Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿尔茨海默病样早期脑发病机制:自我治疗改善神经退行性病变从促炎“受伤”到抗炎“愈合”

卷 14, 期 10, 2017

页: [1123 - 1135] 页: 13

弟呕挨: 10.2174/1567205014666170417111420

价格: $65

摘要

目的:神经炎症的病因仍然是不确定的,有效的干预措施来阻止神经退行性疾病仍然难以获得。令人惊讶的是,我们发现II型胶原结合完全弗氏佐剂(CC),通常能诱导小鼠产生类风湿关节炎(RA)也驱动阿尔茨海默氏症(AD)样神经退行性变。完全弗氏佐剂不仅上调大脑促炎性细胞因子包括肿瘤坏死因子(TNF-α)和白细胞介素8(IL-8),而且下调大脑中抗炎细胞因子白细胞介素10(IL-10)和抗炎递质多巴胺生物合成的限速酶酪氨酸羟化酶(TH)。相反,电针首先提高TNF-α/ IL-8水平,降低IL-10/TH水平,随后又可降低TNF-α/ IL-8水平,升高IL-10/TH水平。对线粒体的生物合成、泛素化和自噬的影响,EA首先控制然后削弱CC触发的信号转导通路从而导致氧化、亚硝基化、缺氧与血管生成。最终,EA通过降低淀粉样-β肽(Aβ)和磷酸化类tau蛋白(p-tau)来阻碍神经退行性变化,并通过增加胆碱能神经递质乙酰胆碱(ACh)及其限速合成酶胆碱乙酰基转移酶(ChAT)来改善神经功能障碍。 结果:总的来说,EA起初加重,随后改善CC诱发AD样早期脑机制从促炎小胶质细胞到抗炎小胶质细胞转换。

关键词: 阿尔茨海默病,电针,炎症性病变,炎症,神经退行性疾病,氧化应激

« Previous
[1]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 362: 329-44. (2010).
[2]
Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M, et al. World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends (2015).
[3]
Alzheimer’s Association 2016 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 12: 459-509. (2016).
[4]
Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63: 168-74. (2006).
[5]
Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408-17. (1982).
[6]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12: 383-8. (1991).
[7]
Mudher A, Lovestone S. Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci 25: 22-6. (2002).
[8]
Reardon S. Antibody drugs for Alzheimer’s show glimmers of promise. Nature 523: 509-10. (2015).
[9]
De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell 164: 603-15. (2016).
[10]
Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, et al. Microbes and Alzheimer’s disease. J Alzheimers Dis 51: 979-84. (2016).
[11]
Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5: e9505. (2010).
[12]
Alonso R, Pisa D, Marina AI, Morato E, Rabano A, Carrasco L. Fungal infection in patients with Alzheimer’s disease. J Alzheimers Dis 41: 301-11. (2014).
[13]
Pisa D, Alonso R, Rabano A, Rodal I, Carrasco L. Different brain regions are infected with fungi in Alzheimer’s disease. Sci Rep 5: 15015. (2015).
[14]
Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, et al. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 16: 85-98. (2015).
[15]
McNamara J, Murray TA. Connections between herpes simplex virus type 1 and Alzheimer’s disease pathogenesis. Curr Alzheimer Res 13: 996-1005. (2016).
[16]
Noble JM, Scarmeas N, Celenti RS, Elkind MS, Wright CB, Schupf N, et al. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer’s disease. PLoS One 9: e114959. (2014).
[17]
Singhrao SK, Harding A, Poole S, Kesavalu L, Crean S. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm 2015: 137357. (2015).
[18]
Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer’s disease? J Oral Microbiol 7: 29143. (2015).
[19]
Webster SJ, Van Eldik LJ, Watterson DM, Bachstetter AD. Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment. J Neurosci 35: 6554-69. (2015).
[20]
Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci 8: 260. (2014).
[21]
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9: 124. (2015).
[22]
Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206: 121-4. (2009).
[23]
Bao F, Wu P, Xiao N, Qiu F, Zeng QP. Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice. PLoS One 7: e34494. (2012).
[24]
Gao Q, He J, Liao T, Zeng QP. 2,4-dinitrophenol downregulates genes for diabetes and fatty liver in obese mice. J Biosci Med 3: 44-51. (2015).
[25]
Kahn MS, Kranjac D, Alonzo CA, Haase JF, Cedillos RO, McLinden KA, et al. Prolonged elevation in hippocampal A beta and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 229: 176-84. (2012).
[26]
He Q, Yu W, Wu J, Chen C, Lou Z, Zhang Q, et al. Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS One 8: e78418. (2013).
[27]
Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30: 350-8. (2015).
[28]
Szekely CA, Town T, Zandi PP. NSAIDs for the chemoprevention of Alzheimer’s disease. Subcell Biochem 42: 229-48. (2007).
[29]
Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 29: 507-19. (2008).
[30]
Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, et al. Inhibition of mTOR abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One 5: e9979. (2010).
[31]
Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, et al. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation 8: 64. (2011).
[32]
Wang ZQ, Nie BB, Li DH, Zhao Z, Han Y, Song H, et al. Effect of acupuncture in mild cognitive impairment and Alzheimer’s disease: a functional MRI study. PLoS One 7: e42730. (2012).
[33]
Du YJ, Li RL, Sun GJ, Meng P, Song J. Pre-moxibustion and moxibustion prevent Alzheimer’s disease. Neural Regen Res 8: 2811-9. (2013).
[34]
Nam MH, Ahn KS, Choi SH. Acupuncture: a potent therapeutic tool for inducing adult neurogenesis. Neural Regen Res 10: 33-5. (2015).
[35]
Torres-Rosas R, Tehia G, Peña G, Mishra P, del Rocio Thompson-Bonilla M, Moreno-Eutimio MA, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20: 291-5. (2014).
[36]
Yiu EM, Chan KM, Li NY, Tsang R, Abbott KV, Kwong E, et al. Wound-healing effect of acupuncture for treating phonotraumatic vocal pathologies: A cytokine study. Laryngoscope 126: E18-22. (2016).
[37]
Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 8: 340ra72. (2016).
[38]
Carrettiero DC, Santiago FE, Motzko-Soares AC, Almeida MC. Temperature and toxic Tau in Alzheimer’s disease: new insights. Temperature (Austin) 2: 491-8. (2015).
[39]
Su B, Wang X, Lee HG, Tabaton M, Perry G, Smith MA, et al. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 468: 267-71. (2010).
[40]
Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57: 1-9. (1998).
[41]
Nazem A, Sankowski R, Bacher M, Al Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation 12: 74. (2015).
[42]
Tang Y, Le WD. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53: 1181-94. (2016).
[43]
Akhtar MW, Sanz Blasco S, Donatabadi N, Parker J, Chon K, Lee MS, et al. Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat Comms 7: 10242. (2016).
[44]
Serrano-Pozo A, Muzikansky A, Gómez-Isla T, Growdon JH, Betensky RA, Frosch MP, et al. Differential relationship of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 72: 462-71. (2013).
[45]
Levene YC, Li GK, Michel T. Agonist-modulated regulation of AMP-activated protein kinase in endothelial cells: evidence for an AMPK→Rac1→Akt→eNOS pathway. J Biol Chem 282: 20351-64. (2007).
[46]
Cassano T, Pace L, Bedse G, Lavecchia AM, De Marco F, Gaetani S, et al. Glutamate and mitochondria: two prominent players in the oxidative stress-induced neurodegeneration. Curr Alzheimer Res 13: 185-97. (2016).
[47]
Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPAR alpha and PGC-1. Biochem Biophys Res Commun 340: 291-5. (2006).
[48]
Gusarove I, Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA 102: 13855-60. (2005).
[49]
Jha MK, Park DH, Kook H, Lee IK, Lee WH, Suk K. Metabolic control of glia-mediated neuroinflammation. Curr Alzheimer Res 13: 387-402. (2016).
[50]
Springer MZ, Maceod DF. Mitophagy: mechanism and role in human disease. J Pathol 240: 253-5. (2016).
[51]
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131-45. (2007).
[52]
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11: 468-76. (2009).
[53]
Shaw RJ. LKB1 and AMPK controls mTOR signaling and growth. Acta Physiol 196: 65-80. (2009).
[54]
Meijer AJ, Codogno P. AMP-activated protein kinase and autophagy. Autophagy 3: 238-340. (2007).
[55]
Arsham AM, Neufeld TP. Thinking globally and acting locally with TOR. Curr Opin Cell Biol 18: 589-97. (2006).
[56]
Wang DT, He J, Wu M, Li SM, Gao Q, Zeng QP. Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice. PeerJ 3: e822. (2015).
[57]
Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12: 1945-58. (2003).
[58]
Moudry P, Lukas C, Macurek L, Hanzlikova H, Hodny Z, Lukas J, et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle 11: 1573-82. (2012).
[59]
Leidecker O, Matic I, Mahata B, Pion E, Xirodimas DP. The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions. Cell Cycle 11: 1142-50. (2012).
[60]
Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Höhfeld J, et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276: 42938-44. (2001).
[61]
Haldar SM, Stamler JS. S-nitrosylation at the interface of autophagy and disease. Mol Cell 43: 1-3. (2011).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy