Abstract
Patients with homozygous familial hypercholesterolemia (HoFH) represent the most severe patients within the spectrum of dyslipidemias. Untreated Low-Density Lipoprotein Cholesterol (LDL-C) levels in these patients are usually in the range 500 to 1200 mg/dL. Moreover, these patients exhibit a scarce responsiveness or even non responsiveness to oral lipid lowering agents. Patients with heterozygous familial hypercholesterolemia (HetFH) tend to have untreated LDL-C levels of 250-500 mg/dL. Many of these patients are responsive to 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA-reductase) inhibitors (statins) and/or other specific drugs. Unfortunately, a significant subset of these patients (5-10%) have a severe and/or refractory form of HetFH and after current maximal oral therapy, they remain significantly far from treatment goals (The National Cholesterol Education Program (NCEP) ATPIII guidelines). This would be defined as LDL-C levels of ≥ 190 mg/dL - prior Coronary Heart Disease (CHD) or CHD equivalent - or ≥ 250 mg/dL (no prior CHD or CHD risk-equivalent). The only current therapy option for these patients is Low Density Lipoprotein-apheresis (LDL_a). While LDL_a is very effective in reducing LDL-C, many patients do not receive this extracorporeal therapy because of costs and limited availability of LDL_a centers. Recently, new potent lipid-lowering drugs have been developed and are currently under investigation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role controlling the levels of LDL-C. Studies have demonstrated that PCSK9 acts mainly by enhancing degradation of the Low-Density Lipoprotein receptor (LDLR) protein in the liver. Inactivation of PCSK9 in mice reduces plasma cholesterol levels. Since the loss of a functional PCSK9 in human is not associated with apparent deleterious effects, this protease is becoming an attractive target for lowering plasma LDL-C levels either alone or in combination with statins. Mipomersen, an apolipoprotein B (ApoB) synthesis inhibitor, for lowering of LDL-C showed to be an effective therapy to reduce LDL-C concentrations in patients with HoFH who are already receiving lipid-lowering drugs, including high-dose statins. Lomitapide is a potent inhibitor of microsomal triglyceride transfer protein and is highly efficacious in reducing LDL-C and triglycerides (TG). Lomitapide is currently being developed for patients with HoFH at doses up to 60 mg/d. These new powerful lipid-lowering drugs might be possibly superior than available hypolipidemic agents. Their mechanisms of action, effectiveness, safety, and indication in severe, genetically determined dyslipidemias, are reviewed.
Keywords: Severe hypercholesterolemia, PCSK9 inhibitors, mipomersen, abetalipoproteinemia, MTP-inhibitors, lomitapide, HMGCoAreductase inhibitors, combination lipid-lowering drug therapy, familial hypercholesterolemia, LDL receptor mutation, coronary artery disease, aortic valvular disease, LDL-apheresis, orthotopic liver transplantation, atherosclerosis
Current Medicinal Chemistry
Title:New Clinical Perspectives of Hypolipidemic Drug Therapy in Severe Hypercholesterolemia
Volume: 19 Issue: 28
Author(s): C. Stefanutti, C. Morozzi and S. Di Giacomo
Affiliation:
Keywords: Severe hypercholesterolemia, PCSK9 inhibitors, mipomersen, abetalipoproteinemia, MTP-inhibitors, lomitapide, HMGCoAreductase inhibitors, combination lipid-lowering drug therapy, familial hypercholesterolemia, LDL receptor mutation, coronary artery disease, aortic valvular disease, LDL-apheresis, orthotopic liver transplantation, atherosclerosis
Abstract: Patients with homozygous familial hypercholesterolemia (HoFH) represent the most severe patients within the spectrum of dyslipidemias. Untreated Low-Density Lipoprotein Cholesterol (LDL-C) levels in these patients are usually in the range 500 to 1200 mg/dL. Moreover, these patients exhibit a scarce responsiveness or even non responsiveness to oral lipid lowering agents. Patients with heterozygous familial hypercholesterolemia (HetFH) tend to have untreated LDL-C levels of 250-500 mg/dL. Many of these patients are responsive to 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA-reductase) inhibitors (statins) and/or other specific drugs. Unfortunately, a significant subset of these patients (5-10%) have a severe and/or refractory form of HetFH and after current maximal oral therapy, they remain significantly far from treatment goals (The National Cholesterol Education Program (NCEP) ATPIII guidelines). This would be defined as LDL-C levels of ≥ 190 mg/dL - prior Coronary Heart Disease (CHD) or CHD equivalent - or ≥ 250 mg/dL (no prior CHD or CHD risk-equivalent). The only current therapy option for these patients is Low Density Lipoprotein-apheresis (LDL_a). While LDL_a is very effective in reducing LDL-C, many patients do not receive this extracorporeal therapy because of costs and limited availability of LDL_a centers. Recently, new potent lipid-lowering drugs have been developed and are currently under investigation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role controlling the levels of LDL-C. Studies have demonstrated that PCSK9 acts mainly by enhancing degradation of the Low-Density Lipoprotein receptor (LDLR) protein in the liver. Inactivation of PCSK9 in mice reduces plasma cholesterol levels. Since the loss of a functional PCSK9 in human is not associated with apparent deleterious effects, this protease is becoming an attractive target for lowering plasma LDL-C levels either alone or in combination with statins. Mipomersen, an apolipoprotein B (ApoB) synthesis inhibitor, for lowering of LDL-C showed to be an effective therapy to reduce LDL-C concentrations in patients with HoFH who are already receiving lipid-lowering drugs, including high-dose statins. Lomitapide is a potent inhibitor of microsomal triglyceride transfer protein and is highly efficacious in reducing LDL-C and triglycerides (TG). Lomitapide is currently being developed for patients with HoFH at doses up to 60 mg/d. These new powerful lipid-lowering drugs might be possibly superior than available hypolipidemic agents. Their mechanisms of action, effectiveness, safety, and indication in severe, genetically determined dyslipidemias, are reviewed.
Export Options
About this article
Cite this article as:
Stefanutti C., Morozzi C. and Di Giacomo S., New Clinical Perspectives of Hypolipidemic Drug Therapy in Severe Hypercholesterolemia, Current Medicinal Chemistry 2012; 19 (28) . https://dx.doi.org/10.2174/092986712803341485
DOI https://dx.doi.org/10.2174/092986712803341485 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Is There an Association between Periodontitis and Hypertension?
Current Cardiology Reviews Challenges and Promises of Developing Thrombin Receptor Antagonists
Recent Patents on Cardiovascular Drug Discovery Aerobic Exercise Does Not Predict Brain Derived Neurotrophic Factor And Cortisol Alterations in Depressed Patients
CNS & Neurological Disorders - Drug Targets Therapeutic Use of Antioxidants in Sepsis
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) The Therapeutic Potential of Hepatocyte Growth Factor for Myocardial Infarction and Heart Failure
Current Pharmaceutical Design Reduction of Sodium Intake is a Prerequisite for Preventing and Curing High Blood Pressure in Hypertensive Patients - First Part: Therapy
Current Hypertension Reviews Multimodality Imaging in Cardiac Sarcoidosis: Is There a Winner?
Current Cardiology Reviews Graphical Abstracts
Letters in Drug Design & Discovery Manipulation and Engineering of Metabolic and Biosynthetic Pathway of Plant Polyphenols
Current Pharmaceutical Design Open Questions about Pulmonary Hypertension and Exercise Training: A Critical Review
Current Respiratory Medicine Reviews Hypoxia-Inducible Factors and Sphingosine 1-Phosphate Signaling
Anti-Cancer Agents in Medicinal Chemistry Gender Disparity in Pediatric Diseases
Current Molecular Medicine Experimental Benefits of Sex Hormones on Vascular Function and the Outcome of Hormone Therapy in Cardiovascular Disease
Current Cardiology Reviews The Role of Berberine in the Multi-Target Treatment of Senile Dementia
Current Topics in Medicinal Chemistry Personalized and Participatory Medicine as a Future Tool to Combat Cardiovascular Disease in Developing Countries
Current Pharmacogenomics and Personalized Medicine Low Lymphocyte Count and Cardiovascular Diseases
Current Medicinal Chemistry Small Players With Big Roles: MicroRNAs as Targets to Inhibit Breast Cancer Progression
Current Drug Targets 3D Printing as a Significant Achievement for Application in Posttraumatic Surgeries - A Literature Review
Current Medical Imaging Dynamic Role of Microparticles in Type 2 Diabetes Mellitus
Current Diabetes Reviews Acute Severe Arterial Hypertension: Therapeutic Options
Current Drug Targets