Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Cobalt-Mediated Direct Carbon-Hydrogen Bond Functionalizations

Author(s): Xiao-hua Cai and Bing Xie

Volume 19, Issue 2, 2015

Page: [121 - 150] Pages: 30

DOI: 10.2174/1385272819666141027230851

Price: $65

Abstract

Transition-metal-catalyzed direct C-H bond functionalizations have attracted considerable attention around the world for almost half a century. In the past decades, great efforts have been made for the development of late transition metals, mainly due to some advantages in terms of the diversity and high efficiency of the catalysts. However, their application was limited on account of their relatively high price, low natural abundance and partly strong toxicity. Cobalt as compared to precious transition metals has shown great potential in the C-H bond functionalizations because of its low cost, unique reactivity profiles and easy availibility in the earth’s crust. This review provides recent advances in direct C-H bond functionalizations mediated by cobalt from C-C and Cheteroatom bond forming reactions.

Keywords: C-C bond formation, C-H bond activation, C-heteroatom bond formation, cobalt catalysts, functionalized reaction.

Graphical Abstract

[1]
Ackermann, L., Ed.; Modern arylation methods; Wiley-VCH: Weinheim, 2009.
[2]
Beller, M.; Bolm, C. Transition metals for organic synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004.
[3]
Yu, J.Q.; Shi, Z.J. Topics in Current Chemistry; Springer: Berlin, 2010, Vol. 292, .
[4]
Li, H.; Li, B.J.; Shi, Z.J. Challenge and progress: Palladium-catalyzed sp3 C-H activation. Catal. Sci. Technol., 2011, 1, 191-206.
[5]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed., 2012, 51, 8960-9009.
[6]
Kuhl, N.; Hopkinson, M.N.; Wencel-Delord, J.; Glorius, F. Beyond directing groups: transition metal-catalyzed C-H activation of simple arenes. Angew. Chem. Int. Ed., 2012, 51, 10236-10254.
[7]
Engle, K.M.; Mei, T.S.; Wasa, M.; Yu, J.Q. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc. Chem. Res., 2012, 45, 788-802.
[8]
McMurray, L. ÓHara, F.; Gaunt, M.J. C-H Functionalization in organic synthesis. Chem. Soc. Rev., 2011, 40, 1885-1898.
[9]
Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: Mechanism and scope. Chem. Rev., 2011, 111, 1315-1345.
[10]
Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110, 624-655.
[11]
Zhang, S.Y.; Zhang, F.M.; Tu, Y.Q. Direct Sp3 α-C-H activation and functionalization of alcohol and ether. Chem. Soc. Rev., 2011, 40, 1937-1949.
[12]
Sun, C.L.; Li, B.J.; Shi, Z.J. Direct C-H transformation via iron catalysis. Chem. Rev., 2011, 111, 1293-1314.
[13]
Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)-H activation. Chem. Eur. J., 2010, 16, 2654-2672.
[14]
Lyons, T.W.; Sandford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110, 1147-1169.
[15]
Kulkarni, A.A.; Daugulis, O. Direct conversion of carbon-hydrogen into carbon-carbon bonds by first-row transition-metal catalysis. Synthesis, 2009, (24), 4087-4109.
[16]
Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Towards mild metal-catalyzed C-H bond activation. Chem. Soc. Rev., 2011, 40, 4740-4761.
[17]
Li, B.J.; Shi, Z.J. From C(sp2)-H to C(sp3)-H: Systematic studies on transition metal-catalyzed oxidative C-C formation. Chem. Soc. Rev., 2012, 41, 5588-5598.
[18]
Che, C.M.; Lo, V.K.; Zhou, C.Y.; Huang, J.S. Selective functionalization of saturated C-H bonds with metalloporphyrin catalysts. Chem. Soc. Rev., 2011, 40, 1950-1975.
[19]
Liu, Y.; Kim, J.; Chae, J. Heterocycle construction via transition metal-catalyzed C-H functionalization and C-heteroatom bond formation. Curr. Org. Chem., 2014, 18, 2049-2071.
[20]
Song, W.F. Cobalt- and nickel-catalyzed functionalization of unactivated Chal, C-O and C-H bonds, Ph.D. Thesis, Georg-August-Universität: Göttingen, 2013.
[21]
Ding, Z.; Yoshikai, N. Cobalt-catalyzed alkenylation of thiazoles with alkynes via C-H bond functionalization. Synthesis, 2011, (16), 2561-2578.
[22]
Yoshikai, N. Cobalt-catalyzed, chelation-assisted C-H bond functionalization. Synlett, 2011, (8), 1047-1051.
[23]
Gao, K.; Yoshikai, N. Low-valent cobalt catalysis: New opportunities for C-H functionalization. Acc. Chem. Res., 2014, 47, 1208-1219.
[24]
Tilly, D.; Dayaker, G.; Bachu, P. Cobalt mediated C-H bond functionalization: Emerging tools for organic synthesis. Catal. Sci. Technol., 2014, 4, 2756-2777.
[25]
Pellissier, H.; Clavier, H. Enantioselective cobalt-catalyzed transformations. Chem. Rev., 2014, 114, 2775-2823.
[26]
Ackermann, L. Cobalt-catalyzed C-H arylations, benzylations, and alkylations with organic electrophiles and beyond. J. Org. Chem., 2014, 79, 8948-8954.
[27]
Murahashi, S. Synthesis of phthalinidines from schiff bases and carbon monoxide. J. Am. Chem. Soc., 1955, 77, 6403-6404.
[28]
Horiie, S. Synthesis of phthalinidines from schiff bases and carbon monoxide; Nippon Kagaku Zasshi, 1958, pp. 68-75.
[29]
Halbritter, G.; Knoch, F.; Wolski, A.; Kisch, H. Functionalization of aromatic azo-compounds by the cobalt-catalyzed, regioselective double addition of tolane: 2,6-Distilbenylazobenzenes and 2,3-dihydrocinnolines. Angew. Chem. Int. Ed., 1994, 33, 1603-1605.
[30]
Lenges, C.P.; Brookhart, M. Co(I)-Catalyzed inter- and intramolecular hydroacylation of olefins with aromatic aldehydes. J. Am. Chem. Soc., 1997, 119, 3165-3166.
[31]
Lenges, C.P.; White, P.S.; Brookhart, M. Mechanistic and synthetic studies of the addition of alkyl aldehydes to vinylsilanes catalyzed by Co(I) complexes. J. Am. Chem. Soc., 1998, 120, 6965-6979.
[32]
Bolig, A.D.; Brookhart, M. Activation of sp3 C-H bonds with cobalt(I): Catalytic synthesis of enamines. J. Am. Chem. Soc., 2007, 129, 14544-14545.
[33]
Lenges, C.P.; Brookhart, M.; Grant, B.E. H/D Exchange reactions between C6D6 and C5Me5Co(CH2=CHR)2 (R = H, SiMe3): Evidence for oxidative addition of Csp2-H bonds to the [C5Me5(L)Co], moiety. J. Organomet. Chem., 1997, 528, 199-203.
[34]
Kuulkarni, A.A.; Daugulis, O. Direct conversion of carbon-hydrogen into carbon-carbon bonds by first-row transition-metal catalysis. Synthesis, 2009, (24), 4087-4109.
[35]
Kuninobu, Y.; Takai, K. Organic reactions catalyzed by rhenium carbonyl complexes. Chem. Rev., 2011, 111, 1938-1953.
[36]
Sun, C.L.; Li, B.J.; Shi, Z.J. Pd-catalyzed oxidative coupling with organometallic reagents via C-H activation. Chem. Commun., 2010, 46, 677-685.
[37]
Chen, X.; Engle, K.M.; Wang, D.H.; Yu, J.Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed., 2009, 48, 5094-5115.
[38]
Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew. Chem. Int. Ed., 2009, 48, 9792-9826.
[39]
Gao, K.; Lee, P.S.; Fujita, T.; Yoshikai, N. Cobalt-catalyzed hydroarylation of alkynes through chelation-assisted C-H bond activation. J. Am. Chem. Soc., 2010, 132, 12249-12251.
[40]
Mannathan, S.; Cheng, C.H. Cobalt-catalyzed regio- and stereoselective intermolecular enyne coupling: An efficient route to 1,3-diene derivatives. Chem. Commun., 2010, 46, 1923-1925.
[41]
Lee, P.S.; Fujita, T.; Yoshikai, N. Cobalt-catalyzed, room-temperature addition of aromatic imines to alkynes via directed C-H bond activation. J. Am. Chem. Soc., 2011, 133, 17283-17295.
[42]
Lenges, C.P.; Brookhart, M.; Grant, B.E. H/D exchange reactions between C6D6 and C5Me5Co(CH2=CHR)2 (R = H, SiMe3): Evidence for oxidative addition of CSP2-H bonds to the [C5Me5(L)Co] moiety. J. Organomet. Chem., 1997, 528, 199-203.
[43]
Klein, H.F.; Camadanli, S.; Beck, R.; Leudel, D.; Fléorke, U. Cyclometalation of substrates containing imine and pyridyl anchoring groups by iron and cobalt complexes. Angew. Chem. Int. Ed., 2005, 44, 975-977.
[44]
Beck, R.; Sun, H.; Li, X.; Camadanli, S.; Klein, H.F. Cyclometalation of thiobenzophenones with mononuclear methyliron and -cobalt complexes. Eur. J. Inorg. Chem., 2008, 21, 3253-3257.
[45]
Beck, R.; Frey, M.; Camadanli, S.; Klein, H.F. Four- and five-membered cobaltacycles by regioselective cyclometallation of benzyl sulfide derivatives via Co(V) intermediates. Dalton Trans., 2008, (37), 4981-4983.
[46]
Camadanli, S.; Beck, R.; Fléorke, U.; Klein, H.F. First regioselective cyclometalation reactions of cobalt in arylketones: C-H versus C-F activation. Dalton Trans., 2008, (42), 5701-5704.
[47]
Wang, A.; Sun, H.; Li, X. N-Assisted carbon-hydrogen bond activation by cobalt(I) complexes. Organometallics, 2008, 27, 5434-5437.
[48]
Otsuka, S.; Nakamura, A. Acetylene and allene complexes: Their implication in homogeneous catalysis. Adv. Organomet. Chem., 1976, 14, 245-283.
[49]
Bassetti, M.; Casellato, P.; Gamasa, M.P.; Gimeno, J.; Gonzalez-Bernardo, C.; Martín-Vaca, B. Insertion reactions of alkynes into the Ru-H bond of indenylruthenium(II) hydride complexes. Mechanism of the reaction of phenylacetylene with [RuH(η5-C9H7)(dppm)] (dppm = Bis(diphenylphosphino) methane). Organometallics, 1997, 16, 5470-5477.
[50]
Bassetti, M.; Marini, S.; Díaz, J.; Gamasa, M.P.; Gimeno, J. Rodríguez-A lvarez, Y.; García-Granda, S. Synthesis and properties of the indenyl ruthenium(II) complex [Ru(E)-η1-C(C≡CPh)=CHPh(η5-C9H7)(κ2-P-dppm)] (dppm=bis(diphenylphos phino)methane). An organometallic intermediate in the catalytic dimerization of phenylacetylene. Organometallics, 2002, 21, 4815-4822.
[51]
Ding, Z.H.; Yoshikai, N. Mild and efficient C2-alkenylation of indoles with alkynes catalyzed by a cobalt complex. Angew. Chem. Int. Ed., 2012, 51, 4698-4701.
[52]
Arockiam, P.B.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem. Rev., 2012, 112, 5879-5918.
[53]
Yamakawa, T.; Yoshikai, N. Cobalt-catalyzed ortho-alkenylation of aromatic aldimines via chelation-assisted C-H bond activation. Tetrahedron, 2013, 69, 4459-4465.
[54]
Punji, B.; Song, W.; Shevchenko, G.A.; Ackermann, L. Cobalt-catalyzed C-H bond functionalizations with aryl and alkyl chlorides. Chem. Eur. J, 2013, 19(32), 10605-10610.
[55]
Yamakawa, T.; Yoshikai, N. Annulation of α,β-unsaturated imines and alkynes via cobalt-catalyzed olefinic C-H activation. Org. Lett., 2013, 15, 196-199.
[56]
Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed C(sp2)-H bond alkenylation by alkynes. Angew. Chem. Int. Ed., 2014, 53, 10209-10212.
[57]
Chu, C.M.; Huang, W.J.; Liu, J.T.; Yao, C.F. Highly efficient iodine-catalyzed hydroarylation of arenes with styrenes. Tetrahedron Lett., 2007, 48, 6881-6885.
[58]
Wang, M.Z.; Wong, M.K.; Che, C.M. Gold(I)-catalyzed intermolecular hydroarylation of alkenes with indoles under thermal and microwave-assisted conditions. Chem. Eur. J., 2008, 14, 8353-8364.
[59]
Das, B.; Krishnaiah, M.; Laxminarayana, K.; Damodar, K.; Kumar, D.N. Simple and efficient metal-free hydroarylation and hydroalkylation using strongly acidic ion-exchange resin. Chem. Lett., 2009, 38, 42-43.
[60]
Kakiuchi, F.; Kochi, T. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen bond cleavage. Synthesis, 2008, (19), 3013-3039.
[61]
Martinez, R.; Chevalier, R.; Darses, S.; Genet, J.P. A versatile ruthenium catalyst for C-C bond formation by C-H bond activation. Angew. Chem. Int. Ed., 2006, 45, 8232-8235.
[62]
Martinez, R.; Genet, J.P.; Darses, S. Anti-Markovnikov hydroarylation of styrenes catalyzed by an in situ generated ruthenium complex. Chem. Commun., 2008, (33), 3855-3857.
[63]
Gao, K.; Yoshikai, N. Regioselectivity-switchable hydroarylation of styrenes. J. Am. Chem. Soc., 2011, 133, 400-402.
[64]
Gao, K.; Yoshikai, N. Cobalt-phenanthroline catalysts for the ortho alkylation of aromatic imines under mild eeaction conditions. Angew. Chem. Int. Ed., 2011, 50, 6888-6892.
[65]
Ding, Z.H.; Yoshikai, N.C. 2-Alkylation of N-pyrimidylindole with vinylsilane via cobalt-catalyzed C-H bond activation. Beilstein J. Org. Chem., 2012, 8, 1536-1542.
[66]
Dong, J.H.; Lee, P.S.; Yoshikai, N. Cobalt-catalyzed branched-selective addition of aromatic ketimines to styrenes under room-temperature conditions. Chem. Lett., 2013, 42, 1140-1142.
[67]
Cheltsov, A.V.; Aoyagi, M.; Aleshin, A.E.C.; Yu, E.C.W.; Gilliland, T.; Zhai, D.; Bobkov, A.A.; Reed, J.C.; Liddington, R.C.; Abagyan, R. Vaccinia virus virulence factor N1L is a novel promising target for antiviral therapeutic intervention. J. Med. Chem., 2010, 53, 3899-3906.
[68]
Moree, W.J.; Li, B.F.; Jovic, F.; Coon, T.; Yu, J.; Gross, R.S.; Tucci, F.; Marinkovic, D.; Zamani-Kord, S.; Malany, S.; Bradbury, M.J.; Hernandez, L.M.; Brien, Z.O.; Wen, J.; Wang, H.; Hoare, S.R.J.; Petroski, R.E.; Sacaan, A.; Madan, A.; Crowe, P.D.; Beaton, G. Characterization of novel selective H1-antihistamines for clinical evaluation in the treatment of insomnia. J. Med. Chem., 2009, 52, 5307.
[69]
Lee, P.S.; Yoshikai, N. Aldimine-directed branched-selective hydroarylation of styrenes. Angew. Chem. Int. Ed., 2013, 52, 1240-1244.
[70]
Toyota, S.; Iwanaga, T. Science of Synthesis; Siegel, J.S.; Tobe, Y., Eds.; Thieme: Stuttgart, 2008, Vol. 45, pp. 745-768.
[71]
Yamamoto, S.; Saga, Y.; Andou, T.; Matsunaga, S.; Kanaia, M. Cobalt-catalyzed C-4 selective alkylation of quinolines. Adv. Synth. Catal., 2014, 356, 401-405.
[72]
Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed coupling of sp2 C-H bonds with alkenes. Org. Lett., 2014, 16, 4684-4687.
[73]
Ding, Z.H.; Yoshikai, N. Cobalt-catalyzed intramolecular olefin: Hydroylation leading to dihydropyrroloindoles and tetrahydropyridoindoles. Angew. Chem. Int. Ed., 2013, 52, 8574-8578.
[74]
Santhoshkumar, R.; Mannathan, S.; Cheng, C.H. Cobalt-catalyzed hydroarylative cyclization of 1,6-enynes with aromatic ketones and esters via C-H activation. Org. Lett., 2014, 16, 4208-4211.
[75]
Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed direct carbonylation of aminoquinoline benzamides. Org. Lett., 2014, 16, 4688-4690.
[76]
Ackermann, L. Metal-catalyzed direct alkylations of (hetero)arenes via C-H bond cleavages with unactivated alkyl halides. Chem. Commun., 2010, (27), 4866-4877.
[77]
Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110, 1147-1169.
[78]
Chen, X.; Engle, K.M.; Wang, D.H.; Yu, J.Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed., 2009, 48, 5094-5097.
[79]
Chen, Q.; Ilies, L.; Nakamura, E. Cobalt-catalyzed ortho-alkylation of secondary benzamide with alkyl chloride through directed C-H bond activation. J. Am. Chem. Soc., 2011, 133, 428-429.
[80]
Pieber, B.; Cantillo, D.; Kappe, C.O. Direct arylation of benzene with aryl bromides using high-temperature/high-pressure process windows: Expanding the scope of C-H activation chemistry. Chem. Eur. J., 2012, 18, 5047-5055.
[81]
Zheng, T.T.; Sun, H.J.; Lu, F.G.; Harms, K.; Li, X.Y. Cobalt induced C-H bond activation and C8-arylation of caffeine with aryl bromides. Inorg. Chem. Commun., 2013, 30, 139-142.
[82]
Gao, K.; Yoshikai, N. Cobalt-catalyzed ortho alkylation of aromatic imines with primary and secondary alkyl halides. J. Am. Chem. Soc., 2013, 135, 9279-9282.
[83]
Punji, B.; Song, W.F.; Shevchenko, G.A.; Ackermann, L. Cobalt-catalyzed C-H bond functionalizations with aryl and alkyl chlorides. Chem. Eur. J., 2013, 19, 10605-10610.
[84]
Gao, K.; Yamakawa, T.; Yoshikai, N. Cobalt-catalyzed chelation-assisted alkylation of arenes with primary and secondary alkyl halides. Synthesis, 2014, 46, 2024-2039.
[85]
Song, W.; Ackermann, L. Cobalt-catalyzed direct arylation and benzylation by C-H/C-O cleavage with sulfamates, carbamates, and phosphates. Angew. Chem. Int. Ed., 2012, 51, 8251-8254.
[86]
Truong, T.; Alvarado, J.; Tran, L.D.; Daugulis, O. Nickel, manganese, cobalt, and iron-catalyzed deprotonative arene dimerization. Org. Lett., 2010, 12, 1200-1203.
[87]
Gao, K.; Yoshikai, N. Cobalt-catalyzed arylation of aldimines via directed C-H bond functionalization: Addition of 2-arylpyridines and self-coupling of aromatic aldimines. Chem. Commun., 2012, 48, 4305-4307.
[88]
Zhou, B.; Yang, Y.; Lin, S.; Li, Y. Rhodium-catalyzed direct addition of indoles to N-sulfonylaldimines. Adv. Synth. Catal., 2013, 355, 360-364.
[89]
Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. A cationic high-valent Cp*CoIII complex for the catalytic generation of nucleophilic organometallic species: Directed C-H bond activation. Angew. Chem. Int. Ed., 2013, 52, 2207-2211.
[90]
Pignon, A.; Gall, E.L.; Martens, T. A new manganese-mediated, cobalt-catalyzed threecomponent synthesis of (diarylmethyl)sulfonamides. Beilstein J. Org. Chem., 2014, 10, 425-431.
[91]
Gao, K.; Paira, R.; Yoshikai, N. Cobalt-catalyzed ortho-C-H alkylation of 2-arylpyridines via ring-opening of aziridines. Adv. Synth. Catal., 2014, 356, 1486-1490.
[92]
Tan, B.H.; Dong, J.; Yoshikai, N. Cobalt-catalyzed addition of arylzinc reagents to alkynes to form ortho-alkenylarylzinc species through 1,4-cobalt migration. Angew. Chem. Int. Ed., 2012, 51, 9610-9614.
[93]
Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. Rhodium-catalyzed hydroarylation of alkynes with arylboronic acids: 1,4-ahift of rhodium from 2-aryl-1-alkenylrhodium to 2-alkenylarylrhodium intermediate. J. Am. Chem. Soc., 2001, 123, 9918-9919.
[94]
Ma, S.; Gu, Z. 1,4-Migration of rhodium and palladium in catalytic organometallic reactions. Angew. Chem. Int. Ed., 2005, 44, 7512-7517.
[95]
Tan, B.H.; Yoshikai, N. Cobalt-catalyzed addition of arylzinc reagents to norbornene derivatives through 1,4-cobalt migration. Org. Lett., 2014, 16, 3392-3395.
[96]
Jamal, Z.; Teo, Y.C. Cobalt-catalyzed direct alkenylation of 2-methylquinolines with aldehydes via C(sp3)-H functionalization in water. Synlett, 2014, 25, 2049-2053.
[97]
Nugent, T.C. Chiral amine synthesis: Methods, developments and applications; Wiley-VCH: Weinheim, 2010.
[98]
Ricci, A. Amino group chemistry: From synthesis to the life sciences; Wiley-VCH: Weinheim, 2008.
[99]
Ricci, A. Modern Amination Methods; Wiley-VCH: Weinheim, 2000.
[100]
Salvatore, R.N.; Yoon, C.H.; Jung, K.W. Synthesis of secondary amines. Tetrahedron, 2001, 57, 7785-7811.
[101]
Collet, F.R.; Dodd, H.; Dauban, P. Catalytic C-H amination: Recent progress and future directions. Chem. Commun., 2009, (34), 5061-5074.
[102]
Davies, H.M.L.; Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451, 417-424.
[103]
Halfen, J.A. Recent advances in metal-mediated carbon-nitrogen bond formation reactions: Aziridination and amidation. Curr. Org. Chem., 2005, 9, 657-669.
[104]
Lu, H.J.; Jiang, H.L.; Wojtas, L.; Zhang, X.P. Selective intramolecular C-H amination through the metalloradical activation of azides: Synthesis of 1,3-diamines under neutral and nonoxidative conditions. Angew. Chem. Int. Ed., 2010, 49, 10192-10196.
[105]
Lu, H.; Tao, J.; Jones, J.E.; Wojtas, L.; Zhang, X.P. Cobalt(II)-catalyzed intramolecular C-H amination with phosphoryl azides: Formation of 6- and 7-membered cyclophosphoramidates. Org. Lett., 2010, 12, 1248-1251.
[106]
Kim, J.; Cho, S.; Joseph, J.; Chang, S. Cobalt- and manganese-catalyzed Direct amination of azoles under mild reaction conditions and the mechanistic. Angew. Chem. Int. Ed., 2010, 49, 9899-9903.
[107]
Ye, Y.; Zhang, J.; Wang, G.; Chen, S.; Yu, X.Q. Cobalt-catalyzed benzylic C-H amination via dehydrogenative-coupling reaction. Tetrahedron, 2011, 67, 4649-4654.
[108]
Lu, H.J.; Li, C.Q.; Jiang, H.L.; Lizardi, C.L.; Zhang, X.P. Chemoselective amination of propargylic C (sp3)-H bonds by cobalt(II)-based metalloradical catalysis. Angew. Chem. Int. Ed., 2014, 53, 7028-7032.
[109]
Hall, D.G. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Wiley-VCH: Weinheim, 2005.
[110]
Crudden, C.M.; Edwards, D. Catalytic asymmetric hydroboration: Recent advances and applications in carbon-carbon bond-forming reactions. Eur. J. Org. Chem., 2003, (24), 4695-4712.
[111]
Zhang, L.; Zuo, Z.Q.; Leng, X.B.; Huang, Z. A cobalt-catalyzed alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed., 2014, 53, 2696-2700.
[112]
Obligacion, J.V.; Semproni, S.P.; Chirik, P.J. Cobalt-catalyzed C-H borylation. J. Am. Chem. Soc., 2014, 136, 4133-4136.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy