Abstract
Imidazole derivatives have known to possess a diverse range of pharmacological activity. In particular, one of ruthenium-based derivatives, imidazolium [trans-RuCl4(1H-imidazole)(DMSOS)] (NAMI-A) which is now in clinical trials, opens a new avenue for developing promising ruthenium-based anticancer drugs alternative to Cisplatin. This mini-review overviews some representative examples of imidazole-containing ruthenium complexes (ICRCs) with in vitro anticancer activities. Special attention is paid on ICRCs with the activities more potent than Cisplatin, and their correlation with their DNA binding properties in the context of possible cancer chemotherapeutic applications. The ICRCs are divided into two main categories according to their dark and light activated cytotoxicity; the former case is further clarified into mononuclear complexes including tris(bidentate polypyridyl) ruthenium complexes and those containing monodentatively coordinative imidazole ligands as well as polynuclear complexes. The perspective, challenges and future efforts for investigations into ICRCs are pointed out or suggested.
Keywords: Anticancer agent, Cytotoxity, DNA, Imidazole, Photocytotoxity, Ruthenium.