Abstract
A deficiency or an excess of programmed cell death (apoptosis) is an integral component of autoimmune disorders, organ and bone marrow transplant rejection, and cancer. A technique to image programmed cell death would be useful in the development of drugs to treat these and others diseases, and to monitor the effectiveness of therapy. The most widely studied agent for the in vivo study of apoptosis is radiolabeled annexin V, an endogenous protein labeled with technectium-99m, now undergoing clinical trials in both Europe and the United States. While annexin V has been studied extensively in humans the precise mechanism(s) of uptake of this agent in vivo is unclear and needs further study. Other agents are also underdevelopment including radiolabeled forms of Z-VAD.fmk, a potent inhibitor of the enzymatic cascade intimately associated with apoptosis. MR imaging techniques and tracers also hold promise as methods to monitor apoptotic cell death. In this article we will review these and other imaging technologies for the non-invasive imaging of cell death. The mechanism (s) and latest data on the conditions in which cellular stress and early apoptosis occur will also be discussed in detail including potential new strategies for the targeting and novel therapeutic interventions of tissues and organs undergoing stress or apoptosis when cell salvage is still possible.
Keywords: programmed cell death, apoptosis, autoimmune disorders, transplant rejection, cancer, mr imaging