Abstract
Schistosomiasis caused by Schistosoma spp. is a serious public health concern, especially in sub-Saharan Africa. Praziquantel is the only drug currently administrated to treat this disease. However, praziquantel-resistant parasites have been identified in endemic areas and can be generated in the laboratory. Therefore, it is essential to find new therapeutics. Antioxidants are appealing drug targets. In order to survive in their hosts, schistosomes are challenged by reactive oxygen species from intrinsic and extrinsic sources. Schistosome antioxidant enzymes have been identified as essential proteins and novel drug targets and inhibition of the antioxidant response can lead to parasite death. Because the organization of the redox network in schistosomes is significantly different from that in humans, new drugs are being developed targeting schistosome antioxidants. In this paper the redox biology of schistosomes is discussed and their potential use as drug targets is reviewed. It is hoped that compounds targeting parasite antioxidant responses will become clinically relevant drugs in the near future.
Keywords: Schistosoma, drug development, antioxidants, glutathione, thioredoxin, thioredoxin glutathione reductase, praziquantel, drug targets, parasite death, redox biology
Current Pharmaceutical Design
Title:The Redox Biology of Schistosome Parasites and Applications for Drug Development
Volume: 18 Issue: 24
Author(s): Hsin-Hung Huang, Coraline Rigouin and David L. Williams
Affiliation:
Keywords: Schistosoma, drug development, antioxidants, glutathione, thioredoxin, thioredoxin glutathione reductase, praziquantel, drug targets, parasite death, redox biology
Abstract: Schistosomiasis caused by Schistosoma spp. is a serious public health concern, especially in sub-Saharan Africa. Praziquantel is the only drug currently administrated to treat this disease. However, praziquantel-resistant parasites have been identified in endemic areas and can be generated in the laboratory. Therefore, it is essential to find new therapeutics. Antioxidants are appealing drug targets. In order to survive in their hosts, schistosomes are challenged by reactive oxygen species from intrinsic and extrinsic sources. Schistosome antioxidant enzymes have been identified as essential proteins and novel drug targets and inhibition of the antioxidant response can lead to parasite death. Because the organization of the redox network in schistosomes is significantly different from that in humans, new drugs are being developed targeting schistosome antioxidants. In this paper the redox biology of schistosomes is discussed and their potential use as drug targets is reviewed. It is hoped that compounds targeting parasite antioxidant responses will become clinically relevant drugs in the near future.
Export Options
About this article
Cite this article as:
Huang Hsin-Hung, Rigouin Coraline and L. Williams David, The Redox Biology of Schistosome Parasites and Applications for Drug Development, Current Pharmaceutical Design 2012; 18 (24) . https://dx.doi.org/10.2174/138161212801327220
DOI https://dx.doi.org/10.2174/138161212801327220 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Advances in Hyaluronic Acid-Based Drug Delivery Systems
Current Drug Targets Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins
Anti-Cancer Agents in Medicinal Chemistry Editorial [Hot Topic: SOD Enzymes and Their Mimics in Cancer: Pro- vs Anti-Oxidative Mode of Action-Part I (Guest Editor: Ines Batinic-Haberle)]
Anti-Cancer Agents in Medicinal Chemistry Histone Deacetylase Inhibitors as Potent Modulators of Cellular Contacts
Current Drug Targets Secondary Hypertension: The Ways of Management
Current Vascular Pharmacology Recent Progress in the Development of Quinoline Derivatives for the Exploitation of Anti-Cancer Agents
Anti-Cancer Agents in Medicinal Chemistry Exploring Patterns of Epigenetic Information with Data Mining Techniques
Current Pharmaceutical Design Meet Our Editorial Board Member
Current Medicinal Chemistry Targeted Regulation of PI3K/Akt/mTOR/NF-κB Signaling by Indole Compounds and their Derivatives: Mechanistic Details and Biological Implications for Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Potential Natural Dual Agonist PPARα/γ-induced Antidiabetic and Antidyslipidemic Properties of Safrole-Free Nutmeg Seed (Myristica fragrans Houtt) Extract
The Natural Products Journal Genomic and Epigenetic Complexity of the FOXF1 Locus in 16q24.1: Implications for Development and Disease
Current Genomics Inhibition of Bacterial Carbonic Anhydrases and Zinc Proteases: From Orphan Targets to Innovative New Antibiotic Drugs
Current Medicinal Chemistry Optimising the Azeotropic Drying of 18F-Fluorine Wayto Improve the 18F-Fluorocholine Radiochemical Yield
Current Radiopharmaceuticals Current Concepts on the Management of Chordoma
Current Drug Therapy Targeting the Bone Microenvironment in Metastatic Castration-Resistant Prostate Cancer
Current Drug Targets The Adenine Nucleotide Translocator: A New Potential Chemotherapeutic Target
Current Drug Targets Herbal Phytochemicals as Immunomodulators
Current Immunology Reviews (Discontinued) Nanotechnological Advances in the Treatment of Epilepsy
CNS & Neurological Disorders - Drug Targets Viral Based Gene Therapy for Prostate Cancer
Current Gene Therapy Adiposity and the Gut - The Role of Gut Hormones
Current Nutrition & Food Science