Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

利用葡萄糖代谢和淀粉样蛋白沉积率来验证阿尔茨海默症新型成像技术

作者: Ryuichi Takahashi, Kazunari Ishii, Kazumasa Yokoyama, for the Alzheimer`s Disease Neuroimaging Initiative.

卷 14, 期 2, 2017

页: [161 - 168] 页: 8

弟呕挨: 10.2174/1567205013666160620122346

价格: $65

摘要

目的:阿尔茨海默病(AD)的特点是随着疾病进展在前驱期皮质淀粉样蛋白沉积增加和大脑葡萄糖代谢的随后减少。本研究介绍了每个像素的代谢淀粉样沉积比率(MAR)图像,并评估其AD的诊断可靠性。 方法:连续一百四十三例AD和181例正常对照者进行18F-FDG PET和18F-florbetapir (AV-45) PET在包括阿尔茨海默病的神经影像学数据库(ADNI)研究的基线。正常化一个标准立体空间后,MAR图像是通过使用 voxel-wise图像间计算而区分相应的av-45PET图像和FDG-PET影像来创建的。我们研究了AD患者和正常人之间的MAR图像的voxel-wise,并比较MAR图像和PET和av-45图像之间的诊断性能。 结果:在像素比较时,阿尔茨海默病人的代谢淀粉样沉积比率(MAR)图像比正常对照者在受影响的区域的PET和av-45严重和大量的下降,特别是在楔前叶/后扣带回。t最高值相当于FDG-PET,比其他图像大得多。在ROI分析,MAR图像,FDG-PET和av-45,分别诊断准确率为82.6%(敏感性:86.7%,特异性:79.5%),80.7%(敏感性:77%,特异性:83.4%),和78.8%(敏感性:75.2%,特异性:81.5%)。MAR图像的曲线下面积为0.904(95%可信区间:0.867-0.942),较FDG-PET(曲线下面积:0.884,95%可信区间:0.843-0.926),和av-45(和av-45(曲线下面积:0.847,95%可信区间:0.798-0.897)大。 结论:MAR图像不仅反映淀粉样蛋白沉积,而且反映阿尔茨海默病的大脑葡萄糖代谢和成功分类科目。这些数据表明,MAR图像可能是一个更合适的AD诊断标志并能反映脑代谢和淀粉样蛋白沉积。

关键词: 阿尔茨海默病,扫描,氟脱氧葡萄糖,淀粉样蛋白, AV-45.

[1]
Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol 33(6): 403-8.(1993);
[2]
Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 60(8): 1374-7.(2003);
[3]
Chetelat G, Eustache F, Viader F, De La Sayette V, Pelerin A, Mezenge F, et al. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11(1): 14-25.(2005);
[4]
Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32(7): 1207-18.(2011);
[5]
Kawachi T, Ishii K, Sakamoto S, Sasaki M, Mori T, Yamashita F, et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 33(7): 801-9.(2006);
[6]
Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49(3): 390-8.(2008);
[7]
Mosconi L, De Santi S, Li J, Tsui WH, Li Y, Boppana M, et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29(5): 676-92.(2008);
[8]
de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/poitron-emission tomogra-phy (FDG/PET). Proc Natl Acad Sci USA 98(19): 10966-71.(2001);
[9]
Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol 72(4): 578-86.(2012);
[10]
Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68(7): 501-8.(2007);
[11]
Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12): 2169-81.(2008);
[12]
Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36(7): 1238-48.(1995);
[13]
Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12(6): 584-95.(2004);
[14]
Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, et al. Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67(9): 1575-80.(2006);
[15]
Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16): 1349-56.(1997);
[16]
Scheinin NM, Wikman K, Jula A, Perola M, Vahlberg T, Rokka J, et al. Cortical (1)(1)C-PIB uptake is associated with age, APOE genotype, and gender in “healthy aging”. J Alzheimers Dis 41(1): 193-202.(2014);
[17]
Yi D, Lee DY, Sohn BK, Choe YM, Seo EH, Byun MS, et al. Beta-Amyloid Associated Differential Effects of APOE epsilon4 on Brain Metabolism in Cognitively Normal Elderly. Am J Geriatr Psychiatry 22(10): 961-70.(2014);
[18]
Hsiao IT, Huang CC, Hsieh CJ, Hsu WC, Wey SP, Yen TC, et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging 39(4): 613-20.(2012);
[19]
Forsberg A, Engler H, Blomquist G, Langstrom B, Nordberg A. The use of PIB-PET as a dual pathological and functional biomarker in AD. Biochim Biophys Acta 1822(3): 380-5.(2012);
[20]
Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47(2): 454-61.(1996);
[21]
Brendel M, Delker A, Rotzer C, Boning G, Carlsen J, Cyran C, et al. Impact of partial volume effect correction on cerebral beta-amyloid imaging in APP-Swe mice using [18F]-florbetaben PET. Neuroimage 84: 843-53.(2014);
[22]
Samuraki M, Matsunari I, Chen WP, Yajima K, Yanase D, Fujikawa A, et al. Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 34(10): 1658-69.(2007);
[23]
Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 50(6): 1585-93.(1998);

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy