Abstract
Nutrigenomics and nutrigenetics are receiving growing attention from a diverse range of stakeholders including health care professionals, citizens, governments, insurers and industry. Currently there is special focus on research on how our food influences us and might cause discomfort or even symptoms of disease, but also the fact that several food intolerances are caused by genetic alterations. The strong interest expressed by certain segments of the general population for predictive and preventive diagnostic testing in relation to diet and ways in which this can improve overall health led to a fast growing market of nutrigenetic based tests. This puts pressures and challenges on governments and insurers for how best to reimburse new genetic tests. These discussions are best informed by a sound understanding of nutrigenetics science and technology, its promises and challenges, which are addressed in this paper. For example, some of the most common food intolerances caused by genetic variations are lactose intolerance, inherited fructose intolerance, congenital sucrase isomaltase deficiency (sucrose intolerance), celiac disease, glucose-6-phosphate deficiency (favism), alcohol intolerance and hemochromatosis. The increasing understanding of molecular mechanisms associated with these conditions is stimulating the development of a broad range of diagnostics allowing any person with adequate resources to have their genetic predispositions determined. However, many of the currently available tests cover only one of the above mentioned diseases or a small set of responsible mutations, which is in strong contrast to the evolution of medicine towards a more holistic approach as, for example, P4 medicine. Additionally, available tests are often not based on evidence or other guidelines for genetic test development as recommended by the ACCE evidentiary framework. In this paper we discuss the most common nutrigenetic diseases and their potential and demonstrated impacts on public health, as well as ways to devise personalized diet informed by human genomics variation in the future.
Keywords: Food intolerance, nutrigenetics, nutrigenomics, P4 medicine, personalized medicine.