[1]
Ackermann, L., Ed.; Modern arylation methods; Wiley-VCH: Weinheim, 2009.
[2]
Beller, M.; Bolm, C. Transition metals for organic synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004.
[3]
Yu, J.Q.; Shi, Z.J. Topics in Current Chemistry; Springer: Berlin, 2010, Vol. 292, .
[4]
Li, H.; Li, B.J.; Shi, Z.J. Challenge and progress: Palladium-catalyzed sp3 C-H activation. Catal. Sci. Technol., 2011, 1, 191-206.
[5]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed., 2012, 51, 8960-9009.
[6]
Kuhl, N.; Hopkinson, M.N.; Wencel-Delord, J.; Glorius, F. Beyond directing groups: transition metal-catalyzed C-H activation of simple arenes. Angew. Chem. Int. Ed., 2012, 51, 10236-10254.
[7]
Engle, K.M.; Mei, T.S.; Wasa, M.; Yu, J.Q. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc. Chem. Res., 2012, 45, 788-802.
[8]
McMurray, L. ÓHara, F.; Gaunt, M.J. C-H Functionalization in organic synthesis. Chem. Soc. Rev., 2011, 40, 1885-1898.
[9]
Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: Mechanism and scope. Chem. Rev., 2011, 111, 1315-1345.
[10]
Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110, 624-655.
[11]
Zhang, S.Y.; Zhang, F.M.; Tu, Y.Q. Direct Sp3 α-C-H activation and functionalization of alcohol and ether. Chem. Soc. Rev., 2011, 40, 1937-1949.
[12]
Sun, C.L.; Li, B.J.; Shi, Z.J. Direct C-H transformation via iron catalysis. Chem. Rev., 2011, 111, 1293-1314.
[13]
Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)-H activation. Chem. Eur. J., 2010, 16, 2654-2672.
[14]
Lyons, T.W.; Sandford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110, 1147-1169.
[15]
Kulkarni, A.A.; Daugulis, O. Direct conversion of carbon-hydrogen into carbon-carbon bonds by first-row transition-metal catalysis. Synthesis, 2009, (24), 4087-4109.
[16]
Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Towards mild metal-catalyzed C-H bond activation. Chem. Soc. Rev., 2011, 40, 4740-4761.
[17]
Li, B.J.; Shi, Z.J. From C(sp2)-H to C(sp3)-H: Systematic studies on transition metal-catalyzed oxidative C-C formation. Chem. Soc. Rev., 2012, 41, 5588-5598.
[18]
Che, C.M.; Lo, V.K.; Zhou, C.Y.; Huang, J.S. Selective functionalization of saturated C-H bonds with metalloporphyrin catalysts. Chem. Soc. Rev., 2011, 40, 1950-1975.
[19]
Liu, Y.; Kim, J.; Chae, J. Heterocycle construction via transition metal-catalyzed C-H functionalization and C-heteroatom bond formation. Curr. Org. Chem., 2014, 18, 2049-2071.
[20]
Song, W.F. Cobalt- and nickel-catalyzed functionalization of unactivated Chal,
C-O and C-H bonds, Ph.D. Thesis, Georg-August-Universität: Göttingen, 2013.
[21]
Ding, Z.; Yoshikai, N. Cobalt-catalyzed alkenylation of thiazoles with alkynes via C-H bond functionalization. Synthesis, 2011, (16), 2561-2578.
[22]
Yoshikai, N. Cobalt-catalyzed, chelation-assisted C-H bond functionalization. Synlett, 2011, (8), 1047-1051.
[23]
Gao, K.; Yoshikai, N. Low-valent cobalt catalysis: New opportunities for C-H functionalization. Acc. Chem. Res., 2014, 47, 1208-1219.
[24]
Tilly, D.; Dayaker, G.; Bachu, P. Cobalt mediated C-H bond functionalization: Emerging tools for organic synthesis. Catal. Sci. Technol., 2014, 4, 2756-2777.
[25]
Pellissier, H.; Clavier, H. Enantioselective cobalt-catalyzed transformations. Chem. Rev., 2014, 114, 2775-2823.
[26]
Ackermann, L. Cobalt-catalyzed C-H arylations, benzylations, and alkylations with organic electrophiles and beyond. J. Org. Chem., 2014, 79, 8948-8954.
[27]
Murahashi, S. Synthesis of phthalinidines from schiff bases and carbon monoxide. J. Am. Chem. Soc., 1955, 77, 6403-6404.
[28]
Horiie, S. Synthesis of phthalinidines from schiff bases and carbon monoxide; Nippon Kagaku Zasshi, 1958, pp. 68-75.
[29]
Halbritter, G.; Knoch, F.; Wolski, A.; Kisch, H. Functionalization of aromatic azo-compounds by the cobalt-catalyzed, regioselective double addition of tolane: 2,6-Distilbenylazobenzenes and 2,3-dihydrocinnolines. Angew. Chem. Int. Ed., 1994, 33, 1603-1605.
[30]
Lenges, C.P.; Brookhart, M. Co(I)-Catalyzed inter- and intramolecular hydroacylation of olefins with aromatic aldehydes. J. Am. Chem. Soc., 1997, 119, 3165-3166.
[31]
Lenges, C.P.; White, P.S.; Brookhart, M. Mechanistic and synthetic studies of the addition of alkyl aldehydes to vinylsilanes catalyzed by Co(I) complexes. J. Am. Chem. Soc., 1998, 120, 6965-6979.
[32]
Bolig, A.D.; Brookhart, M. Activation of sp3 C-H bonds with cobalt(I): Catalytic synthesis of enamines. J. Am. Chem. Soc., 2007, 129, 14544-14545.
[33]
Lenges, C.P.; Brookhart, M.; Grant, B.E. H/D Exchange reactions between C6D6 and C5Me5Co(CH2=CHR)2 (R = H, SiMe3): Evidence for oxidative addition of Csp2-H bonds to the [C5Me5(L)Co], moiety. J. Organomet. Chem., 1997, 528, 199-203.
[34]
Kuulkarni, A.A.; Daugulis, O. Direct conversion of carbon-hydrogen into carbon-carbon bonds by first-row transition-metal catalysis. Synthesis, 2009, (24), 4087-4109.
[35]
Kuninobu, Y.; Takai, K. Organic reactions catalyzed by rhenium carbonyl complexes. Chem. Rev., 2011, 111, 1938-1953.
[36]
Sun, C.L.; Li, B.J.; Shi, Z.J. Pd-catalyzed oxidative coupling with organometallic reagents via C-H activation. Chem. Commun., 2010, 46, 677-685.
[37]
Chen, X.; Engle, K.M.; Wang, D.H.; Yu, J.Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed., 2009, 48, 5094-5115.
[38]
Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew. Chem. Int. Ed., 2009, 48, 9792-9826.
[39]
Gao, K.; Lee, P.S.; Fujita, T.; Yoshikai, N. Cobalt-catalyzed hydroarylation of alkynes through chelation-assisted C-H bond activation. J. Am. Chem. Soc., 2010, 132, 12249-12251.
[40]
Mannathan, S.; Cheng, C.H. Cobalt-catalyzed regio- and stereoselective intermolecular enyne coupling: An efficient route to 1,3-diene derivatives. Chem. Commun., 2010, 46, 1923-1925.
[41]
Lee, P.S.; Fujita, T.; Yoshikai, N. Cobalt-catalyzed, room-temperature addition of aromatic imines to alkynes via directed C-H bond activation. J. Am. Chem. Soc., 2011, 133, 17283-17295.
[42]
Lenges, C.P.; Brookhart, M.; Grant, B.E. H/D exchange reactions between C6D6 and C5Me5Co(CH2=CHR)2 (R = H, SiMe3): Evidence for oxidative addition of CSP2-H bonds to the [C5Me5(L)Co] moiety. J. Organomet. Chem., 1997, 528, 199-203.
[43]
Klein, H.F.; Camadanli, S.; Beck, R.; Leudel, D.; Fléorke, U. Cyclometalation of substrates containing imine and pyridyl anchoring groups by iron and cobalt complexes. Angew. Chem. Int. Ed., 2005, 44, 975-977.
[44]
Beck, R.; Sun, H.; Li, X.; Camadanli, S.; Klein, H.F. Cyclometalation of thiobenzophenones with mononuclear methyliron and -cobalt complexes. Eur. J. Inorg. Chem., 2008, 21, 3253-3257.
[45]
Beck, R.; Frey, M.; Camadanli, S.; Klein, H.F. Four- and five-membered cobaltacycles by regioselective cyclometallation of benzyl sulfide derivatives via Co(V) intermediates. Dalton Trans., 2008, (37), 4981-4983.
[46]
Camadanli, S.; Beck, R.; Fléorke, U.; Klein, H.F. First regioselective cyclometalation reactions of cobalt in arylketones: C-H versus C-F activation. Dalton Trans., 2008, (42), 5701-5704.
[47]
Wang, A.; Sun, H.; Li, X. N-Assisted carbon-hydrogen bond activation by cobalt(I) complexes. Organometallics, 2008, 27, 5434-5437.
[48]
Otsuka, S.; Nakamura, A. Acetylene and allene complexes: Their implication in homogeneous catalysis. Adv. Organomet. Chem., 1976, 14, 245-283.
[49]
Bassetti, M.; Casellato, P.; Gamasa, M.P.; Gimeno, J.; Gonzalez-Bernardo, C.; Martín-Vaca, B. Insertion reactions of alkynes into the Ru-H bond of indenylruthenium(II) hydride complexes. Mechanism of the reaction of phenylacetylene with [RuH(η5-C9H7)(dppm)] (dppm = Bis(diphenylphosphino) methane). Organometallics, 1997, 16, 5470-5477.
[50]
Bassetti, M.; Marini, S.; Díaz, J.; Gamasa, M.P.; Gimeno, J. Rodríguez-A lvarez, Y.; García-Granda, S. Synthesis and properties of the indenyl ruthenium(II) complex [Ru(E)-η1-C(C≡CPh)=CHPh(η5-C9H7)(κ2-P-dppm)] (dppm=bis(diphenylphos phino)methane). An organometallic intermediate in the catalytic dimerization of phenylacetylene. Organometallics, 2002, 21, 4815-4822.
[51]
Ding, Z.H.; Yoshikai, N. Mild and efficient C2-alkenylation of indoles with alkynes catalyzed by a cobalt complex. Angew. Chem. Int. Ed., 2012, 51, 4698-4701.
[52]
Arockiam, P.B.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem. Rev., 2012, 112, 5879-5918.
[53]
Yamakawa, T.; Yoshikai, N. Cobalt-catalyzed ortho-alkenylation of aromatic aldimines via chelation-assisted C-H bond activation. Tetrahedron, 2013, 69, 4459-4465.
[54]
Punji, B.; Song, W.; Shevchenko, G.A.; Ackermann, L. Cobalt-catalyzed C-H bond functionalizations with aryl and alkyl chlorides. Chem. Eur. J, 2013, 19(32), 10605-10610.
[55]
Yamakawa, T.; Yoshikai, N. Annulation of α,β-unsaturated imines and alkynes via cobalt-catalyzed olefinic C-H activation. Org. Lett., 2013, 15, 196-199.
[56]
Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed C(sp2)-H bond alkenylation by alkynes. Angew. Chem. Int. Ed., 2014, 53, 10209-10212.
[57]
Chu, C.M.; Huang, W.J.; Liu, J.T.; Yao, C.F. Highly efficient iodine-catalyzed hydroarylation of arenes with styrenes. Tetrahedron Lett., 2007, 48, 6881-6885.
[58]
Wang, M.Z.; Wong, M.K.; Che, C.M. Gold(I)-catalyzed intermolecular hydroarylation of alkenes with indoles under thermal and microwave-assisted conditions. Chem. Eur. J., 2008, 14, 8353-8364.
[59]
Das, B.; Krishnaiah, M.; Laxminarayana, K.; Damodar, K.; Kumar, D.N. Simple and efficient metal-free hydroarylation and hydroalkylation using strongly acidic ion-exchange resin. Chem. Lett., 2009, 38, 42-43.
[60]
Kakiuchi, F.; Kochi, T. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen bond cleavage. Synthesis, 2008, (19), 3013-3039.
[61]
Martinez, R.; Chevalier, R.; Darses, S.; Genet, J.P. A versatile ruthenium catalyst for C-C bond formation by C-H bond activation. Angew. Chem. Int. Ed., 2006, 45, 8232-8235.
[62]
Martinez, R.; Genet, J.P.; Darses, S. Anti-Markovnikov hydroarylation of styrenes catalyzed by an in situ generated ruthenium complex. Chem. Commun., 2008, (33), 3855-3857.
[63]
Gao, K.; Yoshikai, N. Regioselectivity-switchable hydroarylation of styrenes. J. Am. Chem. Soc., 2011, 133, 400-402.
[64]
Gao, K.; Yoshikai, N. Cobalt-phenanthroline catalysts for the ortho alkylation of aromatic imines under mild eeaction conditions. Angew. Chem. Int. Ed., 2011, 50, 6888-6892.
[65]
Ding, Z.H.; Yoshikai, N.C. 2-Alkylation of N-pyrimidylindole with vinylsilane via cobalt-catalyzed C-H bond activation. Beilstein J. Org. Chem., 2012, 8, 1536-1542.
[66]
Dong, J.H.; Lee, P.S.; Yoshikai, N. Cobalt-catalyzed branched-selective addition of aromatic ketimines to styrenes under room-temperature conditions. Chem. Lett., 2013, 42, 1140-1142.
[67]
Cheltsov, A.V.; Aoyagi, M.; Aleshin, A.E.C.; Yu, E.C.W.; Gilliland, T.; Zhai, D.; Bobkov, A.A.; Reed, J.C.; Liddington, R.C.; Abagyan, R. Vaccinia virus virulence factor N1L is a novel promising target for antiviral therapeutic intervention. J. Med. Chem., 2010, 53, 3899-3906.
[68]
Moree, W.J.; Li, B.F.; Jovic, F.; Coon, T.; Yu, J.; Gross, R.S.; Tucci, F.; Marinkovic, D.; Zamani-Kord, S.; Malany, S.; Bradbury, M.J.; Hernandez, L.M.; Brien, Z.O.; Wen, J.; Wang, H.; Hoare, S.R.J.; Petroski, R.E.; Sacaan, A.; Madan, A.; Crowe, P.D.; Beaton, G. Characterization of novel selective H1-antihistamines for clinical evaluation in the treatment of insomnia. J. Med. Chem., 2009, 52, 5307.
[69]
Lee, P.S.; Yoshikai, N. Aldimine-directed branched-selective hydroarylation of styrenes. Angew. Chem. Int. Ed., 2013, 52, 1240-1244.
[70]
Toyota, S.; Iwanaga, T. Science of Synthesis; Siegel, J.S.; Tobe, Y., Eds.; Thieme: Stuttgart, 2008, Vol. 45, pp. 745-768.
[71]
Yamamoto, S.; Saga, Y.; Andou, T.; Matsunaga, S.; Kanaia, M. Cobalt-catalyzed C-4 selective alkylation of quinolines. Adv. Synth. Catal., 2014, 356, 401-405.
[72]
Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed coupling of sp2 C-H bonds with alkenes. Org. Lett., 2014, 16, 4684-4687.
[73]
Ding, Z.H.; Yoshikai, N. Cobalt-catalyzed intramolecular olefin: Hydroylation leading to dihydropyrroloindoles and tetrahydropyridoindoles. Angew. Chem. Int. Ed., 2013, 52, 8574-8578.
[74]
Santhoshkumar, R.; Mannathan, S.; Cheng, C.H. Cobalt-catalyzed hydroarylative cyclization of 1,6-enynes with aromatic ketones and esters via C-H activation. Org. Lett., 2014, 16, 4208-4211.
[75]
Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed direct carbonylation of aminoquinoline benzamides. Org. Lett., 2014, 16, 4688-4690.
[76]
Ackermann, L. Metal-catalyzed direct alkylations of (hetero)arenes via C-H bond cleavages with unactivated alkyl halides. Chem. Commun., 2010, (27), 4866-4877.
[77]
Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110, 1147-1169.
[78]
Chen, X.; Engle, K.M.; Wang, D.H.; Yu, J.Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed., 2009, 48, 5094-5097.
[79]
Chen, Q.; Ilies, L.; Nakamura, E. Cobalt-catalyzed ortho-alkylation of secondary benzamide with alkyl chloride through directed C-H bond activation. J. Am. Chem. Soc., 2011, 133, 428-429.
[80]
Pieber, B.; Cantillo, D.; Kappe, C.O. Direct arylation of benzene with aryl bromides using high-temperature/high-pressure process windows: Expanding the scope of C-H activation chemistry. Chem. Eur. J., 2012, 18, 5047-5055.
[81]
Zheng, T.T.; Sun, H.J.; Lu, F.G.; Harms, K.; Li, X.Y. Cobalt induced C-H bond activation and C8-arylation of caffeine with aryl bromides. Inorg. Chem. Commun., 2013, 30, 139-142.
[82]
Gao, K.; Yoshikai, N. Cobalt-catalyzed ortho alkylation of aromatic imines with primary and secondary alkyl halides. J. Am. Chem. Soc., 2013, 135, 9279-9282.
[83]
Punji, B.; Song, W.F.; Shevchenko, G.A.; Ackermann, L. Cobalt-catalyzed C-H bond functionalizations with aryl and alkyl chlorides. Chem. Eur. J., 2013, 19, 10605-10610.
[84]
Gao, K.; Yamakawa, T.; Yoshikai, N. Cobalt-catalyzed chelation-assisted alkylation of arenes with primary and secondary alkyl halides. Synthesis, 2014, 46, 2024-2039.
[85]
Song, W.; Ackermann, L. Cobalt-catalyzed direct arylation and benzylation by C-H/C-O cleavage with sulfamates, carbamates, and phosphates. Angew. Chem. Int. Ed., 2012, 51, 8251-8254.
[86]
Truong, T.; Alvarado, J.; Tran, L.D.; Daugulis, O. Nickel, manganese, cobalt, and iron-catalyzed deprotonative arene dimerization. Org. Lett., 2010, 12, 1200-1203.
[87]
Gao, K.; Yoshikai, N. Cobalt-catalyzed arylation of aldimines via directed C-H bond functionalization: Addition of 2-arylpyridines and self-coupling of aromatic aldimines. Chem. Commun., 2012, 48, 4305-4307.
[88]
Zhou, B.; Yang, Y.; Lin, S.; Li, Y. Rhodium-catalyzed direct addition of indoles to N-sulfonylaldimines. Adv. Synth. Catal., 2013, 355, 360-364.
[89]
Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. A cationic high-valent Cp*CoIII complex for the catalytic generation of nucleophilic organometallic species: Directed C-H bond activation. Angew. Chem. Int. Ed., 2013, 52, 2207-2211.
[90]
Pignon, A.; Gall, E.L.; Martens, T. A new manganese-mediated, cobalt-catalyzed threecomponent synthesis of (diarylmethyl)sulfonamides. Beilstein J. Org. Chem., 2014, 10, 425-431.
[91]
Gao, K.; Paira, R.; Yoshikai, N. Cobalt-catalyzed ortho-C-H alkylation of 2-arylpyridines via ring-opening of aziridines. Adv. Synth. Catal., 2014, 356, 1486-1490.
[92]
Tan, B.H.; Dong, J.; Yoshikai, N. Cobalt-catalyzed addition of arylzinc reagents to alkynes to form ortho-alkenylarylzinc species through 1,4-cobalt migration. Angew. Chem. Int. Ed., 2012, 51, 9610-9614.
[93]
Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. Rhodium-catalyzed hydroarylation of alkynes with arylboronic acids: 1,4-ahift of rhodium from 2-aryl-1-alkenylrhodium to 2-alkenylarylrhodium intermediate. J. Am. Chem. Soc., 2001, 123, 9918-9919.
[94]
Ma, S.; Gu, Z. 1,4-Migration of rhodium and palladium in catalytic organometallic reactions. Angew. Chem. Int. Ed., 2005, 44, 7512-7517.
[95]
Tan, B.H.; Yoshikai, N. Cobalt-catalyzed addition of arylzinc reagents to norbornene derivatives through 1,4-cobalt migration. Org. Lett., 2014, 16, 3392-3395.
[96]
Jamal, Z.; Teo, Y.C. Cobalt-catalyzed direct alkenylation of 2-methylquinolines with aldehydes via C(sp3)-H functionalization in water. Synlett, 2014, 25, 2049-2053.
[97]
Nugent, T.C. Chiral amine synthesis: Methods, developments and applications; Wiley-VCH: Weinheim, 2010.
[98]
Ricci, A. Amino group chemistry: From synthesis to the life sciences; Wiley-VCH: Weinheim, 2008.
[99]
Ricci, A. Modern Amination Methods; Wiley-VCH: Weinheim, 2000.
[100]
Salvatore, R.N.; Yoon, C.H.; Jung, K.W. Synthesis of secondary amines. Tetrahedron, 2001, 57, 7785-7811.
[101]
Collet, F.R.; Dodd, H.; Dauban, P. Catalytic C-H amination: Recent progress and future directions. Chem. Commun., 2009, (34), 5061-5074.
[102]
Davies, H.M.L.; Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451, 417-424.
[103]
Halfen, J.A. Recent advances in metal-mediated carbon-nitrogen bond formation reactions: Aziridination and amidation. Curr. Org. Chem., 2005, 9, 657-669.
[104]
Lu, H.J.; Jiang, H.L.; Wojtas, L.; Zhang, X.P. Selective intramolecular C-H amination through the metalloradical activation of azides: Synthesis of 1,3-diamines under neutral and nonoxidative conditions. Angew. Chem. Int. Ed., 2010, 49, 10192-10196.
[105]
Lu, H.; Tao, J.; Jones, J.E.; Wojtas, L.; Zhang, X.P. Cobalt(II)-catalyzed intramolecular C-H amination with phosphoryl azides: Formation of 6- and 7-membered cyclophosphoramidates. Org. Lett., 2010, 12, 1248-1251.
[106]
Kim, J.; Cho, S.; Joseph, J.; Chang, S. Cobalt- and manganese-catalyzed Direct amination of azoles under mild reaction conditions and the mechanistic. Angew. Chem. Int. Ed., 2010, 49, 9899-9903.
[107]
Ye, Y.; Zhang, J.; Wang, G.; Chen, S.; Yu, X.Q. Cobalt-catalyzed benzylic C-H amination via dehydrogenative-coupling reaction. Tetrahedron, 2011, 67, 4649-4654.
[108]
Lu, H.J.; Li, C.Q.; Jiang, H.L.; Lizardi, C.L.; Zhang, X.P. Chemoselective amination of propargylic C (sp3)-H bonds by cobalt(II)-based metalloradical catalysis. Angew. Chem. Int. Ed., 2014, 53, 7028-7032.
[109]
Hall, D.G. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Wiley-VCH: Weinheim, 2005.
[110]
Crudden, C.M.; Edwards, D. Catalytic asymmetric hydroboration: Recent advances and applications in carbon-carbon bond-forming reactions. Eur. J. Org. Chem., 2003, (24), 4695-4712.
[111]
Zhang, L.; Zuo, Z.Q.; Leng, X.B.; Huang, Z. A cobalt-catalyzed alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed., 2014, 53, 2696-2700.
[112]
Obligacion, J.V.; Semproni, S.P.; Chirik, P.J. Cobalt-catalyzed C-H borylation. J. Am. Chem. Soc., 2014, 136, 4133-4136.