[1]
Rates, S.M. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[2]
Shah, U.; Shah, R.; Acharya, S.; Acharya, N. Novel anticancer agents from plant sources. Chin. J. Nat. Med., 2013, 11(1), 16-23.
[3]
Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[4]
Phillips, D.R.; Rasbery, J.M.; Bartel, B.; Matsuda, S.P. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol., 2006, 9(3), 305-314.
[5]
Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci., 2008, 65(19), 2979-2999.
[6]
Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[7]
Petronelli, A.; Pannitteri, G.; Testa, U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs, 2009, 20(10), 880-892.
[8]
Brinker, A.M.; Ma, J.; Lipsky, P.E.; Raskin, I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry, 2007, 68(6), 732-766.
[9]
Tang, W.H.; Bai, S.T.; Tong, L.; Duan, W.J.; Su, J.W.; Chen, J.X.; Xie, Y. Chemical constituents from Celastrus aculeatus Merr. Biochem. Syst. Ecol., 2014, 54, 78-82.
[10]
Luo, D.Q.; Wang, H.; Tian, X.; Shao, H.J.; Liu, J.K. Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag. Sci., 2005, 61(1), 85-90.
[11]
Coppede, J.; Pina, E.; Paz, T.; Fachin, A.; Marins, M.; Bertoni, B.; França, S.; Pereira, A. Cell cultures of Maytenus ilicifolia Mart. are richer sources of quinone-methide triterpenoids than plant roots in natura. Plant Cell Tissue Organ Cult., 2014, 118(1), 33-43.
[12]
Murayama, T.; Eizuru, Y.; Yamada, R.; Sadanari, H.; Matsubara, K.; Rukung, G.; Tolo, F.M.; Mungai, G.M.; Kofi-Tsekpo, M. Anticytomegalovirus activity of pristimerin, a triterpenoid quinone methide isolated from Maytenus heterophylla (Eckl. & Zeyh.). Antivir. Chem. Chemother., 2007, 18(3), 133-139.
[13]
Mena-Rejón, G.J.; Pérez-Espadas, A.R.; Moo-Puc, R.E.; Cedillo-Rivera, R.; Bazzocchi, I.L.; Jiménez-Diaz, I.A.; Quijano, L. Antigiardial Activity of Triterpenoids from Root Bark of Hippocratea excelsa. J. Nat. Prod., 2007, 70(5), 863-865.
[14]
Gonzalez, J.G. delle Monache, G.; delle Monache, F.; Marini-Bettolo, G.B. Chuchuhuasha - a drug used in folk medicine in the Amazonian and Andean areas. A chemical study of Maytenus laevis. J. Ethnopharmacol., 1982, 5(1), 73-77.
[15]
Shirota, O.; Morita, H.; Takeya, K.; Itokawa, H.; Iitaka, Y. Cytotoxic Aromatic Triterpenes from Maytenus ilicifolia and Maytenus chuchuhuasca. J. Nat. Prod., 1994, 57(12), 1675-1681.
[16]
Gullo, F.P.; Sardi, J.C.; Santos, V.A.; Sangalli-Leite, F.; Pitangui, N.S.; Rossi, S.A.; de Paula, E.; Silva, A.C. Soares, L.A.; Silva, J.F.; Oliveira, H.C.; Furlan, M.; Silva, D.H.; Bolzani, V.S.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Antifungal activity of maytenin and pristimerin. Evid. Based Complement. Alternat. Med., 2012, 340787(10), 22.
[17]
Figueiredo, J.N.; Raz, B.; Sequin, U. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity. J. Nat. Prod., 1998, 61(6), 718-723.
[18]
Jeller, A.H.; Silva, D.H.; Lião, L.M.; Bolzani, V.D.; Furlan, M. Antioxidant phenolic and quinonemethide triterpenes from Cheiloclinium Cognatum. Phytochemistry, 2004, 65(13), 1977-1982.
[19]
Carvalho, P.R.; Silva, D.H.; Bolzani, V.S.; Furlan, M. Antioxidant Quinonemethide Triterpenes from Salacia campestris. Chem. Biodivers., 2005, 2(3), 367-372.
[20]
Dos Santos, V.A.; Dos Santos, D.P.; Castro-Gamboa, I.; Zanoni, M.V.; Furlan, M. Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae). Molecules, 2010, 15(10), 6956-6973.
[21]
Sassa, H.; Kogure, K.; Takaishi, Y.; Terada, H. Structural basis of potent antiperoxidation activity of the triterpene celastrol in mitochondria: effect of negative membrane surface charge on lipid peroxidation. Free Radic. Biol. Med., 1994, 17(3), 201-207.
[22]
Gao, J.M.; Wu, W.J.; Zhang, J.W.; Konishi, Y. The dihydro-β-agarofuran sesquiterpenoids. Nat. Prod. Rep., 2007, 24(5), 1153-1189.
[23]
Kim, H.J.; Park, G.M.; Kim, J.K. Anti-inflammatory effect of pristimerin on lipopolysaccharide-induced inflammatory responses in murine macrophages. Arch. Pharm. Res., 2013, 36(4), 495-500.
[24]
Dirsch, V.M.; Kiemer, A.K.; Wagner, H.; Vollmar, A.M. The triterpenoid quinonemethide pristimerin inhibits induction of inducible nitric oxide synthase in murine macrophages. Eur. J. Pharmacol., 1997, 336(2-3), 211-217.
[25]
King, A.R.; Dotsey, E.Y.; Lodola, A.; Jung, K.M.; Ghomian, A.; Qiu, Y.; Fu, J.; Mor, M.; Piomelli, D. Discovery of potent and reversible monoacylglycerol lipase inhibitors. Chem. Biol., 2009, 16(10), 1045-1052.
[26]
Yan, Y.Y.; Bai, J.P.; Xie, Y.; Yu, J.Z.; Ma, C.G. The triterpenoid pristimerin induces U87 glioma cell apoptosis through reactive oxygen species-mediated mitochondrial dysfunction. Oncol. Lett., 2013, 5(1), 242-248.
[27]
Wang, Y.; Zhou, Y.; Zhou, H.; Jia, G.; Liu, J.; Han, B.; Cheng, Z.; Jiang, H.; Pan, S.; Sun, B. Pristimerin causes G1 arrest, induces apoptosis, and enhances the chemosensitivity to gemcitabine in pancreatic cancer cells. PLoS One, 2012, 7(8), e43826.
[28]
Liu, Y.B.; Gao, X.; Deeb, D.; Brigolin, C.; Zhang, Y.; Shaw, J.; Pindolia, K.; Gautam, S.C. Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. Int. J. Oncol., 2014, 45(4), 1735-1741.
[29]
Guo, Y.; Zhang, W.; Yan, Y.Y.; Ma, C.G.; Wang, X.; Wang, C.; Zhao, J.L. Triterpenoid pristimerin induced HepG2 cells apoptosis through ROS-mediated mitochondrial dysfunction. J. BUON, 2013, 18(2), 477-485.
[30]
Byun, J.Y.; Kim, M.J.; Eum, D.Y.; Yoon, C.H.; Seo, W.D.; Park, K.H.; Hyun, J.W.; Lee, Y.S.; Lee, J.S.; Yoon, M.Y.; Lee, S.J. Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol. Pharmacol., 2009, 76(4), 734-744.
[31]
Eum, D.Y.; Byun, J.Y.; Yoon, C.H.; Seo, W.D.; Park, K.H.; Lee, J.H.; Chung, H.Y.; An, S.; Suh, Y.; Kim, M.J.; Lee, S.J. Triterpenoid pristimerin synergizes with taxol to induce cervical cancer cell death through reactive oxygen species-mediated mitochondrial dysfunction. Anticancer Drugs, 2011, 22(8), 763-773.
[32]
Tiedemann, R.E.; Schmidt, J.; Keats, J.J.; Shi, C.X.; Zhu, Y.X.; Palmer, S.E.; Mao, X.; Schimmer, A.D.; Stewart, A.K. Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood, 2009, 113(17), 4027-4037.
[33]
Lu, Z.; Jin, Y.; Chen, C.; Li, J.; Cao, Q.; Pan, J. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-kappaB signaling and depleting Bcr-Abl. Mol. Cancer, 2010, 9(112), 1476-4598.
[34]
Wu, C.C.; Chan, M.L.; Chen, W.Y.; Tsai, C.Y.; Chang, F.R.; Wu, Y.C. Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol. Cancer Ther., 2005, 4(8), 1277-1285.
[35]
Lee, J.S.; Yoon, I.S.; Lee, M.S.; Cha, E.Y.; Thuong, P.T.; Diep, T.T.; Kim, J.R. Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells. Biol. Pharm. Bull., 2013, 36(2), 316-325.
[36]
Wei, W.; Wu, S.; Wang, X.; Sun, C.K.; Yang, X.; Yan, X.; Chua, M.S.; So, S. Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts. Oncotarget, 2014, 5(14), 5819-5831.
[37]
Gray, P.J., Jr; Prince, T.; Cheng, J.; Stevenson, M.A.; Calderwood, S.K. Targeting the oncogene and kinome chaperone CDC37. Nat. Rev. Cancer, 2008, 8(7), 491-495.
[38]
Yerlikaya, A.; Yontem, M. The significance of ubiquitin proteasome pathway in cancer development. Rec. Pat. Anticancer Drug Discov., 2013, 8(3), 298-309.
[39]
Ding, F.; Xiao, H.; Wang, M.; Xie, X.; Hu, F. The role of the ubiquitin-proteasome pathway in cancer development and treatment. Front. Biosci., 2014, 19, 886-895.
[40]
Frezza, M.; Schmitt, S.; Dou, Q.P. Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr. Top. Med. Chem., 2011, 11(23), 2888-2905.
[41]
Shen, M.; Schmitt, S.; Buac, D.; Dou, Q.P. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin. Ther. Targets, 2013, 17(9), 1091-1108.
[42]
Daniel, K.G.; Gupta, P.; Harbach, R.H.; Guida, W.C.; Dou, Q.P. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem. Pharmacol., 2004, 67(6), 1139-1151.
[43]
Dou, Q.P.; Smith, D.M.; Daniel, K.G.; Kazi, A. Interruption of tumor cell cycle progression through proteasome inhibition: implications for cancer therapy. Prog. Cell Cycle Res., 2003, 5, 441-446.
[44]
Yang, H.; Landis-Piwowar, K.R.; Lu, D.; Yuan, P.; Li, L.; Reddy, G.P.; Yuan, X.; Dou, Q.P. Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J. Cell. Biochem., 2008, 103(1), 234-244.
[45]
Mu, X.M.; Shi, W.; Sun, L.X.; Li, H.; Wang, Y.R.; Jiang, Z.Z.; Zhang, L.Y. Pristimerin inhibits breast cancer cell migration by up- regulating regulator of G protein signaling 4 expression. Asian Pac. J. Cancer Prev., 2012, 13(4), 1097-1104.
[46]
Liu, Y.B.; Gao, X.; Deeb, D.; Arbab, A.S.; Gautam, S.C. Pristimerin Induces Apoptosis in Prostate Cancer Cells by Down-regulating Bcl-2 through ROS-dependent Ubiquitin-proteasomal Degradation Pathway. J. Carcinog. Mutagen., 2013. (Suppl 6):
005.
[47]
Breitschopf, K.; Haendeler, J.; Malchow, P.; Zeiher, A.M.; Dimmeler, S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol. Cell. Biol., 2000, 20(5), 1886-1896.
[48]
Chanvorachote, P.; Nimmannit, U.; Stehlik, C.; Wang, L.; Jiang, B.H.; Ongpipatanakul, B.; Rojanasakul, Y. Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res., 2006, 66(12), 6353-6360.
[49]
Ling, Y.H.; Liebes, L.; Zou, Y.; Perez-Soler, R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem., 2003, 278(36), 33714-33723.
[50]
Fribley, A.; Zeng, Q.; Wang, C.Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol. Cell. Biol., 2004, 24(22), 9695-9704.
[51]
Minami, T.; Adachi, M.; Kawamura, R.; Zhang, Y.; Shinomura, Y.; Imai, K. Sulindac enhances the proteasome inhibitor bortezomib-mediated oxidative stress and anticancer activity. Clin. Cancer Res., 2005, 11(14), 5248-5256.
[52]
Llobet, D.; Llobet, D.; Eritja, N.; Encinas, M.; Sorolla, A.; Yeramian, A.; Schoenenberger, J.A.; Llombart-Cussac, A.; Marti, R.M.; Matias-Guiu, X.; Dolcet, X. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anticancer Drugs, 2008, 19(2), 115-124.
[53]
DiDonato, J.A.; Mercurio, F.; Karin, M. NF-kappaB and the link between inflammation and cancer. Immunol. Rev., 2012, 246(1), 379-400.
[54]
Vendramini-Costa, D.B.; Carvalho, J.E. Molecular link mechanisms between inflammation and cancer. Curr. Pharm. Des., 2012, 18(26), 3831-3852.
[55]
Baud, V.; Karin, M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov., 2009, 8(1), 33-40.
[56]
Sethi, G.; Sung, B.; Aggarwal, B.B. Nuclear factor-kappaB activation: from bench to bedside. Exp. Biol. Med., 2008, 233(1), 21-31.
[57]
Deeb, D.; Gao, X.; Liu, Y.B.; Pindolia, K.; Gautam, S.C. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-kappaB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int. J. Oncol., 2014, 44(5), 1707-1715.
[58]
Gao, X.; Liu, Y.; Deeb, D.; Arbab, A.S.; Gautam, S.C. Anticancer activity of pristimerin in ovarian carcinoma cells is mediated through the inhibition of prosurvival Akt/NF-kappaB/mTOR signaling. J. Exp. Ther. Oncol., 2014, 10(4), 275-283.
[59]
Hui, B.; Yao, X.; Zhou, Q.; Wu, Z.; Sheng, P.; Zhang, L. Pristimerin, a natural anti-tumor triterpenoid, inhibits LPS-induced TNF-alpha and IL-8 production through down-regulation of ROS-related classical NF-kappaB pathway in THP-1 cells. Int. Immunopharmacol., 2014, 21(2), 501-508.
[60]
Deeb, D.; Gao, X.; Liu, Y.; Pindolia, K.; Gautam, S.C. Inhibition of hTERT/telomerase contributes to the antitumor activity of pristimerin in pancreatic ductal adenocarcinoma cells. Oncol. Rep., 2015, 34(1), 518-524.
[61]
Arlt, A.; Gehrz, A.; Muerkoster, S.; Vorndamm, J.; Kruse, M.L.; Folsch, U.R.; Schafer, H. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 2003, 22(21), 3243-3251.
[62]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[63]
Fleury, C.; Mignotte, B.; Vayssiere, J.L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 2002, 84(2-3), 131-141.
[64]
Ozben, T. Oxidative stress and apoptosis: impact on cancer therapy. J. Pharm. Sci., 2007, 96(9), 2181-2196.
[65]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[66]
Chan, W.H.; Wu, C.C.; Yu, J.S. Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J. Cell. Biochem., 2003, 90(2), 327-338.
[67]
Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[68]
Kuwabara, M.; Asanuma, T.; Niwa, K.; Inanami, O. Regulation of cell survival and death signals induced by oxidative stress. J. Clin. Biochem. Nutr., 2008, 43(2), 51-57.
[69]
Storz, P. Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends Cell Biol., 2007, 17(1), 13-18.
[70]
Zhang, R.; Humphreys, I.; Sahu, R.P.; Shi, Y.; Srivastava, S.K. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis, 2008, 13(12), 1465-1478.
[71]
Haridas, V.; Higuchi, M.; Jayatilake, G.S.; Bailey, D.; Mujoo, K.; Blake, M.E.; Arntzen, C.J.; Gutterman, J.U. Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5821-5826.
[72]
Machida, K.; Hayashi, Y.; Osada, H. A Novel Adenine Nucleotide Translocase Inhibitor, MT-21, Induces Cytochrome c Release by a Mitochondrial Permeability Transition-independent Mechanism. J. Biol. Chem., 2002, 277(34), 31243-31248.
[73]
Chan, S.L.; Lee, M.C.; Tan, K.O.; Yang, L.K.; Lee, A.S.Y.
Flotow, H.; Fu, N.Y.; Butler, M.S.; Soejarto, D.D.; Buss, A.D.; Yu, V.C. Identification of Chelerythrine as an Inhibitor of BclXL Function. J. Biol. Chem., 2003, 278(23), 20453-20456.
[74]
Costa, P.M.; Ferreira, P.M.; Bolzani Vda, S.; Furlan, M.; de Freitas Formenton Macedo Dos Santos, V.A.; Corsino, J.; de Moraes, M.O.; Costa-Lotufo, L.V.; Montenegro, R.C.; Pessoa, C. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol. In Vitro, 2008, 22(4), 854-863.
[75]
Hengartner, M.O. The biochemistry of apoptosis. Nature, 2000, 407(4), 770-776.
[76]
Henry-Mowatt, J.; Dive, C.; Martinou, J.C.; James, D. Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene, 2004, 23(16), 2850-2860.
[77]
Kuwana, T.; Newmeyer, D.D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol., 2003, 15(6), 691-699.
[78]
Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci., 2009, 122(4), 437-441.
[79]
Ditsworth, D.; Zong, W.X.; Thompson, C.B. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J. Biol. Chem., 2007, 282(24), 17845-17854.
[80]
Mathews, M.T.; Berk, B.C. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler. Thromb. Vasc. Biol., 2008, 28(4), 711-717.
[81]
Mendelsohn, J.; Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene, 2000, 19(56), 6550-6565.
[82]
Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int., 2014, 852748(10)
[83]
Lindsey, S.; Langhans, S.A. Epidermal growth factor signaling in transformed cells. Int. Rev. Cell Mol. Biol., 2015, 314, 1-41.
[84]
Grant, S.; Qiao, L.; Dent, P. Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front. Biosci., 2002, 1(7), d376-d389.
[85]
Kadioglu, O.; Cao, J.; Saeed, M.E.; Greten, H.J.; Efferth, T. Targeting epidermal growth factor receptors and downstream signaling pathways in cancer by phytochemicals. Target. Oncol., 2015, 10(3), 337-353.
[86]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[87]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 8(84), 1263-1284.
[88]
De Luca, A.; Maiello, M.R.; D’Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets, 2012, 16(Suppl. 2), S17-S27.
[89]
Gollob, J.A.; Wilhelm, S.; Carter, C.; Kelley, S.L. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ ERK signal transduction pathway. Semin. Oncol., 2006, 33(4), 392-406.
[90]
Steelman, L.S.; Pohnert, S.C.; Shelton, J.G.; Franklin, R.A.; Bertrand, F.E.; McCubrey, J.A. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia, 2004, 18(2), 189-218.
[91]
Mu, X.; Shi, W.; Sun, L.; Li, H.; Jiang, Z.; Zhang, L. Pristimerin, a triterpenoid, inhibits tumor angiogenesis by targeting VEGFR2 activation. Molecules, 2012, 17(6), 6854-6868.
[92]
Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C. Gonzalez-Baron. M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev., 2004, 30(2), 193-204.
[93]
Bauer, T.M.; Patel, M.R.; Infante, J.R. Targeting Targeting PI3 kinase in cancer. Pharmacol. Ther., 2015, 146, 53-60.
[94]
Moschetta, M.; Reale, A.; Marasco, C.; Vacca, A.; Carratu, M.R. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br. J. Pharmacol., 2014, 171(16), 3801-3813.
[95]
Morgensztern, D.; McLeod, H.L. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs, 2005, 16(8), 797-803.
[96]
Chiang, C.T.; Way, T.D.; Tsai, S.J.; Lin, J.K. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett., 2007, 581(30), 5735-5742.
[97]
Yoon, S.; Lee, M.Y.; Park, S.W.; Moon, J.S.; Koh, Y.K.; Ahn, Y.H.; Park, B.W.; Kim, K.S. Up-regulation of Acetyl-CoA Carboxylase α and Fatty Acid Synthase by Human Epidermal Growth Factor Receptor 2 at the Translational Level in Breast Cancer Cells. J. Biol. Chem., 2007, 282(36), 26122-26131.
[98]
Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049.
[99]
Hanahan, D.; Robert, A.W. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[100]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[101]
Herbst, R.S. Therapeutic options to target angiogenesis in human malignancies. Expert Opin. Emerg. Drugs, 2006, 11(4), 635-650.
[102]
Xie, Y.; Wolff, D.W.; Wei, T.; Wang, B.; Deng, C.; Kirui, J.K.; Jiang, H.; Qin, J.; Abel, P.W.; Tu, Y. Breast Cancer Migration and Invasion Depend on Proteasome Degradation of Regulator of G-Protein Signaling 4. Cancer Res., 2009, 69(14), 5743-5751.
[103]
Yadav, V.R.; Sung, B.; Prasad, S.; Kannappan, R.; Cho, S.G.; Liu, M.; Chaturvedi, M.M.; Aggarwal, B.B. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J. Mol. Med. (Berl.), 2010, 88(12), 1243-1253.
[104]
Konopleva, M.; Zhang, W.; Shi, Y.X.; McQueen, T.; Tsao, T.; Abdelrahim, M.; Munsell, M.F.; Johansen, M.; Yu, D.; Madden, Ti.; Safe, S.H.; Hung, M.C.; Andreeff, M. Synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest in HER2-overexpressing breast cancer cells. Mol. Cancer Ther., 2006, 5(2), 317-328.
[105]
Kress, C.L.; Kress, C.L.; Konopleva, M.; Martinez-Garcia, V.; Krajewska, M.; Lefebvre, S.; Hyer, M.L.; McQueen, T.; Andreeff, M.; Reed, J.C.; Zapata, J.M. Triterpenoids display single agent anti-tumor activity in a transgenic mouse model of chronic lymphocytic leukemia and small B cell lymphoma. PLoS One, 2007, 2(2), e559.
[106]
Gao, X.; Zhang, Y.; Wang, Y.; Zhang, Y.; Wang, Y.; Liu, S.; Gao, X. Influence of verapamil on pharmacokinetics of pristimerin in rats. Biomed. Chromatogr., 2015, 10(8)