Abstract
The ABC (ATP Binding Cassette) transporter protein superfamily comprises a large number of ubiquitous and functionally versatile proteins conserved from archaea to humans. ABC transporters have a key role in many human diseases and also in the development of multidrug resistance in cancer and in parasites. Although a dramatic progress has been achieved in ABC protein studies in the last decades, we are still far from a detailed understanding of their molecular functions. Several aspects of pharmacological ABC transporter targeting also remain unclear. Here we summarize the conformational and protonation changes of ABC transporters and the potential use of this information in pharmacological design. Network related methods, which recently became useful tools to describe protein structure and dynamics, have not been applied to study allosteric coupling in ABC proteins as yet. A detailed description of the strengths and limitations of these methods is given, and their potential use in describing ABC transporter dynamics is outlined. Finally, we highlight possible future aspects of pharmacological utilization of network methods and outline the future trends of this exciting field.
Keywords: ABC transporters, conformational change, protein dynamics, network pharmacology, protein structure networks, protonation.
Current Pharmaceutical Design
Title:Potential Application of Network Descriptions for Understanding Conformational Changes and Protonation States of ABC Transporters
Volume: 19 Issue: 23
Author(s): Tamas Hegedus, Gergely Gyimesi, Merse E. Gaspar, Kristof Z. Szalay, Rajeev Gangal and Peter Csermely
Affiliation:
Keywords: ABC transporters, conformational change, protein dynamics, network pharmacology, protein structure networks, protonation.
Abstract: The ABC (ATP Binding Cassette) transporter protein superfamily comprises a large number of ubiquitous and functionally versatile proteins conserved from archaea to humans. ABC transporters have a key role in many human diseases and also in the development of multidrug resistance in cancer and in parasites. Although a dramatic progress has been achieved in ABC protein studies in the last decades, we are still far from a detailed understanding of their molecular functions. Several aspects of pharmacological ABC transporter targeting also remain unclear. Here we summarize the conformational and protonation changes of ABC transporters and the potential use of this information in pharmacological design. Network related methods, which recently became useful tools to describe protein structure and dynamics, have not been applied to study allosteric coupling in ABC proteins as yet. A detailed description of the strengths and limitations of these methods is given, and their potential use in describing ABC transporter dynamics is outlined. Finally, we highlight possible future aspects of pharmacological utilization of network methods and outline the future trends of this exciting field.
Export Options
About this article
Cite this article as:
Hegedus Tamas, Gyimesi Gergely, Gaspar Merse E., Szalay Kristof Z., Gangal Rajeev and Csermely Peter, Potential Application of Network Descriptions for Understanding Conformational Changes and Protonation States of ABC Transporters, Current Pharmaceutical Design 2013; 19 (23) . https://dx.doi.org/10.2174/1381612811319230002
DOI https://dx.doi.org/10.2174/1381612811319230002 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Influence of Co-Ligands on Improving Tumor Targeting of <sup>99m</sup>Tc-HYNIC Conjugated Peptides
Mini-Reviews in Medicinal Chemistry Ca<sup>2+</sup> Signalling in Endothelial Progenitor Cells: A Novel Means to Improve Cell-Based Therapy and Impair Tumour Vascularisation
Current Vascular Pharmacology Agonists and Antagonists Acting at P2X7 Receptor
Current Topics in Medicinal Chemistry A Sialic Acid-Specific Lectin from the Mushroom Paecilomyces Japonica that Exhibits Hemagglutination Activity and Cytotoxicity
Protein & Peptide Letters Mechanisms of Action of Imidazoacridinone and Triazoloacridinone Derivatives in View of their Biological Activity
Current Pharmaceutical Analysis RING Finger E3 Ubiquitin Ligases: Structure and Drug Discovery
Current Pharmaceutical Design Kaempferol-3-<i>O</i>-Rhamnoside Inhibits the Proliferation of Jurkat Cells Through Jun Amino-Terminal Kinase Signaling
The Natural Products Journal Rapid Characterization of a Novel Taspine Derivative-HMQ1611 Binding to EGFR by a Cell Membrane Chromatography Method
Combinatorial Chemistry & High Throughput Screening Bioactive Herbal Alkaloids as Anti-Infective Agents
Anti-Infective Agents Mammalian Target of Rapamycin (mTOR) Inhibitors as Anti-Cancer Agents
Current Cancer Drug Targets Ribosome-inactivating Proteins from Root Tubers and Seeds of Trichosan-thes kirilowii and Other Trichosanthes Species
Protein & Peptide Letters Overview of Medicinally Important Diterpenoids Derived from Plastids
Mini-Reviews in Medicinal Chemistry G4 Aptamers: Trends in Structural Design
Mini-Reviews in Medicinal Chemistry Fe3O4 Nanoparticles Mediated Synthesis of Novel Isatin-dihydropyrimidinone Hybrid Molecules as Antioxidant and Cytotoxic Agents
Anti-Cancer Agents in Medicinal Chemistry Stem Cell Based Preclinical Drug Development and Toxicity Prediction
Current Pharmaceutical Design An Update on MDMX and Dual MDM2/X Inhibitors
Current Topics in Medicinal Chemistry Kinase Inhibitors Targeting Anti-angiogenesis as Anti-cancer Therapies
Current Angiogenesis (Discontinued) Homeostasis and the Importance for a Balance Between AKT/mTOR Activity and Intracellular Signaling
Current Medicinal Chemistry New Perspectives in the Pharmacological Treatment of Non-Melanoma Skin Cancer
Current Drug Targets Recent Advances in Enone and NO-Releasing Derivatives of Oleanolic Acid with Anti-cancer Activity
Mini-Reviews in Organic Chemistry