Abstract
The purines ATP and adenosine are widely recognized for their neuromodulatory effects. They have been shown to have effects on neurons via various receptors and interactions with glial cells. In particular, long-term potentiation (LTP) in hippocampal slice preparations has been found to be modulated by ATP and adenosine. This review gives an overview of purinergic signaling in relation to hippocampal LTP and memory formation. The data supports the hypothesis that adenosine mediates a tonic suppression of synaptic transmission. Thus, low adenosine levels appear to increase basal synaptic activity via a decreased activation of the inhibitor A1 receptor, consequently making it more difficult to induce LTP because of lower contrast. During high stimulation, the inhibition of neighboring pathways by adenosine, in combination with an A2a receptor activation, appears to increase contrast of excited pathways against a nonexcited background. This would enable amplification of specific signaling while suppressing non-specific events. Although a clear role for purinergic signaling in LTP is evident, more studies are needed to scrutinize the modulatory role of ATP and adenosine and their receptors in synaptic plasticity and memory.
Keywords: ATP, adenosine, LTP, hippocampus, memory, synaptic plasticity.
Current Neuropharmacology
Title:Purinergic Signaling and Hippocampal Long-Term Potentiation
Volume: 12 Issue: 1
Author(s): Robert Duster, Jos Prickaerts and Arjan Blokland
Affiliation:
Keywords: ATP, adenosine, LTP, hippocampus, memory, synaptic plasticity.
Abstract: The purines ATP and adenosine are widely recognized for their neuromodulatory effects. They have been shown to have effects on neurons via various receptors and interactions with glial cells. In particular, long-term potentiation (LTP) in hippocampal slice preparations has been found to be modulated by ATP and adenosine. This review gives an overview of purinergic signaling in relation to hippocampal LTP and memory formation. The data supports the hypothesis that adenosine mediates a tonic suppression of synaptic transmission. Thus, low adenosine levels appear to increase basal synaptic activity via a decreased activation of the inhibitor A1 receptor, consequently making it more difficult to induce LTP because of lower contrast. During high stimulation, the inhibition of neighboring pathways by adenosine, in combination with an A2a receptor activation, appears to increase contrast of excited pathways against a nonexcited background. This would enable amplification of specific signaling while suppressing non-specific events. Although a clear role for purinergic signaling in LTP is evident, more studies are needed to scrutinize the modulatory role of ATP and adenosine and their receptors in synaptic plasticity and memory.
Export Options
About this article
Cite this article as:
Duster Robert, Prickaerts Jos and Blokland Arjan, Purinergic Signaling and Hippocampal Long-Term Potentiation, Current Neuropharmacology 2014; 12 (1) . https://dx.doi.org/10.2174/1570159X113119990045
DOI https://dx.doi.org/10.2174/1570159X113119990045 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Glial Cells – The Key Elements of Alzheimer´s Disease
Current Alzheimer Research Treatment with the Ketone Body D-β-hydroxybutyrate Attenuates Autophagy Activated by NMDA and Reduces Excitotoxic Neuronal Damage in the Rat Striatum In Vivo
Current Pharmaceutical Design Immune Functions of Glia and Neurons in the Central Nervous System
Current Immunology Reviews (Discontinued) Role of Epigenetics and Oxidative Stress in Gliomagenesis
CNS & Neurological Disorders - Drug Targets Drugs Interfering with Apoptosis in Breast Cancer
Current Pharmaceutical Design Recent Advances Using Phosphodiesterase 4 (PDE4) Inhibitors to Treat Inflammatory Disorders: Animal and Clinical Studies
Current Drug Therapy Metformin - The Drug for the Treatment of Autoimmune Diseases; A New Use of a Known Anti-Diabetic Drug
Current Topics in Medicinal Chemistry Molecular Function of Tocopherols in Age Related Diseases
Current Pharmaceutical Design Effects of Snake Venom Polypeptides on Central Nervous System
Central Nervous System Agents in Medicinal Chemistry Post Traumatic Lesion absence of β-Dystroglycan-Immunopositivity in Brain Vessels Coincides with the Glial Reaction and the Immunoreactivity of Vascular Laminin
Current Neurovascular Research Neonatal Diabetes: Applying Molecular Biology to Patient Care
Current Pediatric Reviews Challenges in the Correct Assessment of a Case of Aggressive Thyroid Carcinoma with Synchronous Breast Cancer: A Case Report and Review of the Literature of Essential Role of Radiopharmaceuticals
Current Radiopharmaceuticals Stable Gastric Pentadecapeptide BPC 157: Novel Therapy in Gastrointestinal Tract
Current Pharmaceutical Design Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain
Current Medicinal Chemistry Poly(ADP-Ribose) Polymerase Inhibitors: New Pharmacological Functions and Potential Clinical Implications
Current Pharmaceutical Design Molecular Mechanisms Underlying the Dedifferentiation Process of Isolated Hepatocytes and Their Cultures
Current Drug Metabolism Vascular Endothelial Growth Factor: Adaptive Changes in the Neuroglialvascular Unit
Current Neurovascular Research Does More MnSOD Mean More Hydrogen Peroxide?
Anti-Cancer Agents in Medicinal Chemistry Protein Structural Analysis of Calbindin D<sub>28k</sub> Function and Dysregulation: Potential Competition Between Ca<sup>2+</sup> and Zn<sup>2+</sup>
Current Alzheimer Research Small Molecule Modulation of p75 Neurotrophin Receptor Functions
CNS & Neurological Disorders - Drug Targets