(1), 238-254.
[PMID: 22554970]
[127]
Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and cancer. Cell, 2016, 166(3), 555-566.
[http://dx.doi.org/10.1016/j.cell.2016.07.002] [PMID: 27471965]
[128]
Panieri, E.; Santoro, M.M. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis., 2016, 7(6)e2253
[http://dx.doi.org/10.1038/cddis.2016.105] [PMID: 27277675]
[129]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[130]
Yang, T.; Wang, L.; Zhu, M.; Zhang, L.; Yan, L. Properties and molecular mechanisms of resveratrol: a review. Pharmazie, 2015, 70(8), 501-506.
[PMID: 26380517]
[131]
Levi, F.; Pasche, C.; Lucchini, F.; Ghidoni, R.; Ferraroni, M.; La Vecchia, C. Resveratrol and breast cancer risk. Eur. J. Cancer Prev., 2005, 14(2), 139-142.
[http://dx.doi.org/10.1097/00008469-200504000-00009] [PMID: 15785317]
[132]
Bishayee, A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev. Res. (Phila.), 2009, 2(5), 409-418.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[133]
Buhrmann, C.; Shayan, P.; Kraehe, P.; Popper, B.; Goel, A.; Shakibaei, M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem. Pharmacol., 2015, 98(1), 51-68.
[http://dx.doi.org/10.1016/j.bcp.2015.08.105] [PMID: 26310874]
[134]
Ma, L.; Li, W.; Wang, R.; Nan, Y.; Wang, Q.; Liu, W.; Jin, F. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int. J. Oncol., 2015, 47(4), 1460-1468.
[http://dx.doi.org/10.3892/ijo.2015.3124] [PMID: 26314326]
[135]
Gu, S.; Chen, C.; Jiang, X.; Zhang, Z. Resveratrol synergistically triggers apoptotic cell death with arsenic trioxide via oxidative stress in human lung adenocarcinoma A549 cells. Biol. Trace Elem. Res., 2015, 163(1-2), 112-123.
[http://dx.doi.org/10.1007/s12011-014-0186-2] [PMID: 25431299]
[136]
Deus, C.M.; Serafim, T.L.; Magalhaes-Novais, S.; Vilaca, A.; Moreira, A.C.; Sardao, V.A.; Cardoso, S.M.; Oliveira, P.J. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells. Arch. Toxicol., 2017, 91(3), 1261-1278.
[http://dx.doi.org/10.1007/s00204-016-1784-x ] [PMID: 27358235]
[137]
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of curcumin (E 100) as a food additive. EFSA J., 2010, 8(9), 1679.
[http://dx.doi.org/10.2903/j.efsa.2010.1679]
[138]
Hollensworth, S.B.; Shen, C.; Sim, J.E.; Spitz, D.R.; Wilson, G.L.; LeDoux, S.P. Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1161-1174.
[http://dx.doi.org/10.1016/S0891-5849(00)00214-8] [PMID: 10889445]
[139]
Morin, D.; Barthélémy, S.; Zini, R.; Labidalle, S.; Tillement, J.P. Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett., 2001, 495(1-2), 131-136.
[http://dx.doi.org/10.1016/S0014-5793(01)02376-6] [PMID: 11322961]
[140]
Karmakar, S.; Banik, N.L.; Patel, S.J.; Ray, S.K. Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci. Lett., 2006, 407(1), 53-58.
[http://dx.doi.org/10.1016/j.neulet.2006.08.013] [PMID: 16949208]
[141]
Yoon, M.J.; Kim, E.H.; Lim, J.H.; Kwon, T.K.; Choi, K.S. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic. Biol. Med., 2010, 48(5), 713-726.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.016] [PMID: 20036734]
[142]
Trujillo, J.; Granados-Castro, L.F.; Zazueta, C.; Andérica-Romero, A.C.; Chirino, Y.I.; Pedraza-Chaverrí, J. Mitochondria as a target in the therapeutic properties of curcumin. Arch. Pharm. (Weinheim), 2014, 347(12), 873-884.
[http://dx.doi.org/10.1002/ardp.201400266] [PMID: 25243820]
[143]
Kumar, G.; Mittal, S.; Sak, K.; Tuli, H.S. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci., 2016, 148, 313-328.
[http://dx.doi.org/10.1016/j.lfs.2016.02.022] [PMID: 26876915]
[144]
Yamamoto, T.; Staples, J.; Wataha, J.; Lewis, J.; Lockwood, P.; Schoenlein, P.; Rao, S.; Osaki, T.; Dickinson, D.; Kamatani, T.; Schuster, G.; Hsu, S. Protective effects of EGCG on salivary gland cells treated with gamma-radiation or cis-platinum(II)diammine dichloride. Anticancer Res., 2004, 24(5A), 3065-3073.
[PMID: 15517917]
[145]
Khoi, P.N.; Park, J.S.; Kim, J.H.; Xia, Y.; Kim, N.H.; Kim, K.K.; Jung, Y.D. (-)-Epigallocatechin-3-gallate blocks nicotine-induced matrix metalloproteinase-9 expression and invasiveness via suppression of NF-κB and AP-1 in endothelial cells. Int. J. Oncol., 2013, 43(3), 868-876.
[http://dx.doi.org/10.3892/ijo.2013.2006] [PMID: 23835612]
[146]
Hwang, J.T.; Ha, J.; Park, I.J.; Lee, S.K.; Baik, H.W.; Kim, Y.M.; Park, O.J. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett., 2007, 247(1), 115-121.
[http://dx.doi.org/10.1016/j.canlet.2006.03.030] [PMID: 16797120]
[147]
Yamamoto, T.; Hsu, S.; Lewis, J.; Wataha, J.; Dickinson, D.; Singh, B.; Bollag, W.B.; Lockwood, P.; Ueta, E.; Osaki, T.; Schuster, G. Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells. J. Pharmacol. Exp. Ther., 2003, 307(1), 230-236.
[http://dx.doi.org/10.1124/jpet.103.054676] [PMID: 12954803]
[148]
Liberto, M.; Cobrinik, D. Growth factor-dependent induction of p21(CIP1) by the green tea polyphenol, epigallocatechin gallate. Cancer Lett., 2000, 154(2), 151-161.
[http://dx.doi.org/10.1016/S0304-3835(00)00378-5] [PMID: 10806303]
[149]
Tewes, F.J.; Koo, L.C.; Meisgen, T.J.; Rylander, R. Lung cancer risk and mutagenicity of tea. Environ. Res., 1990, 52(1), 23-33.
[http://dx.doi.org/10.1016/S0013-9351(05)80148-3] [PMID: 2351126]
[150]
Shirai, T.; Sato, A.; Hara, Y. Epigallocatechin gallate. The major causative agent of green tea-induced asthma. Chest, 1994, 106(6), 1801-1805.
[http://dx.doi.org/10.1378/chest.106.6.1801] [PMID: 7988204]
[151]
Shirai, T.; Sato, A.; Chida, K.; Hayakawa, H.; Akiyama, J.; Iwata, M.; Taniguchi, M.; Reshad, K.; Hara, Y. Epigallocatechin gallate-induced histamine release in patients with green tea-induced asthma. Ann. Allergy Asthma Immunol., 1997, 79(1), 65-69.
[http://dx.doi.org/10.1016/S1081-1206(10)63087-6] [PMID: 9236503]
[152]
Choi, K.C.; Park, S.; Lim, B.J.; Seong, A.R.; Lee, Y.H.; Shiota, M.; Yokomizo, A.; Naito, S.; Na, Y.; Yoon, H.G. Procyanidin B3, an inhibitor of histone acetyltransferase, enhances the action of antagonist for prostate cancer cells via inhibition of p300-dependent acetylation of androgen receptor. Biochem. J., 2011, 433(1), 235-244.
[http://dx.doi.org/10.1042/BJ20100980] [PMID: 20955177]
[153]
Choi, K.C.; Jung, M.G.; Lee, Y.H.; Yoon, J.C.; Kwon, S.H.; Kang, H.B.; Kim, M.J.; Cha, J.H.; Kim, Y.J.; Jun, W.J.; Lee, J.M.; Yoon, H.G. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res., 2009, 69(2), 583-592.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2442] [PMID: 19147572]
[154]
Lee, Y.H.; Kwak, J.; Choi, H.K.; Choi, K.C.; Kim, S.; Lee, J.; Jun, W.; Park, H.J.; Yoon, H.G. EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int. J. Mol. Med., 2012, 30(1), 69-74.
[PMID: 22505206]
[155]
Zhang, H.; Zhang, M.; Yu, L.; Zhao, Y.; He, N.; Yang, X. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol., 2012, 50(5), 1589-1599.
[http://dx.doi.org/10.1016/j.fct.2012.01.025] [PMID: 22310237]
[156]
Haghiac, M.; Walle, T. Quercetin induces necrosis and apoptosis in SCC-9 oral cancer cells. Nutr. Cancer, 2005, 53(2), 220-231.
[http://dx.doi.org/10.1207/s15327914nc5302_11] [PMID: 16573383]
[157]
Richter, M.; Ebermann, R.; Marian, B. Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr. Cancer, 1999, 34(1), 88-99.
[http://dx.doi.org/10.1207/S15327914NC340113] [PMID: 10453447]
[158]
Brisdelli, F.; Coccia, C.; Cinque, B.; Cifone, M.G.; Bozzi, A. Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Mol. Cell. Biochem., 2007, 296(1-2), 137-149.
[http://dx.doi.org/10.1007/s11010-006-9307-3] [PMID: 16969687]
[159]
Chen, C.; Zhou, J.; Ji, C. Quercetin: a potential drug to reverse multidrug resistance. Life Sci., 2010, 87(11-12), 333-338.
[http://dx.doi.org/10.1016/j.lfs.2010.07.004] [PMID: 20637779]
[160]
Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res., 2011, 31(11), 3789-3797.
[PMID: 22110201]
[161]
Wang, G.; Zhang, J.; Liu, L.; Sharma, S.; Dong, Q. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One, 2012, 7(12)e51764
[http://dx.doi.org/10.1371/journal.pone.0051764] [PMID: 23240061]
[162]
Lee, T.J.; Kim, O.H.; Kim, Y.H.; Lim, J.H.; Kim, S.; Park, J.W.; Kwon, T.K. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett., 2006, 240(2), 234-242.
[http://dx.doi.org/10.1016/j.canlet.2005.09.013] [PMID: 16274926]
[163]
Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837-844.
[http://dx.doi.org/10.3892/ijo.19.4.837] [PMID: 11562764]
[164]
Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep., 2016, 6, 24049.
[http://dx.doi.org/10.1038/srep24049] [PMID: 27068577]
[165]
Boveris, A.; Navarro, A. Brain mitochondrial dysfunction in aging. IUBMB Life, 2008, 60(5), 308-314.
[http://dx.doi.org/10.1002/iub.46] [PMID: 18421773]
[166]
Leuner, K.; Hauptmann, S.; Abdel-Kader, R.; Scherping, I.; Keil, U.; Strosznajder, J.B.; Eckert, A.; Müller, W.E. Mitochondrial dysfunction: the first domino in brain aging and Alzheimer’s disease? Antioxid. Redox Signal., 2007, 9(10), 1659-1675.
[http://dx.doi.org/10.1089/ars.2007.1763] [PMID: 17867931]
[167]
de Moura, M.B.; dos Santos, L.S.; Van Houten, B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ. Mol. Mutagen., 2010, 51(5), 391-405.
[http://dx.doi.org/10.1002/em.20575] [PMID: 20544881]
[168]
Müller, W.E.; Eckert, A.; Kurz, C.; Eckert, G.P.; Leuner, K. Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease--therapeutic aspects. Mol. Neurobiol., 2010, 41(2-3), 159-171.
[http://dx.doi.org/10.1007/s12035-010-8141-5] [PMID: 20461558]
[169]
Chistiakov, D.A.; Sobenin, I.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. BioMed Res. Int., 2014, 2014238463
[http://dx.doi.org/10.1155/2014/238463] [PMID: 24818134]
[170]
Navarro, A.; Boveris, A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front. Aging Neurosci., 2010, 2, 2.
[http://dx.doi.org/10.3389/fnagi.2010.00034] [PMID: 20890446]
[171]
Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Geldenhuys, W.J.; Van der Schyf, C.J. Oxidative stress and Alzheimer’s disease: dietary polyphenols as potential therapeutic agents. Expert Rev. Neurother., 2010, 10(5), 729-745.
[http://dx.doi.org/10.1586/ern.10.42] [PMID: 20420493]
[172]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[173]
Fukui, M.; Choi, H.J.; Zhu, B.T. Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic. Biol. Med., 2010, 49(5), 800-813.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.06.002] [PMID: 20542495]
[174]
Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; Puigserver, P.; Sinclair, D.A.; Tsai, L.H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J., 2007, 26(13), 3169-3179.
[http://dx.doi.org/10.1038/sj.emboj.7601758] [PMID: 17581637]
[175]
Kumar, A.; Naidu, P.S.; Seghal, N.; Padi, S.S. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology, 2007, 79(1), 17-26.
[http://dx.doi.org/10.1159/000097511] [PMID: 17135773]
[176]
Shetty, A.K. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol. Ther., 2011, 131(3), 269-286.
[http://dx.doi.org/10.1016/j.pharmthera.2011.04.008] [PMID: 21554899]
[177]
Bastianetto, S.; Quirion, R. Heme oxygenase 1: another possible target to explain the neuroprotective action of resveratrol, a multifaceted nutrient-based molecule. Exp. Neurol., 2010, 225(2), 237-239.
[http://dx.doi.org/10.1016/j.expneurol.2010.06.019] [PMID: 20603117]
[178]
Quincozes-Santos, A.; Bobermin, L.D.; Tramontina, A.C.; Wartchow, K.M.; Tagliari, B.; Souza, D.O.; Wyse, A.T.; Gonçalves, C.A. Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicol. In Vitro, 2014, 28(4), 544-551.
[http://dx.doi.org/10.1016/j.tiv.2013.12.021] [PMID: 24412540]
[179]
Wang, R.; Liu, Y.Y.; Liu, X.Y.; Jia, S.W.; Zhao, J.; Cui, D.; Wang, L. Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model. Cell. Physiol. Biochem., 2014, 34(3), 854-864.
[http://dx.doi.org/10.1159/000366304] [PMID: 25199673]
[180]
Jang, J.H.; Surh, Y.J. Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic. Biol. Med., 2003, 34(8), 1100-1110.
[http://dx.doi.org/10.1016/S0891-5849(03)00062-5] [PMID: 12684095]
[181]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H.L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[182]
Lu, K.T.; Ko, M.C.; Chen, B.Y.; Huang, J.C.; Hsieh, C.W.; Lee, M.C.; Chiou, R.Y.; Wung, B.S.; Peng, C.H.; Yang, Y.L. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J. Agric. Food Chem., 2008, 56(16), 6910-6913.
[http://dx.doi.org/10.1021/jf8007212] [PMID: 18616261]
[183]
Khan, M.M.; Ahmad, A.; Ishrat, T.; Khan, M.B.; Hoda, M.N.; Khuwaja, G.; Raza, S.S.; Khan, A.; Javed, H.; Vaibhav, K.; Islam, F. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res., 2010, 1328, 139-151.
[http://dx.doi.org/10.1016/j.brainres.2010.02.031] [PMID: 20167206]
[184]
Ferretta, A.; Gaballo, A.; Tanzarella, P.; Piccoli, C.; Capitanio, N.; Nico, B.; Annese, T.; Di Paola, M.; Dell’aquila, C.; De Mari, M.; Ferranini, E.; Bonifati, V.; Pacelli, C.; Cocco, T. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim. Biophys. Acta, 2014, 1842(7), 902-915.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.010] [PMID: 24582596]
[185]
Mancuso, R.; del Valle, J.; Modol, L.; Martinez, A.; Granado-Serrano, A.B.; Ramirez-Núñez, O.; Pallás, M.; Portero-Otin, M.; Osta, R.; Navarro, X. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics, 2014, 11(2), 419-432.
[PMID: 24414863]
[186]
van der Merwe, C.; van Dyk, H.C.; Engelbrecht, L.; van der Westhuizen, F.H.; Kinnear, C.; Loos, B.; Bardien, S. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol. Neurobiol., 2017, 54(4), 2752-2762.
[PMID: 27003823]
[187]
Pandareesh, M.D.; Shrivash, M.K.; Naveen Kumar, H.N.; Misra, K.; Srinivas Bharath, M.M. Curcumin monoglucoside shows improved bioavailability and mitigates rotenone induced neurotoxicity in cell and drosophila models of Parkinson’s disease. Neurochem. Res., 2016, 41(11), 3113-3128.
[http://dx.doi.org/10.1007/s11064-016-2034-6] [PMID: 27535828]
[188]
Hamaguchi, T.; Ono, K.; Yamada, M. Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer’s disease. Cell. Mol. Life Sci., 2006, 63(13), 1538-1552.
[http://dx.doi.org/10.1007/s00018-005-5599-9] [PMID: 16804637]
[189]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[190]
Baum, L.; Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J. Alzheimers Dis., 2004, 6(4), 367-377.
[http://dx.doi.org/10.3233/JAD-2004-6403] [PMID: 15345806]
[191]
Lee, J.S.; Surh, Y.J. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett., 2005, 224(2), 171-184.
[http://dx.doi.org/10.1016/j.canlet.2004.09.042] [PMID: 15914268]
[192]
Hickey, M.A.; Zhu, C.; Medvedeva, V.; Lerner, R.P.; Patassini, S.; Franich, N.R.; Maiti, P.; Frautschy, S.A.; Zeitlin, S.; Levine, M.S.; Chesselet, M.F. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol. Neurodegener., 2012, 7, 12.
[http://dx.doi.org/10.1186/1750-1326-7-12] [PMID: 22475209]
[193]
Sandhir, R.; Yadav, A.; Mehrotra, A.; Sunkaria, A.; Singh, A.; Sharma, S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med., 2014, 16(1), 106-118.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[194]
Wu, J.; Li, Q.; Wang, X.; Yu, S.; Li, L.; Wu, X.; Chen, Y.; Zhao, J.; Zhao, Y. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One, 2013, 8(3)e59843
[http://dx.doi.org/10.1371/journal.pone.0059843] [PMID: 23555802]
[195]
Ghoneim, A.I.; Abdel-Naim, A.B.; Khalifa, A.E.; El-Denshary, E.S. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol. Res., 2002, 46(3), 273-279.
[http://dx.doi.org/10.1016/S1043-6618(02)00123-8] [PMID: 12220971]
[196]
Thiyagarajan, M.; Sharma, S.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci., 2004, 74(8), 969-985.
[http://dx.doi.org/10.1016/j.lfs.2003.06.042] [PMID: 14672754]
[197]
Wang, Q.; Sun, A.Y.; Simonyi, A.; Jensen, M.D.; Shelat, P.B.; Rottinghaus, G.E.; MacDonald, R.S.; Miller, D.K.; Lubahn, D.E.; Weisman, G.A.; Sun, G.Y. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J. Neurosci. Res., 2005, 82(1), 138-148.
[http://dx.doi.org/10.1002/jnr.20610] [PMID: 16075466]
[198]
Liu, L.; Zhang, W.; Wang, L.; Li, Y.; Tan, B.; Lu, X.; Deng, Y.; Zhang, Y.; Guo, X.; Mu, J.; Yu, G. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem. Res., 2014, 39(7), 1322-1331.
[http://dx.doi.org/10.1007/s11064-014-1315-1] [PMID: 24777807]
[199]
Zhao, B. Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochem. Res., 2009, 34(4), 630-638.
[http://dx.doi.org/10.1007/s11064-008-9900-9] [PMID: 19125328]
[200]
Zaveri, N.T. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci., 2006, 78(18), 2073-2080.
[http://dx.doi.org/10.1016/j.lfs.2005.12.006] [PMID: 16445946]
[201]
Mandel, S.A.; Amit, T.; Weinreb, O.; Reznichenko, L.; Youdim, M.B. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci. Ther., 2008, 14(4), 352-365.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00060.x] [PMID: 19040558]
[202]
Zhang, H.S.; Wu, T.C.; Sang, W.W.; Ruan, Z. EGCG inhibits Tat-induced LTR transactivation: role of Nrf2, AKT, AMPK signaling pathway. Life Sci., 2012, 90(19-20), 747-754.
[http://dx.doi.org/10.1016/j.lfs.2012.03.013] [PMID: 22480519]
[203]
Castellano-González, G.; Pichaud, N.; Ballard, J.W.; Bessede, A.; Marcal, H.; Guillemin, G.J. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome C oxidase in human cultured neurons and astrocytes. Oncotarget, 2016, 7(7), 7426-7440.
[http://dx.doi.org/10.18632/oncotarget.6863] [PMID: 26760769]
[204]
Chan, Y.C.; Hosoda, K.; Tsai, C.J.; Yamamoto, S.; Wang, M.F. Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J. Nutr. Sci. Vitaminol. (Tokyo), 2006, 52(4), 266-273.
[http://dx.doi.org/10.3177/jnsv.52.266] [PMID: 17087053]
[205]
Schroeder, E.K.; Kelsey, N.A.; Doyle, J.; Breed, E.; Bouchard, R.J.; Loucks, F.A.; Harbison, R.A.; Linseman, D.A. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid. Redox Signal., 2009, 11(3), 469-480.
[http://dx.doi.org/10.1089/ars.2008.2215] [PMID: 18754708]
[206]
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814.
[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005] [PMID: 16177050]
[207]
Caruana, M.; Vassallo, N. Tea polyphenols in Parkinson’s disease. Adv. Exp. Med. Biol., 2015, 863, 117-137.
[http://dx.doi.org/10.1007/978-3-319-18365-7_6] [PMID: 26092629]
[208]
Mandel, S.A.; Avramovich-Tirosh, Y.; Reznichenko, L.; Zheng, H.; Weinreb, O.; Amit, T.; Youdim, M.B. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals, 2005, 14(1-2), 46-60.
[http://dx.doi.org/10.1159/000085385] [PMID: 15956814]
[209]
Kumar, P.; Kumar, A. Protective effects of epigallocatechin gallate following 3-nitropropionic acid-induced brain damage: possible nitric oxide mechanisms. Psychopharmacology (Berl.), 2009, 207(2), 257-270.
[http://dx.doi.org/10.1007/s00213-009-1652-y] [PMID: 19763544]
[210]
Brouillet, E.; Condé, F.; Beal, M.F.; Hantraye, P. Replicating Huntington’s disease phenotype in experimental animals. Prog. Neurobiol., 1999, 59(5), 427-468.
[http://dx.doi.org/10.1016/S0301-0082(99)00005-2] [PMID: 10515664]
[211]
Sriraksa, N.; Wattanathorn, J.; Muchimapura, S.; Tiamkao, S.; Brown, K.; Chaisiwamongkol, K. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid. Based Complement. Alternat. Med., 2012.2012823206
[http://dx.doi.org/10.1155/2012/823206] [PMID: 21792372]
[212]
Yao, Y.; Han, D.D.; Zhang, T.; Yang, Z. Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytother. Res., 2010, 24(1), 136-140.
[http://dx.doi.org/10.1002/ptr.2902] [PMID: 19688719]
[213]
Solfrizzi, V.; Colacicco, A.M.; D’Introno, A.; Capurso, C.; Parigi, A.D.; Capurso, S.A.; Torres, F.; Capurso, A.; Panza, F. Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia. J. Alzheimers Dis., 2006, 10(2-3), 303-330.
[http://dx.doi.org/10.3233/JAD-2006-102-314] [PMID: 17119295]
[214]
Yasui, M.; Kihira, T.; Ota, K. Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology, 1992, 13(3), 593-600.
[PMID: 1475063]
[215]
Forbes, W.F.; Gentleman, J.F.; Maxwell, C.J. Concerning the role of aluminum in causing dementia. Exp. Gerontol., 1995, 30(1), 23-32.
[http://dx.doi.org/10.1016/0531-5565(94)00050-D] [PMID: 7758535]
[216]
Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Verma, D.; Cameotra, S.S.; Gill, K.D. Quercetin protects against chronic aluminum-induced oxidative stress and ensuing biochemical, cholinergic, and neurobehavioral impairments in rats. Neurotox. Res., 2013, 23(4), 336-357.
[PMID: 22918785]
[217]
Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Sharma, R.K.; Verma, D.; Bal, A.; Gill, K.D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience, 2016, 324, 163-176.
[http://dx.doi.org/10.1016/j.neuroscience.2016.02.055] [PMID: 26944603]
[218]
Sandhir, R.; Mehrotra, A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim. Biophys. Acta, 2013, 1832(3), 421-430.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.018] [PMID: 23220257]
[219]
Vepsäläinen, S.; Koivisto, H.; Pekkarinen, E.; Mäkinen, P.; Dobson, G.; McDougall, G.J.; Stewart, D.; Haapasalo, A.; Karjalainen, R.O.; Tanila, H.; Hiltunen, M. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem., 2013, 24(1), 360-370.
[http://dx.doi.org/10.1016/j.jnutbio.2012.07.006] [PMID: 22995388]
[220]
Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20(4), 269-275.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[221]
Wang, D.M.; Li, S.Q.; Wu, W.L.; Zhu, X.Y.; Wang, Y.; Yuan, H.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem. Res., 2014, 39(8), 1533-1543.
[http://dx.doi.org/10.1007/s11064-014-1343-x] [PMID: 24893798]
[222]
Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Davis, B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 296(4), R1071-R1077.
[http://dx.doi.org/10.1152/ajpregu.90925.2008] [PMID: 19211721]
[223]
Schuppan, D.; Gorrell, M.D.; Klein, T.; Mark, M.; Afdhal, N.H. The challenge of developing novel pharmacological therapies for non-alcoholic steatohepatitis. Liver Int., 2010, 30(6), 795-808.
[http://dx.doi.org/10.1111/j.1478-3231.2010.02264.x] [PMID: 20624207]
[224]
Grattagliano, I.; Portincasa, P.; Palmieri, V.O.; Palasciano, G. Managing nonalcoholic fatty liver disease: recommendations for family physicians. Can. Fam. Physician, 2007, 53(5), 857-863.
[PMID: 17872748]
[225]
McGill, M.R.; Du, K.; Weemhoff, J.L.; Jaeschke, H. Critical review of resveratrol in xenobiotic-induced hepatotoxicity. Food Chem. Toxicol., 2015, 86, 309-318.
[http://dx.doi.org/10.1016/j.fct.2015.11.003] [PMID: 26561740]
[226]
Vera-Ramirez, L.; Pérez-Lopez, P.; Varela-Lopez, A.; Ramirez-Tortosa, M.; Battino, M.; Quiles, J.L. Curcumin and liver disease. Biofactors, 2013, 39(1), 88-100.
[http://dx.doi.org/10.1002/biof.1057] [PMID: 23303639]
[227]
Jaeschke, H.; Williams, C.D.; McGill, M.R.; Xie, Y.; Ramachandran, A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem. Toxicol., 2013, 55, 279-289.
[http://dx.doi.org/10.1016/j.fct.2012.12.063] [PMID: 23353004]
[228]
Nair, D.G.; Weiskirchen, R.; Al-Musharafi, S.K. The use of marine-derived bioactive compounds as potential hepatoprotective agents. Acta Pharmacol. Sin., 2015, 36(2), 158-170.
[http://dx.doi.org/10.1038/aps.2014.114] [PMID: 25500871]
[229]
Zhang, A.; Sun, H.; Wang, X. Recent advances in natural products from plants for treatment of liver diseases. Eur. J. Med. Chem., 2013, 63, 570-577.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.062] [PMID: 23567947]
[230]
Girish, C.; Pradhan, S.C. Indian herbal medicines in the treatment of liver diseases: problems and promises. Fundam. Clin. Pharmacol., 2012, 26(2), 180-189.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01011.x] [PMID: 22136107]
[231]
Zhao, C.Q.; Zhou, Y.; Ping, J.; Xu, L.M. Traditional Chinese medicine for treatment of liver diseases: progress, challenges and opportunities. J. Integr. Med., 2014, 12(5), 401-408.
[http://dx.doi.org/10.1016/S2095-4964(14)60039-X] [PMID: 25292339]
[232]
Seeff, L.B.; Bonkovsky, H.L.; Navarro, V.J.; Wang, G. Herbal products and the liver: a review of adverse effects and mechanisms. Gastroenterology, 2015, 48(3), 517-532e513.
[233]
Plin, C.; Tillement, J.P.; Berdeaux, A.; Morin, D. Resveratrol protects against cold ischemia-warm reoxygenation-induced damages to mitochondria and cells in rat liver. Eur. J. Pharmacol., 2005, 528(1-3), 162-168.
[http://dx.doi.org/10.1016/j.ejphar.2005.10.044] [PMID: 16325807]
[234]
Hassan-Khabbar, S.; Cottart, C.H.; Wendum, D.; Vibert, F.; Clot, J.P.; Savouret, J.F.; Conti, M.; Nivet-Antoine, V. Postischemic treatment by trans-resveratrol in rat liver ischemia-reperfusion: a possible strategy in liver surgery. Liver Transpl., 2008, 14(4), 451-459.
[http://dx.doi.org/10.1002/lt.21405] [PMID: 18383089]
[235]
Ajmo, J.M.; Liang, X.; Rogers, C.Q.; Pennock, B.; You, M. Resveratrol alleviates alcoholic fatty liver in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(4), G833-G842.
[http://dx.doi.org/10.1152/ajpgi.90358.2008] [PMID: 18755807]
[236]
Ahn, J.; Cho, I.; Kim, S.; Kwon, D.; Ha, T. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J. Hepatol., 2008, 49(6), 1019-1028.
[http://dx.doi.org/10.1016/j.jhep.2008.08.012] [PMID: 18930334]
[237]
Sener, G.; Toklu, H.Z.; Sehirli, A.O.; Velioğlu-Oğünç, A.; Cetinel, S.; Gedik, N. Protective effects of resveratrol against acetaminophen-induced toxicity in mice. Hepatol. Res., 2006, 35(1), 62-68.
[http://dx.doi.org/10.1016/j.hepres.2006.02.005] [PMID: 16595188]
[238]
Du, K.; McGill, M.R.; Xie, Y.; Bajt, M.L.; Jaeschke, H. Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem. Toxicol., 2015, 81, 62-70.
[http://dx.doi.org/10.1016/j.fct.2015.04.014] [PMID: 25865938]
[239]
Rivera, H.; Shibayama, M.; Tsutsumi, V.; Perez-Alvarez, V.; Muriel, P. Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J. Appl. Toxicol., 2008, 28(2), 147-155.
[http://dx.doi.org/10.1002/jat.1260] [PMID: 17541932]
[240]
Meng, Y.; Ma, Q.Y.; Kou, X.P.; Xu, J. Effect of resveratrol on activation of nuclear factor kappa-B and inflammatory factors in rat model of acute pancreatitis. World J. Gastroenterol., 2005, 11(4), 525-528.
[http://dx.doi.org/10.3748/wjg.v11.i4.525] [PMID: 15641139]
[241]
Sha, H.; Ma, Q.; Jha, R.K.; Xu, F.; Wang, L.; Wang, Z.; Zhao, Y.; Fan, F. Resveratrol ameliorates hepatic injury via the mitochondrial pathway in rats with severe acute pancreatitis. Eur. J. Pharmacol., 2008, 601(1-3), 136-142.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.017] [PMID: 18977215]
[242]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[243]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[244]
Hou, X.; Xu, S.; Maitland-Toolan, K.A.; Sato, K.; Jiang, B.; Ido, Y.; Lan, F.; Walsh, K.; Wierzbicki, M.; Verbeuren, T.J.; Cohen, R.A.; Zang, M. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem., 2008, 283(29), 20015-20026.
[http://dx.doi.org/10.1074/jbc.M802187200] [PMID: 18482975]
[245]
Poulsen, M.M.; Larsen, J.O.; Hamilton-Dutoit, S.; Clasen, B.F.; Jessen, N.; Paulsen, S.K.; Kjaer, T.N.; Richelsen, B.; Pedersen, S.B. Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet. Nutr. Res., 2012, 32(9), 701-708.
[http://dx.doi.org/10.1016/j.nutres.2012.08.004] [PMID: 23084643]
[246]
Morikawa, T.; Matsuda, H.; Ninomiya, K.; Yoshikawa, M. Medicinal foodstuffs. XXIX. Potent protective effects of sesquiterpenes and curcumin from Zedoariae Rhizoma on liver injury induced by D-galactosamine/lipopolysaccharide or tumor necrosis factor-alpha. Biol. Pharm. Bull., 2002, 25(5), 627-631.
[http://dx.doi.org/10.1248/bpb.25.627] [PMID: 12033504]
[247]
Kaur, G.; Tirkey, N.; Bharrhan, S.; Chanana, V.; Rishi, P.; Chopra, K. Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatoxicity in rodents. Clin. Exp. Immunol., 2006, 145(2), 313-321.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03108.x] [PMID: 16879252]
[248]
Shapiro, H.; Ashkenazi, M.; Weizman, N.; Shahmurov, M.; Aeed, H.; Bruck, R. Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J. Gastroenterol. Hepatol., 2006, 21(2), 358-366.
[http://dx.doi.org/10.1111/j.1440-1746.2005.03984.x] [PMID: 16509859]
[249]
Mouzaoui, S.; Rahim, I.; Djerdjouri, B. Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-α-induced oxidative stress, colitis and hepatotoxicity in mice. Int. Immunopharmacol., 2012, 12(1), 302-311.
[http://dx.doi.org/10.1016/j.intimp.2011.10.010] [PMID: 22036766]
[250]
Rukkumani, R.; Sri Balasubashini, M.; Vishwanathan, P.; Menon, V.P. Comparative effects of curcumin and photo-irradiated curcumin on alcohol- and polyunsaturated fatty acid-induced hyperlipidemia. Pharmacol. Res., 2002, 46(3), 257-264.
[http://dx.doi.org/10.1016/S1043-6618(02)00149-4] [PMID: 12220969]
[251]
Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Mesa, M.D.; Granados, S.; Gil, A.; Quiles, J.L. Curcumin ameliorates rabbits’s steatohepatitis via respiratory chain, oxidative stress, and TNF-alpha. Free Radic. Biol. Med., 2009, 47(7), 924-931.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.06.015] [PMID: 19539747]
[252]
Kuo, J.J.; Chang, H.H.; Tsai, T.H.; Lee, T.Y. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int. J. Mol. Med., 2012, 30(3), 673-679.
[http://dx.doi.org/10.3892/ijmm.2012.1049] [PMID: 22751848]
[253]
Ren, Y.; Deng, F.; Zhu, H.; Wan, W.; Ye, J.; Luo, B. Effect of epigallocatechin-3-gallate on iron overload in mice with alcoholic liver disease. Mol. Biol. Rep., 2011, 38(2), 879-886.
[http://dx.doi.org/10.1007/s11033-010-0180-5] [PMID: 20490691]
[254]
Giakoustidis, D.E.; Giakoustidis, A.E.; Iliadis, S.; Koliakou, K.; Antoniadis, N.; Kontos, N.; Papanikolaou, V.; Papageorgiou, G.; Kaldrimidou, E.; Takoudas, D. Attenuation of liver ischemia/reperfusion induced apoptosis by epigallocatechin-3-gallate via down-regulation of NF-kappaB and c-Jun expression. J. Surg. Res., 2010, 159(2), 720-728.
[http://dx.doi.org/10.1016/j.jss.2008.08.038] [PMID: 19394642]
[255]
Bose, M.; Lambert, J.D.; Ju, J.; Reuhl, K.R.; Shapses, S.A.; Yang, C.S. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J. Nutr., 2008, 138(9), 1677-1683.
[http://dx.doi.org/10.1093/jn/138.9.1677] [PMID: 18716169]
[256]
Kaviarasan, S.; Ramamurthy, N.; Gunasekaran, P.; Varalakshmi, E.; Anuradha, C.V. Epigallocatechin-3-gallate(-)protects Chang liver cells against ethanol-induced cytotoxicity and apoptosis. Basic Clin. Pharmacol. Toxicol., 2007, 100(3), 151-156.
[http://dx.doi.org/10.1111/j.1742-7843.2006.00036.x] [PMID: 17309517]
[257]
Shen, K.; Feng, X.; Su, R.; Xie, H.; Zhou, L.; Zheng, S. Epigallocatechin 3-gallate ameliorates bile duct ligation induced liver injury in mice by modulation of mitochondrial oxidative stress and inflammation. PLoS One, 2015, 10(5)e0126278
[http://dx.doi.org/10.1371/journal.pone.0126278] [PMID: 25955525]
[258]
Gan, L.; Meng, Z.J.; Xiong, R.B.; Guo, J.Q.; Lu, X.C.; Zheng, Z.W.; Deng, Y.P.; Luo, B.D.; Zou, F.; Li, H. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice. Acta Pharmacol. Sin., 2015, 36(5), 597-605.
[http://dx.doi.org/10.1038/aps.2015.11] [PMID: 25891086]
[259]
Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[260]
Pavanato, A.; Tuñón, M.J.; Sánchez-Campos, S.; Marroni, C.A.; Llesuy, S.; González-Gallego, J.; Marroni, N. Effects of quercetin on liver damage in rats with carbon tetrachloride-induced cirrhosis. Dig. Dis. Sci., 2003, 48(4), 824-829.
[http://dx.doi.org/10.1023/A:1022869716643] [PMID: 12741479]
[261]
Yao, P.; Nussler, A.; Liu, L.; Hao, L.; Song, F.; Schirmeier, A.; Nussler, N. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J. Hepatol., 2007, 47(2), 253-261.
[http://dx.doi.org/10.1016/j.jhep.2007.02.008] [PMID: 17433488]
[262]
Molina, M.F.; Sanchez-Reus, I.; Iglesias, I.; Benedi, J. Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol. Pharm. Bull., 2003, 26(10), 1398-1402.
[http://dx.doi.org/10.1248/bpb.26.1398] [PMID: 14519943]
[263]
Chen, X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn. Mag., 2010, 6(22), 135-141.
[http://dx.doi.org/10.4103/0973-1296.62900] [PMID: 20668581]
[264]
Tang, Y.; Gao, C.; Xing, M.; Li, Y.; Zhu, L.; Wang, D.; Yang, X.; Liu, L.; Yao, P. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem. Toxicol., 2012, 50(5), 1194-1200.
[http://dx.doi.org/10.1016/j.fct.2012.02.008] [PMID: 22365892]
[265]
Mandal, A.K.; Das, S.; Basu, M.K.; Chakrabarti, R.N.; Das, N. Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. J. Pharmacol. Exp. Ther., 2007, 320(3), 994-1001.
[http://dx.doi.org/10.1124/jpet.106.114215] [PMID: 17138861]
[266]
Jung, C.H.; Cho, I.; Ahn, J.; Jeon, T.I.; Ha, T.Y. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother. Res., 2013, 27(1), 139-143.
[http://dx.doi.org/10.1002/ptr.4687] [PMID: 22447684]
[267]
Granado-Serrano, A.B.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem. Biol. Interact., 2012, 195(2), 154-164.
[http://dx.doi.org/10.1016/j.cbi.2011.12.005] [PMID: 22197970]
[268]
Victor, V.M.; Rocha, M. Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases. Curr. Pharm. Des., 2007, 13(8), 845-863.
[http://dx.doi.org/10.2174/138161207780363077] [PMID: 17430185]
[269]
Taegtmeyer, H. Cardiac metabolism as a target for the treatment of heart failure. Circulation, 2004, 110(8), 894-896.
[http://dx.doi.org/10.1161/01.CIR.0000139340.88769.D5] [PMID: 15326079]
[270]
Neubauer, S. The failing heart-an engine out of fuel. N. Engl. J. Med., 2007, 356(11), 1140-1151.
[http://dx.doi.org/10.1056/NEJMra063052] [PMID: 17360992]
[271]
Sung, M.M.; Hamza, S.M.; Dyck, J.R. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid. Redox Signal., 2015, 22(17), 1606-1630.
[http://dx.doi.org/10.1089/ars.2015.6305] [PMID: 25808033]
[272]
Parodi-Rullan, R.; Barreto-Torres, G.; Ruiz, L.; Casasnovas, J.; Javadov, S. Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell. Physiol. Biochem., 2012, 29(5-6), 841-850.
[http://dx.doi.org/10.1159/000178526] [PMID: 22613984]
[273]
Cai, H.; Harrison, D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res., 2000, 87(10), 840-844.
[http://dx.doi.org/10.1161/01.RES.87.10.840] [PMID: 11073878]
[274]
Willcox, B.J.; Curb, J.D.; Rodriguez, B.L. Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. Am. J. Cardiol., 2008, 101(10A), 75D-86D.
[http://dx.doi.org/10.1016/j.amjcard.2008.02.012] [PMID: 18474278]
[275]
Clarke, R.; Daly, L.; Robinson, K.; Naughten, E.; Cahalane, S.; Fowler, B.; Graham, I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N. Engl. J. Med., 1991, 324(17), 1149-1155.
[http://dx.doi.org/10.1056/NEJM199104253241701] [PMID: 2011158]
[276]
Ladurner, A.; Schachner, D.; Schueller, K.; Pignitter, M.; Heiss, E.H.; Somoza, V.; Dirsch, V.M. Impact of trans-resveratrol-sulfates and -glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species. Molecules, 2014, 19(10), 16724-16736.
[http://dx.doi.org/10.3390/molecules191016724] [PMID: 25329867]
[277]
Arunachalam, G.; Yao, H.; Sundar, I.K.; Caito, S.; Rahman, I. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem. Biophys. Res. Commun., 2010, 393(1), 66-72.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.080] [PMID: 20102704]
[278]
de Kreutzenberg, S.V.; Ceolotto, G.; Papparella, I.; Bortoluzzi, A.; Semplicini, A.; Dalla Man, C.; Cobelli, C.; Fadini, G.P.; Avogaro, A. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes, 2010, 59(4), 1006-1015.
[http://dx.doi.org/10.2337/db09-1187] [PMID: 20068143]
[279]
Zhang, C.; Feng, Y.; Qu, S.; Wei, X.; Zhu, H.; Luo, Q.; Liu, M.; Chen, G.; Xiao, X. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc. Res., 2011, 90(3), 538-545.
[http://dx.doi.org/10.1093/cvr/cvr022] [PMID: 21278141]
[280]
Rimbaud, S.; Ruiz, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Veksler, V.; Garnier, A.; Ventura-Clapier, R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One, 2011, 6(10)e26391
[http://dx.doi.org/10.1371/journal.pone.0026391] [PMID: 22028869]
[281]
Mohammadshahi, M.; Haidari, F.; Soufi, F.G. Chronic resveratrol administration improves diabetic cardiomyopathy in part by reducing oxidative stress. Cardiol. J., 2014, 21(1), 39-46.
[http://dx.doi.org/10.5603/CJ.a2013.0051] [PMID: 23677724]
[282]
Zhang, H.; Morgan, B.; Potter, B.J.; Ma, L.; Dellsperger, K.C.; Ungvari, Z.; Zhang, C. Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol., 2010, 299(4), H985-H994.
[http://dx.doi.org/10.1152/ajpheart.00489.2010] [PMID: 20675566]
[283]
Soufi, F.G.; Vardyani, M.; Sheervalilou, R.; Mohammadi, M.; Somi, M.H. Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats. Gen. Physiol. Biophys., 2012, 31(4), 431-438.
[http://dx.doi.org/10.4149/gpb_2012_039] [PMID: 23255670]
[284]
Tanno, M.; Kuno, A.; Yano, T.; Miura, T.; Hisahara, S.; Ishikawa, S.; Shimamoto, K.; Horio, Y. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J. Biol. Chem., 2010, 285(11), 8375-8382.
[http://dx.doi.org/10.1074/jbc.M109.090266] [PMID: 20089851]
[285]
Gurusamy, N.; Lekli, I.; Mukherjee, S.; Ray, D.; Ahsan, M.K.; Gherghiceanu, M.; Popescu, L.M.; Das, D.K. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res., 2010, 86(1), 103-112.
[http://dx.doi.org/10.1093/cvr/cvp384] [PMID: 19959541]
[286]
Das, S.; Fraga, C.G.; Das, D.K. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic. Res., 2006, 40(10), 1066-1075.
[http://dx.doi.org/10.1080/10715760600833085] [PMID: 17015251]
[287]
Gao, Z.B.; Chen, X.Q.; Hu, G.Y. Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res., 2006, 1111(1), 41-47.
[http://dx.doi.org/10.1016/j.brainres.2006.06.096] [PMID: 16876771]
[288]
Chen, C.J.; Yu, W.; Fu, Y.C.; Wang, X.; Li, J.L.; Wang, W. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem. Biophys. Res. Commun., 2009, 378(3), 389-393.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.110] [PMID: 19059213]
[289]
Morris, K.C.; Lin, H.W.; Thompson, J.W.; Perez-Pinzon, M.A. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J. Cereb. Blood Flow Metab., 2011, 31(4), 1003-1019.
[http://dx.doi.org/10.1038/jcbfm.2010.229] [PMID: 21224864]
[290]
Gutiérrez-Pérez, A.; Cortés-Rojo, C.; Noriega-Cisneros, R.; Calderón-Cortés, E.; Manzo-Avalos, S.; Clemente-Guer-rero, M.; Godínez-Hernández, D.; Boldogh, I.; Saavedra-Molina, A. Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria. J. Bioenerg. Biomembr., 2011, 43(2), 101-107.
[http://dx.doi.org/10.1007/s10863-011-9349-4] [PMID: 21448653]
[291]
Xu, P.; Yao, Y.; Guo, P.; Wang, T.; Yang, B.; Zhang, Z. Curcumin protects rat heart mitochondria against anoxia-reoxygenation induced oxidative injury. Can. J. Physiol. Pharmacol., 2013, 91(9), 715-723.
[http://dx.doi.org/10.1139/cjpp-2013-0055] [PMID: 23984717]
[292]
Nirmala, C.; Puvanakrishnan, R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol. Cell. Biochem., 1996, 159(2), 85-93.
[http://dx.doi.org/10.1007/BF00420910] [PMID: 8858558]
[293]
Izem-Meziane, M.; Djerdjouri, B.; Rimbaud, S.; Caffin, F.; Fortin, D.; Garnier, A.; Veksler, V.; Joubert, F.; Ventura-Clapier, R. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(3), H665-H674.
[http://dx.doi.org/10.1152/ajpheart.00467.2011] [PMID: 22101527]
[294]
González-Salazar, A.; Molina-Jijón, E.; Correa, F.; Zarco-Márquez, G.; Calderón-Oliver, M.; Tapia, E.; Zazueta, C.; Pedraza-Chaverri, J. Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovasc. Toxicol., 2011, 11(4), 357-364.
[http://dx.doi.org/10.1007/s12012-011-9128-9] [PMID: 21769543]
[295]
Morimoto, T.; Sunagawa, Y.; Kawamura, T.; Takaya, T.; Wada, H.; Nagasawa, A.; Komeda, M.; Fujita, M.; Shimatsu, A.; Kita, T.; Hasegawa, K. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest., 2008, 118(3), 868-878.
[http://dx.doi.org/10.1172/JCI33160] [PMID: 18292809]
[296]
Nakayama, H.; Chen, X.; Baines, C.P.; Klevitsky, R.; Zhang, X.; Zhang, H.; Jaleel, N.; Chua, B.H.; Hewett, T.E.; Robbins, J.; Houser, S.R.; Molkentin, J.D. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J. Clin. Invest., 2007, 117(9), 2431-2444.
[http://dx.doi.org/10.1172/JCI31060] [PMID: 17694179]
[297]
Aneja, R.; Hake, P.W.; Burroughs, T.J.; Denenberg, A.G.; Wong, H.R.; Zingarelli, B. Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol. Med., 2004, 10(1-6), 55-62.
[http://dx.doi.org/10.2119/2004-00032.Aneja] [PMID: 15502883]
[298]
Townsend, P.A.; Scarabelli, T.M.; Pasini, E.; Gitti, G.; Menegazzi, M.; Suzuki, H.; Knight, R.A.; Latchman, D.S.; Stephanou, A. Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J., 2004, 18(13), 1621-1623.
[http://dx.doi.org/10.1096/fj.04-1716fje] [PMID: 15319365]
[299]
Hirai, M.; Hotta, Y.; Ishikawa, N.; Wakida, Y.; Fukuzawa, Y.; Isobe, F.; Nakano, A.; Chiba, T.; Kawamura, N. Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts. Life Sci., 2007, 80(11), 1020-1032.
[http://dx.doi.org/10.1016/j.lfs.2006.11.032] [PMID: 17174345]
[300]
Devika, P.T.; Stanely Mainzen Prince, P. (-)Epigallo-catechingallate protects the mitochondria against the deleterious effects of lipids, calcium and adenosine triphosphate in isoproterenol induced myocardial infarcted male Wistar rats. J. Appl. Toxicol., 2008, 28(8), 938-944.
[http://dx.doi.org/10.1002/jat.1357] [PMID: 18528854]
[301]
Chen, D.D.; Dong, Y.G.; Liu, D.; He, J.G. Epigallocatechin-3-gallate attenuates cardiac hypertrophy in hypertensive rats in part by modulation of mitogen-activated protein kinase signals. Clin. Exp. Pharmacol. Physiol., 2009, 36(9), 925-932.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05173.x] [PMID: 19298531]
[302]
Song, D.K.; Jang, Y.; Kim, J.H.; Chun, K.J.; Lee, D.; Xu, Z. Polyphenol (-)-epigallocatechin gallate during ischemia limits infarct size via mitochondrial K(ATP) channel activation in isolated rat hearts. J. Korean Med. Sci., 2010, 25(3), 380-386.
[http://dx.doi.org/10.3346/jkms.2010.25.3.380] [PMID: 20191036]
[303]
Young, W.; Hotovec, R.L.; Romero, A.G. Tea and atherosclerosis. Nature, 1967, 216(5119), 1015-1016.
[http://dx.doi.org/10.1038/2161015a0] [PMID: 6066548]
[304]
Muramatsu, K.; Fukuyo, M.; Hara, Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. (Tokyo), 1986, 32(6), 613-622.
[http://dx.doi.org/10.3177/jnsv.32.613] [PMID: 3585557]
[305]
Conquer, J.A.; Maiani, G.; Azzini, E.; Raguzzini, A.; Holub, B.J. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J. Nutr., 1998, 128(3), 593-597.
[http://dx.doi.org/10.1093/jn/128.3.593] [PMID: 9482769]
[306]
Stein, J.H.; Keevil, J.G.; Wiebe, D.A.; Aeschlimann, S.; Folts, J.D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation, 1999, 100(10), 1050-1055.
[http://dx.doi.org/10.1161/01.CIR.100.10.1050] [PMID: 10477529]
[307]
Punithavathi, V.R.; Stanely Mainzen Prince, P. Protective effects of combination of quercetin and α-tocopherol on mitochondrial dysfunction and myocardial infarct size in isoproterenol-treated myocardial infarcted rats: biochemical, transmission electron microscopic, and macroscopic enzyme mapping evidences. J. Biochem. Mol. Toxicol., 2010, 24(5), 303-312.
[http://dx.doi.org/10.1002/jbt.20339] [PMID: 20979156]
[308]
Brookes, P.S.; Digerness, S.B.; Parks, D.A.; Darley-Usmar, V. Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic. Biol. Med., 2002, 32(11), 1220-1228.
[http://dx.doi.org/10.1016/S0891-5849(02)00839-0] [PMID: 12031906]
[309]
Steinhubl, S.R. Why have antioxidants failed in clinical trials? Am. J. Cardiol., 2008, 101(10A), 14D-19D.
[http://dx.doi.org/10.1016/j.amjcard.2008.02.003] [PMID: 18474268]
[310]
Mecocci, P.; Polidori, M.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim. Biophys. Acta, 2012, 1822(5), 631-638.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.006] [PMID: 22019723]
[311]
Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem., 2008, 56(13), 4855-4873.
[http://dx.doi.org/10.1021/jf0735073] [PMID: 18557624]
[312]
Testai, L.; Rapposelli, S.; Martelli, A.; Breschi, M.C.; Calderone, V. Mitochondrial potassium channels as pharmacological target for cardioprotective drugs. Med. Res. Rev., 2015, 35(3), 520-553.
[http://dx.doi.org/10.1002/med.21332] [PMID: 25346462]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy