[1]
Selected reviews: (a) Tsuji, J. Carbon-carbon bond formation via palladium
complexes. Acc. Chem. Res., 1969, 2, 144-152. (b) Trost, B.M.; Van
Vranken, L.V. Asymmetric transition metal-catalyzed allylic alkylations.
Chem. Rev., 1996, 96, 395-422. (c) Trost, B.M.; Crawley, M.L. Asymmetric
transition-metal-catalyzed allylic alkylations: Applications in total synthesis.
Chem. Rev., 2003, 103, 2921-2943. (d) Trost, B.M.; Machacek, M.R.;
Aponick, A. Predicting the stereochemistry of diphenylphosphino benzoic
acid (DPPBA)-based palladium-catalyzed asymmetric allylic alkylation reactions:
A working model. Acc. Chem. Res., 2006, 39, 747-760. (e) Lu, Z.; Ma,
S. Metal-catalyzed enantioselective allylation in asymmetric synthesis
Angew. Chem. Int. Ed., 2008, 47, 258-297. (f) Trost, B.M.; Zhang, T.; Sieber,
J.D. Catalytic asymmetric allylic alkylation employing heteroatom nucleophiles:
A powerful method for C–X bond formation. Chem. Sci., 2010, 1,
427-440. (g) For an up-to-date review including regioselective C-C bond
forming Tsuji-Trost reactions, see: Kapdi, A.R.; Prajapati, D. Regioselective
palladium-catalysed cross-coupling reactions: A powerful synthetic tool. RSC
Adv., 2014, 4, 41245-41259.
[2]
For reviews on the direct use of allylic alcohols in metal-catalyzed nucleophilic
substitution, see: (a) Tamaru, Y. Activation of allyl alcohols as allyl
cations, allyl anions, and amphiphilic allylic species by palladium. Eur. J. Org. Chem., 2005, 13, 2647-2656.
(b) Muzart, J. Palladium-catalysed reactions of alcohols. Part B: Formation of C-C and C-N bonds from unsaturated alcohols. Tetrahedron, 2005, 61, 4179-4212.
(c) Muzart, J. Procedures for and possible mechanisms of Pd-catalyzed allylations of primary and secondary amines with allylic alcohols. Eur. J. Org. Chem., 2007, 19, 3077-3089.
(d) Sundararaju, B.; Achard, M.; Bruneau, C. Transition metal catalyzed nucleophilic allylic substitution: Activation of allylic alcohols via p-allylic species. Chem. Soc. Rev., 2012, 41, 4467-4483.
(e) Bandini, M.; Cera, G.; Chiarucci, M. Catalytic enantioselective alkylations with allylic alcohols. Synthesis, 2012, 44, 504-512.
(f) Liu, W.; Zhao, X. Carbon–sulfur bond formation via metal-catalyzed allylations of sulfur nucleophiles. Synthesis, 2013, 45, 2051-2069.
[3]
For selected reviews on allylic amine synthesis, see: (a) Johannsen, M.;
Jørgensen, K.A. Allylic amination. Chem. Rev., 1998, 98, 1689-1708.
(b) Mechanistically driven development of iridium catalysts for asymmetric allylic substitution. Acc. Chem. Res., 2011, 43, 1461-1475.
(c) Ramirez, T.A.; Zhao, B.; Shi, Y. Recent advances in transition metal-catalyzed sp3 C-H amination adjacent to double bonds and carbonyl groups. Chem. Soc. Rev., 2012, 41, 931-942.
[4]
(a) Tamaru, Y.; Horino, Y.; Araki, M.; Tanaka, S.; Kimura, M. Et3B-promoted, Pd(0)-catalyzed allylation of active methylene compounds with allylic alcohols. Tetrahedron Lett., 2000, 30, 5705-5709.
(b) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. Strikingly simple direct a-allylation of aldehydes with allyl alcohols: Remarkable advance in the Tsuji-Trost reaction. J. Am. Chem. Soc., 2001, 123, 10401-10402.
(c) Kimura, M.; Futamata, M.; Shibata, K.; Tamaru, Y. Pd·Et3B-catalyzed alkylation of amines with allylic alcohols. Chem. Commun., 2003, 24, 234-235.
[5]
Fukushima, M.; Takushima, D.; Satomura, H.; Onodera, G.; Kimura, M. Stereodefined construction of trisubstituted alkenes by direct coupling reaction of allylating agents, alkynes, and organoboranes. Chemistry, 2012, 18, 8019-8023.
[6]
(a) Miyaura, N.; Yoshinari, T.; Itoh, M. Reaction of lithium alkynyltrialkylborates with propionic acid. General and convenient syntheses of internal and terminal olefins using organoboranes. Tetrahedron Lett., 1974, 15, 2961-2964.
(b) Pelter, A.; Bentley, T.W.; Harrison, C.R.; Subrahmanyam, C.; Laub, R.J. The chemistry of organoborates. Part 5. Alkylation of alkynyltrialkylborate
salts. J. Chem. Soc. Perkin Trans., 1, 1976, 22, 2419-2438.
[7]
Li, Y.X.; Xuan, Q.Q.; Liu, L.; Wang, D.; Chen, Y.J.; Li, C.J.A. Pd(0)-catalyzed direct dehydrative coupling of terminal alkynes with allylic alcohols to access 1,4-enynes. J. Am. Chem. Soc., 2013, 135, 12536-12539.
[8]
Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, N. Palladium-catalysed reaction
of aryl-substituted allylic alcohols with zinc enolates of b-dicarbonyl
compounds in the presence of titanium(IV) isopropoxide J. Chem. Soc.
Perkin Trans., 1,, 1992, 21, 2833-2835.
[9]
Yang, S.C.; Hung, C.W. Palladium-catalyzed amination of allylic alcohols using anilines. J. Org. Chem., 1999, 64, 5000-5001.
[10]
(a) Kan, S.B.J.; Matsubara, R.; Berthiol, F.; Kobayashi, S. Catalytic direct-type substitution reaction of a-alkylenolates: A Pd/Broensted base-catalysed approach to the decarboxylative allylation of sulfonylimidates. Chem. Commun. , 2008, 47, 6354-6356.
(b) Matsubara, R.; Masuda, K.; Nakano, J.; Kobayashi, S. Direct use of allylic alcohols in the allylation of sulfonylimidates. Chem. Commun. , 2010, 46, 8662-8664.
[11]
Lu, X.; Lu, L.; Sun, J. Palladium and arsenic(III) oxide-catalyzed allylic alkylation by allylic alcohols under neutral conditions. J. Mol. Catal. Chem., 1987, 41, 245-251.
[12]
Wu, H.B.; Ma, X.T.; Tian, S.K. Palladium-catalyzed stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids. Chem. Commun. , 2014, 50, 219-221.
[13]
Ye, J.; Zhao, J.; Xu, J.; Mao, Y.; Zhang, Y.J. Pd-Catalyzed stereospecific allyl–aryl coupling of allylic alcohols with arylboronic acids. Chem. Commun. , 2013, 49, 9761-9763.
[14]
For previous examples on direct coupling between boronic acids and allylic
alcohols, see: (a) Kayaki, Y.; Koda, T.; Ikariya, T. A highly effective (triphenylphosphite)palladium catalyst for a cross-coupling reaction of allylic alcohols with organoboronic acids. Eur. J. Org. Chem., 2004, 24, 4989-4993.
(b) Tsukamoto, H.; Sato, M.; Kondo, Y. Palladium(0)-catalyzed direct cross-coupling reaction of allyl alcohols with aryl- and vinyl-boronic acids. Chem. Commun. , 2004, 1200-1201.
[15]
Ma, X.T.; Dai, R.H.; Zhang, J.; Gu, Y.; Tian, S.K. Catalytic stereospecific substitution of enantioenriched allylic alcohols with sodium sulfinates. Adv. Synth. Catal., 2014, 356, 2984-2988. For the first example of direct, non-stereospecific sulphonylation of allylic alcohols, see: Chandrasekhar, S.; Jagadeshwar, V.; Saritha, B.; Narsihmulu, C. Palladium-triethylborane-triggered direct and regioselective conversion of allylic alcohols to allyl phenyl sulfones. J. Org. Chem., 2005, 70, 6506-6507.
[16]
Manabe, K.; Kobayashi, S. Palladium-catalyzed, carboxylic acid-assisted allylic substitution of carbon nucleophiles with allyl alcohols as allylating agents in water. Org. Lett., 2003, 5, 3341-3244.
[17]
Patil, N.T.; Yamamoto, Y. Direct allylic substitution of allyl alcohols by carbon pronucleophiles in the presence of a palladium/carboxylic acid catalyst under neat conditions. Tetrahedron Lett., 2004, 45, 3101-3103.
[18]
Yang, H.; Zhou, H.; Yin, H.; Xia, C.; Jiang, G. Highly efficient direct allylation of oxindoles with simple allylic alcohols enabled by palladium/Bronsted acid catalysis. Synlett, 2014, 25, 2149-2154.
[19]
Usui, I.; Schmidt, S.; Breit, B. Dual palladium- and proline-catalyzed allylic alkylation of enolizable ketones and aldehydes with allylic alcohols. Org. Lett., 2009, 11, 1453-1456.
[20]
Yasuda, S.; Kumagai, N.; Shibasaki, M. Direct asymmetric allylation of ketones with allylic alcohols via Pd/enamine cooperative function. Heterocycles, 2012, 86, 745-747.
[21]
Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S. Asymmetric a-allylation of a-branched aldehydes with allyl alcohols by synergistic catalysis using an achiral palladium complex and a chiral primary amino acid. Synthesis, 2014, 46, 1367-1373.
[22]
List, B.; Jiang, G. Direct asymmetric α-allylation of aldehydes with simple allylic alcohols enabled by the concerted action of three different catalysts. Angew. Chem. Int. Ed., 2011, 50, 9471-9474.
[23]
Jindal, G.; Sunoj, R.B. Mechanistic insights on cooperative asymmetric multicatalysis using chiral counterions. J. Org. Chem., 2014, 79, 7600-7606.
[24]
Tao, Z.L.; Zhang, W.Q.; Chen, D.F.; Adele, A.; Gong, L.Z. Pd-catalyzed asymmetric allylic alkylation of pyrazol-5-ones with allylic alcohols: the role of the chiral phosphoric acid in C-O bond cleavage and stereocontrol. J. Am. Chem. Soc., 2013, 135, 9255-9258.
[25]
(a) Zhou, H.; Yang, H.; Liu, M.; Xia, C.; Jiang, G. Bronsted acid accelerated Pd-catalyzed direct asymmetric allylic alkylation of azlactones with simple allylic alcohols: A practical access to quaternary allylic amino acid derivatives. Org. Lett., 2014, 16, 5350-5353.
(b) Zhou, H.; Yang, H.; Yin, H.; Liu, M.; Xia, C.; Jiang, G. Palladium catalyzed direct allylation of azlactones with simple allylic alcohols in the absence of any activators. RSC Advances, 2014, 4, 25596-25599.
[26]
(a) Defieber, C.; Ariger, M.A.; Moriel, P.; Carreira, E.M. Iridium-catalyzed synthesis of primary allylic amines from allylic alcohols: Sulfamic acid as ammonia equivalent. Angew. Chem. Int. Ed., 2007, 46, 3139-3143.
(b) Roggen, M.; Carreira, E.M. Stereospecific substitution of allylic alcohols to give optically active primary allylic amines: Unique reactivity of a (P,alkene)Ir complex modulated by iodide. J. Am. Chem. Soc., 2010, 132, 11917-11919.
[27]
Banerjee, D.; Junge, K.; Beller, M. Cooperative catalysis by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols. Angew. Chem. Int. Ed., 2014, 53, 13049-13053.
[28]
Liu, Q.; Wu, L.; Jiao, H.; Fang, X.; Jackstell, R.; Beller, M. Domino catalysis: Palladium-catalyzed carbonylation of allylic alcohols to b,g-unsaturated esters. Angew. Chem. Int. Ed., 2013, 52, 8064-8068.
[29]
Usui, I.; Schmidt, S.; Keller, M.; Breit, B. Allylation of N-heterocycles with allylic alcohols employing self-assembling palladium phosphane catalysts. Org. Lett., 2008, 10, 1207-1210.
[30]
Gumrukcu, Y.; de Bruin, B.; Reek, J.N.H. Hydrogen-bond-assisted activation of allylic alcohols for palladium-catalyzed coupling reactions. ChemSusChem, 2014, 7, 890-896.
[31]
Sakamoto, M.; Shimizu, I.; Yamamoto, A. Activation of C-O and C-N bonds in allylic alcohols and amines by palladium complexes promoted by CO2. Synthetic applications to allylation of nucleophiles, carbonylation, and allylamine disproportionation. Bull. Chem. Soc. Jpn., 1996, 69, 1065-1078.
[32]
Lang, S.B.; Locascio, T.M.; Tunge, J.A. Activation of alcohols with carbon dioxide: Intermolecular allylation of weakly acidic pronucleophiles. Org. Lett., 2014, 16, 4308-4311.
[33]
Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. (π-Allyl)palladium complexes bearing diphosphinidenecyclobutene ligands (DPCB): Highly active catalysts for direct conversion of allylic alcohols. J. Am. Chem. Soc., 2002, 124, 10968-10969.
[34]
Kayaki, Y.; Koda, T.; Ikariya, T. Halide-free dehydrative allylation using allylic alcohols promoted by a palladium-triphenyl phosphite catalyst. J. Org. Chem., 2004, 69, 2595-2597.
[35]
Thoumazet, C.; Grützmacher, H.; Deschamps, B.; Ricard, L.; le Floch, P. Testing phosphanes in the palladium-catalysed allylation of secondary and primary amines. Eur. J. Inorg. Chem., 2006, 19, 3911-3922.
[36]
Sarkar, A.; Ghosh, R. Palladium-catalyzed amination of allylic alcohols. J. Org. Chem., 2011, 76, 8508-8512.
[37]
Tao, Y.; Wang, B.; Wang, B.; Qu, L.; Qu, J. Highly efficient and regioselective allylation with allylic alcohols catalyzed by [Mo3S4Pd(h3-allyl)] clusters. Org. Lett., 2010, 12, 2726-2729.
[38]
(a) Sawadjoon, S.; Samec, J.S.M. An atom efficient route to N-aryl and N-alkyl pyrrolines by transition metal catalysis. Org. Biomol. Chem., 2011, 9, 2548-2554.
(b) Sawadjoon, S.; Sjöberg, P.J.R.; Orthaber, A.; Matsson, O.; Samec, J.S.M. Mechanistic insights into the Pd-catalyzed direct amination of allyl alcohols: Evidence for an outer-sphere mechanism involving a palladium hydride intermediate. Chem. Eur. J., 2014, 20, 1520-1524.
(c) Sawadjoon, S.; Orthaber, A.; Sjöberg, P.J.R.; Eriksson, L.; Samec, J.S.M. Equilibrium study of Pd(dba)2 and P(OPh)3 in the Pd-catalyzed allylation of aniline by allyl alcohol. Organometallics, 2014, 33, 249-253.
[39]
For an alternative mechanism of the direct amination catalyzed by Ozawa
complexes, see: Piechaczyk, O.; Thoumazet, C.; Jean, Y.; le Floch, P. DFT Study on the palladium-catalyzed allylation of primary amines by allylic alcohol. J. Am. Chem. Soc., 2006, 128, 14306-143171.
[40]
Tsupova, S.; Mäeorg, U. Pd-catalyzed regioselective allylation of mono- and disubstituted hydrazines. Org. Lett., 2013, 15, 3381-3383.
[41]
Lorion, M.M.; Gasperin, D.; Oble, J.; Poli, G. Palladium-catalyzed arylic/allylic aminations: Permutable domino sequences for the synthesis of dihydroquinolines from Morita-Baylis-Hillman adducts. Org. Lett., 2013, 15, 3050-3053.
[42]
Wang, M.; Xie, Y.; Li, J.; Huang, H. Palladium-catalyzed direct amination of allylic alcohols at room temperature. Synlett, 2014, 25, 2781-2786.
[43]
Banerjee, D.; Jagadeesh, R.V.; Junge, K.; Junge, H.; Beller, M. An efficient and convenient palladium catalyst system for the synthesis of amines from allylic alcohols. ChemSusChem, 2012, 5, 2039-2044.
[44]
Banerjee, D.; Jagadeesh, R.J.; Junge, K.; Junge, H.; Beller, M. Efficient and convenient palladium-catalyzed amination of allylic alcohols with N-heterocycles. Angew. Chem. Int. Ed., 2012, 124, 11724-11728.
[45]
(a) Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J. Org. Chem., 1988, 53, 918-920.
(b) Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[46]
(a) Ishiyama, T.; Ahiko, T.A.; Miyaura, N.A. A synthesis of allylboronates via the palladium(0)-catalyzed cross-coupling reaction of bis(pinacolato)diboron with allylic acetates. Tetrahedron Lett., 1996, 38, 6889-6892.
(b) Tsuji, Y.; Funato, M.; Ozawa, M.; Ogiyama, H.; Kajita, S.; Kawamura, T. Silylation of allylic trifluoroacetates and acetates using organodisilanes catalyzed by palladium complex. J. Org. Chem., 1996, 61, 5779-5787.
[47]
(a) Selander, N.; Jennifer, R.; Paasch, J.R.J.; Szabó, K.J. Palladium-catalyzed allylic C−OH functionalization for efficient synthesis of functionalized allylsilanes. J. Am. Chem. Soc., 2011, 133, 409-411.
(b) Larsson, J.M.; Szabó, K.J. Mechanistic investigation of the palladium-catalyzed synthesis of allylic silanes and boronates from allylic alcohols. J. Am. Chem. Soc., 2013, 135, 443-455.
[48]
Gumrukcu, Y.; de Bruin, B.; Reek, J.N.H. Dehydrative cross-coupling reactions of allylic alcohols with olefins. Chem. Eur. J., 2014, 20, 10905-10909.
[49]
Kinoshita, H.; Shinokubo, H.; Oshima, K. Water enables direct use of allyl alcohol for Tsuji-Trost reaction without activators. Org. Lett., 2004, 6, 4085-4088.
[50]
Wagh, Y.S.; Sawant, D.N.; Dhake, K.P.; Bhanage, B.M. Direct allylic amination of allylic alcohols with aromatic/aliphatic amines using Pd/TPPTS as an aqueous phase recyclable catalyst. Catal. Sci. Technol., 2012, 2, 835-840.
[51]
Shue, Y.J.; Yang, S.C. Activator-free and one-pot C-allylation by simple palladium catalyst in water. Tetrahedron Lett., 2012, 53, 1380-1384.
[52]
For previous selected examples on direct alcohol substitution carried out in
aqueous media, see: (a) Nishikata, T.; Lipshutz, B.H. Amination of allylic alcohol in water at room temperature. Org. Lett., 2009, 11, 2377-2379.
(b) Hirakawa, H.; Yokoyama, Y. Palladium-catalyzed mono-N-allylation of unprotected anthranilic acids with allylic alcohols in aqueous media. J. Org. Chem., 2011, 76, 8433-8439.
(c) Hirakawa, H.; Yokoyama, Y. Palladium-catalyzed mono-N-allylation of unprotected amino acids with 1,1-dimethylallyl alcohol in water. Org. Biomol. Chem., 2011, 9, 4044-4050.
[53]
Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I.D.; Zhang, W. Palladium-catalyzed allylic alkylation of simple ketones with allylic alcohols and its mechanistic study. Angew. Chem. Int. Ed., 2014, 53, 6776-6780.
[54]
Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Hydrogen-bond-activated palladium-catalyzed allylic alkylation via allylic alkyl ethers: challenging leaving groups. Org. Lett., 2014, 16, 1570-1573. For other reports on the use of allylic ethers as coupling partners in Tsuji-Trost type reactions, see: (a) Nishikata, T.; Lipshutz, B.H. Aminations of allylic phenyl ethers via micellar catalysis at room temperature in water. Chem. Commun., 2009, 48, 6472-6474. (b) Mukai, R.; Horino, Y.; Tanaka, S.; Tamaru, Y.; Kimura, M. Pd(0)-Catalyzed amphiphilic activation of bis-allyl alcohol and ether. J. Am. Chem. Soc., 2004, 126, 11138-11139. (c) Hosokawa, T.; Kono, T.; Uno, T.; Murahashi, S.I. Palladium-catalyzed reaction of 2-vinyl-2,3-dihydrobenzofurans and chroman with nucleophiles. Bull. Chem. Soc. Jpn., 1986, 59, 2191-2193.
[55]
Atkins, K.E.; Walker, W.E.; Manyik, R.M. Palladium-catalyzed transfer of allylic groups. Tetrahedron Lett., 1970, 43, 3821-3824.
[56]
Hirao, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Palladium-catalyzed reaction of allylic ammonium bromides with nucleophiles. J. Organomet. Chem., 1982, 236, 409-414.
[57]
Yamamoto, T.; Akimoto, M.; Saito, O.; Yamamoto, A. Interaction of palladium(0) complexes with allylic acetates, allyl ethers, allyl phenyl chalcogenides, allylic alcohols, and allylamines. Oxidative addition, condensation, disproportionation, and p-complex formation. Organometallics, 1986, 5, 1559-1567.
[58]
(a) Murahashi, S.I.; Makabe, Y. Palladium(0) catalyzed 3-aza-cope rearrangement of N-allylenamines. Tetrahedron Lett., 1985, 26, 5563-5566.
(b) Murahashi, S.I.; Makabe, Y.; Kunita, K. Palladium(0)-catalyzed rearrangement of N-allylenamines. Synthesis of d,e−unsaturated imines and g,d-unsaturated carbonyl compounds. J. Org. Chem., 1988, 53, 4489-4495.
[59]
Mukherjee, S.; List, B. Chiral counteranions in asymmetric transition-metal catalysis: Highly enantioselective Pd/Broensted acid-catalyzed direct a-allylation of aldehydes. J. Am. Chem. Soc., 2007, 129, 11336-11337.
[60]
Li, M.B.; Li, H.; Wang, J.; Liu, C.R.; Tian, S.K. Catalytic stereospecific alkylation of malononitriles with enantioenriched primary allylic amines. Chem. Commun. , 2013, 49, 8190-8192.
[61]
Wang, Y.; Xu, J.X.; Gu, Y.; Tian, S.K. Catalytic stereospecific allylation of protected hydrazines with enantioenriched primary allylic amines. Org. Chem. Front., 2014, 1, 812-816.
[62]
Wu, X.S.; Zhou, M.G.; Chen, Y.; Tian, S.K. Catalytic allylation of hypophosphorous acid and H-phosphinic acids with primary allylic amines. Asian J. Org. Chem., 2014, 3, 711-714.
[63]
(a) Åkermark, B.; Vitagliano, A. Reactivity and syn-anti isomerization of (h3-geranyl)- and (h3-neryl)palladium complexes. Evidence for electronic control of the regiochemistry of nucleophilic addition. Organometallics, 1985, 4, 1275-1283. [and references therein].
(b) Trost, B.M.; Keinan, E. Pyrrole annulation onto aldehydes and ketones via palladium-catalyzed reactions. J. Org. Chem., 1980, 45, 2746-2749.
[64]
(a) Watson, I.D.G.; Yu, L.; Yudin, A.K. Advances in nitrogen transfer reactions involving aziridines. Acc. Chem. Res., 2006, 39, 194-206.
(b) Dubovyk, I.; Pichugin, D.; Yudin, A.K. Palladium-catalyzed ring-contraction and ring-expansion reactions of cyclic allyl amines. Angew. Chem. Int. Ed., 2011, 50, 5924-5926.
(c) Dubovyk, I.; Watson, I.D.G.; Yudin, A.K. Achieving control over the branched/linear selectivity in palladium-catalyzed allylic amination. J. Org. Chem., 2013, 78, 1559-1575.
[65]
Li, M.B.; Wang, Y.; Tian, S.K. Regioselective and stereospecific cross-coupling of primary allylic amines with boronic acids and boronates through palladium catalyzed C−N bond cleavage. Angew. Chem. Int. Ed., 2012, 51, 2968-2971.
[66]
Wu, X.S.; Chen, Y.; Li, M.B.; Zhou, M.G.; Tian, S.K. Direct substitution of primary allylic Amines with sulfinate salts. J. Am. Chem. Soc., 2012, 134, 14694-14697.
[67]
Ma, X.T.; Wang, Y.; Dai, R.H.; Liu, C.R.; Tian, S.K. Catalytic allylation of stabilized phosphonium ylides with primary allylic amines. J. Org. Chem., 2013, 78, 11071-11075.
[68]
Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. C-N bond cleavage of allylic amines via hydrogen bond activation with alcohol solvents in Pd-catalyzed allylic alkylation of carbonyl compounds. J. Am. Chem. Soc., 2011, 133, 19354-19357.