Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

去甲基化剂的组合和组蛋白脱乙酰酶抑制剂处理H460细胞的PAX5重新表达与p53结合PAX5启动子区增强有关

作者: Yuanxin Liang, Jinwu Zeng, Linda Jelicks, Shengwei Ma, Jing Liu, Jingsong Mei, Roman Perez-Soler, Yiyu Zou.

卷 17, 期 2, 2017

页: [169 - 176] 页: 8

弟呕挨: 10.2174/1568009616666160331124759

价格: $65

摘要

背景:DNA甲基化剂的表观遗传联合和组蛋白脱乙酰酶抑制剂(HDAC)在治疗非小细胞肺癌(NSCLC)时表现出了临床优势。然而,很少有研究揭示其联合治疗的分子机制。之前的研究表明,DNA的甲基化试剂氮胞苷(AZA)在配对盒基因5(PAX5)启动子区使CpG位点去甲基化,但不诱导PAX5的mRNA和蛋白的表达。 方法:本研究采用Aza和HDAC抑制剂的表观遗传联合Vorinostat (SAHA)来治疗非小细胞肺癌细胞并研究及其分子机制。我们用亚毒性浓度的Aza+SAHA联合剂处理PAX5抑制的非小细胞肺癌H460细胞并检测pax5 mNRA和蛋白质的重新表达。 结果:实验结果表明: Aza 治疗使CpG位点的启动子区域的PAX5位点去甲基化,SAHA使得蛋白质结合的DNA可及性增加。 Aza+SAHA的联合治疗显著增加PAX5基因启动子区p53蛋白与DNA的结合(P<0.01)。转录因子p53与PAX5基因启动子区的有效的结合,可能是因为 SAHA增加了染色质构象性结合性和氮甲基化DNA的包容性,允许转录因子结合。 结论:我们的研究不仅解释了Aza+SAHA联合治疗通过p53诱导使得H460细胞中PAX5重新表达,也证明了去甲基化剂和HDAC抑制剂的结合可以重新激活肿瘤抑制基因(TSG),该基因与转录因子结合到TSG启动子区的增强有关 。

关键词: 表观遗传学,HDAC,甲基化,非小细胞肺癌, pax5抗体

[1]
Yoo, C.B.; Jones, P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov., 2006, 5(1), 37-50.
[2]
Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet., 2007, 8(4), 286-298.
[3]
Feinberg, A.P.; Ohlsson, R.; Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet., 2006, 7(1), 21-33.
[4]
Esteller, M.; Corn, P.G.; Baylin, S.B.; Herman, J.G. A gene hypermethylation profile of human cancer. Cancer Res., 2001, 61(8), 3225-3229.
[5]
Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med., 2003, 349(21), 2042-2054.
[6]
Jakopovic, M.; Thomas, A.; Balasubramaniam, S.; Schrump, D.; Giaccone, G.; Bates, S.E. Targeting the epigenome in lung cancer: expanding approaches to epigenetic therapy. Front. Oncol., 2013, 3, 261.
[7]
Stathis, A.; Hotte, S.J.; Chen, E.X.; Hirte, H.W.; Oza, A.M.; Moretto, P.; Webster, S.; Laughlin, A.; Stayner, L.A.; McGill, S. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lym-phomas. Clin. Cancer Res., 2011, 17(6), 1582-1590.
[8]
Silverman, L.; Verma, A.; Odchimar-Reissig, R. A phase I/II study of vorinostat, an oral histone deacetylase inhibitor, in combination with azacitidine in patients with the myelodysplastic syndrome (MDS) and acute myeloid leuke-mia (AML). Initial results of the phase I trial: a New York Cancer Consortium. J. Clin. Oncol., 2008, 26(Abstract), 7000..
[9]
Juergens, R.A.; Wrangle, J.; Vendetti, F.P.; Murphy, S.C.; Zhao, M.; Coleman, B.; Sebree, R.; Rodgers, K.; Hooker, C.M.; Franco, N. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov., 2011, 1(7), 598-607.
[10]
Pesek, M.; Kopeckova, M.; Benesova, L.; Meszarosova, A.; Mukensnabl, P.; Bruha, F.; Minarik, M. Clinical significance of hypermethylation status in NSCLC: evaluation of a 30-gene panel in patients with advanced disease. Anticancer Res., 2011, 31(12), 4647-4652.
[11]
Kanteti, R.; Nallasura, V.; Loganathan, S.; Tretiakova, M.; Kroll, T.; Krishnaswamy, S.; Faoro, L.; Cagle, P.; Husain, A.N.; Vokes, E.E. PAX5 is expressed in small-cell lung cancer and positively regulates c-Met transcription. Lab. Invest., 2009, 89(3), 301-314.
[12]
Vidal, L.J.; Perry, J.K.; Vouyovitch, C.M.; Pandey, V.; Brunet-Dunand, S.E.; Mertani, H.C.; Liu, D.X.; Lobie, P.E. PAX5alpha enhances the epithelial behavior of human mammary carcinoma cells. Mol. Cancer Res. MCR, 2010, 8(3), 444-456.
[13]
Proulx, M.; Cayer, M.P.; Drouin, M.; Laroche, A.; Jung, D. Overexpression of PAX5 induces apoptosis in multiple myeloma cells. Int. J. Hematol., 2010, 92(3), 451-462.
[14]
Liu, W.; Li, X.; Chu, E.S.; Go, M.Y.; Xu, L.; Zhao, G.; Li, L.; Dai, N.; Si, J.; Tao, Q. Paired box gene 5 is a novel tumor suppressor in hepatocellular carcinoma through interaction with p53 signaling pathway. Hepatology, 2011, 53(3), 843-853.
[15]
Steinbach, J.P.; Kozmik, Z.; Pfeffer, P.; Aguzzi, A. Overexpression of Pax5 is not sufficient for neoplastic trans-formation of mouse neuroectoderm. Int. J. Cancer, 2001, 93(4), 459-467.
[16]
Qiu, X.; Liang, Y.; Sellers, R.S.; Perez-Soler, R.; Zou, Y. Aerosol azacytidine inhibits orthotopic lung cancers in mice through Its DNA demethylation and gene reactivation effects. PLoS One, 2014, 9(10), e109874.
[17]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[18]
Thompson, R.F.; Suzuki, M.; Lau, K.W.; Greally, J.M. A pipeline for the quantitative analysis of CG dinucleotide methylation using mass spectrometry. Bioinformatics, 2009, 25(17), 2164-2170.
[19]
Mahesh, S.; Saxena, A.; Qiu, X.; Perez-Soler, R.; Zou, Y. Intratracheally administered 5-azacytidine is effective against orthotopic human lung cancer xenograft models and devoid of important systemic toxicity. Clin. Lung Cancer, 2010, 11(6), 405-411.
[20]
Tsai, H.C.; Li, H.; Van Neste, L.; Cai, Y.; Robert, C.; Rassool, F.V.; Shin, J.J.; Harbom, K.M.; Beaty, R.; Pappou, E. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell, 2012, 21(3), 430-446.
[21]
Christman, J.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, 21(35), 5483-5495.
[22]
Zheng, X.; Naiditch, J.; Czurylo, M.; Jie, C.; Lautz, T.; Clark, S.; Jafari, N.; Qiu, Y.; Chu, F.; Madonna, M.B. Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics. Cell Death Dis., 2013, 4, e740.
[23]
Gore, M.A.; Morshedi, M.M.; Reidhaar-Olson, J.F. Gene expression changes associated with cytotoxicity identified using cDNA arrays. Funct. Integr. Genomics, 2000, 1(2), 114-126.
[24]
Cancer Facts and Figures, 2012, American Cancer Society, 2012.
[25]
Esteller, M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 629-656.
[26]
Petta, V.; Gkiozos, I.; Strimpakos, A.; Syrigos, K. Histones and lung cancer: Are the histone deacetylases a promising therapeutic target? Cancer Chemother. Pharmacol., 2013, 72(5), 935-952.
[27]
Yang, X.J.; Seto, E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr. Opin. Genet. Dev., 2003, 13(2), 143-153.
[28]
Lu, T.Y.; Kao, C.F.; Lin, C.T.; Huang, D.Y.; Chiu, C.Y.; Huang, Y.S.; Wu, H.C. DNA methylation and histone modification regulate silencing of OPG during tumor progression. J. Cell. Biochem., 2009, 108(1), 315-325.
[29]
Yun, J.; Song, S.H.; Park, J.; Kim, H.P.; Yoon, Y.K.; Lee, K.H.; Han, S.W.; Oh, D.Y. Gene silencing of EREG mediated by DNA methylation and histone modification in human gastric cancers. Lab. Invest., 2013, 93(10), 1165.
[30]
Ezhkova, E.; Tansey, W.P. Chromatin immunoprecipitation to study protein-DNA interactions in budding yeast. Methods Mol. Biol., 2006, 313, 225-244.
[31]
Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: an epigenetic overview. Int. J. Mol. Sci., 2013, 14(10), 21087-21113.
[32]
Sarkar, S.; Goldgar, S.; Byler, S.; Rosenthal, S.; Heerboth, S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics, 2013, 5(1), 87-94.
[33]
Bhaskara, S.; Jacques, V.; Rusche, J.R.; Olson, E.N.; Cairns, B.R.; Chandrasekharan, M.B. Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics Chromatin, 2013, 6(1), 27.
[34]
Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev., 2011, 25(10), 1010-1022.
[35]
Stegmaier, P.; Kel, A.E.; Wingender, E. Systematic DNA-binding domain classification of transcription factors. Genome informatics International Conference on Genome Informatics,, 2004, 15(2), 276-286.
[36]
Sandelin, A.; Carninci, P.; Lenhard, B.; Ponjavic, J.; Hayashizaki, Y.; Hume, D.A. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet., 2007, 8(6), 424-436.
[37]
Beckerman, R.; Prives, C. Transcriptional regulation by p53. Cold Spring Harb. Perspect. Biol., 2010, 2(8), a000935.
[38]
Espinosa, J.M. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene, 2008, 27(29), 4013-4023.
[39]
Lai, S.L.; Perng, R.P.; Hwang, J. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J. Biomed. Sci., 2000, 7(1), 64-70.
[40]
Sadiq, A.A.; Salgia, R. MET as a possible target for non-small-cell lung cancer. J. Clin. Oncol., 2013, 31(8), 1089-1096.
[41]
Mendenhall, M.A.; Goldman, J.W. MET-mutated NSCLC with major response to crizotinib. J. Thorac. Oncol., 2015, 10(5), e33-e34.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy