Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Development of Vascular Endothelial Growth Factor Receptor (VEGFR) Kinase Inhibitors as Anti-Angiogenic Agents in Cancer Therapy

Author(s): T. L. Underiner, B. Ruggeri and D. E. Gingrich

Volume 11, Issue 6, 2004

Page: [731 - 745] Pages: 15

DOI: 10.2174/0929867043455756

Price: $65

Abstract

Among the known angiogenic growth factors and cytokines implicated in the modulation of normal and pathological angiogenesis, the VEGF family (VEGF-A, VEGF-B, VEGF-C, VEGF-D) and their corresponding receptor tyrosine kinases [VEGFR-1 (Flt-1), VEGFR-2 (Flk-1, KDR), and VEGFR-3 (Flt-4)] play a paramount and indispensable role in regulating the multiple facets of the angiogenic and lymphangiogenic processes, as well as the induction of vascular permeability and inflammation. The receptor VEGFR-2 / KDR is the principal one through which VEGFs exert their mitogenic, chemotactic, and vascular permeabilizing effects on the host vasculature. Increased expression of VEGFs by tumor cells and VEGFR-2 / KDR and VEGFR-1 / Flt-1 by the tumor-associated vasculature are a hallmark of a variety of human and rodent tumors in vivo and correlates with tumor growth rate, micro-vessel density / proliferation, tumor metastatic potential, and poorer patient prognosis in a variety of malignancies. Approaches to disrupting the VEGF / VEGFR signaling cascade range from biological agents (soluble receptors, anti-VEGF and anti-VEGFR-2 antibodies, and VEGF transcription inhibitors) to small molecule ATP competitive VEGFR inhibitors. Examples from this latter class that are currently in clinical development include compounds from distinct chemical classes such as: indolin-2-ones, anilinoquinazolines, anilinophthalazines, isothiazoles, indolo- and indenocarbazoles. The structure activity relationships, biochemical and pharmacological profile of optimized representatives from each of these classes constitute the subject matter of this review.

Keywords: VEGFR-1, tyrosine, chemotactic


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy