Abstract
Despite the progress achieved in chemo- and radiotherapy, cancer is still a leading life-threatening pathology. In that sense, there is a need for novel therapeutic strategies based on our current knowledge of cancer biology. Among the phenotypical features of cancer cells, two of them are of particular interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress, both resulting from the combination of high anabolic needs and hypoxic growth conditions. By using menadione (vitamin K3) and ascorbate (vitamin C), we took advantage of these features to develop an original approach that consists in the exposure of cancer cells to an oxidant insult. When used in combination, these compounds exhibit a synergistic action and are devoid of major toxicity in vivo. Thus, this review is dedicated to the analysis of the molecular pathways by which this promising combination exerts its antitumoural effect.
Keywords: Ascorbate, menadione, cancer, oxidative stress, glycolysis, cell death
Current Molecular Pharmacology
Title: Targeting Cancer Cells by an Oxidant-Based Therapy
Volume: 1
Author(s): P. Buc Calderon, J. Verrax and H. Taper
Affiliation:
Keywords: Ascorbate, menadione, cancer, oxidative stress, glycolysis, cell death
Abstract: Despite the progress achieved in chemo- and radiotherapy, cancer is still a leading life-threatening pathology. In that sense, there is a need for novel therapeutic strategies based on our current knowledge of cancer biology. Among the phenotypical features of cancer cells, two of them are of particular interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress, both resulting from the combination of high anabolic needs and hypoxic growth conditions. By using menadione (vitamin K3) and ascorbate (vitamin C), we took advantage of these features to develop an original approach that consists in the exposure of cancer cells to an oxidant insult. When used in combination, these compounds exhibit a synergistic action and are devoid of major toxicity in vivo. Thus, this review is dedicated to the analysis of the molecular pathways by which this promising combination exerts its antitumoural effect.
Export Options
About this article
Cite this article as:
Calderon Buc P., Verrax J. and Taper H., Targeting Cancer Cells by an Oxidant-Based Therapy, Current Molecular Pharmacology 2008; 1 (1) . https://dx.doi.org/10.2174/1874467210801010080
DOI https://dx.doi.org/10.2174/1874467210801010080 |
Print ISSN 1874-4672 |
Publisher Name Bentham Science Publisher |
Online ISSN 1874-4702 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Targeted Cancer Therapy: The Next Generation of Cancer Treatment
Current Drug Discovery Technologies Oncogenic Fusion Tyrosine Kinases as Molecular Targets for Anti-Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Calpains: Attractive Targets for the Development of Synthetic Inhibitors
Current Topics in Medicinal Chemistry T Cell Suicide Gene Therapy to Aid Haematopoietic Stem Cell Transplantation
Current Gene Therapy The Role of Tumor Suppressor DLC-1: Far From Clear
Anti-Cancer Agents in Medicinal Chemistry Cordycepin Suppresses Integrin/FAK Signaling and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma
Anti-Cancer Agents in Medicinal Chemistry Redox Homeostasis, Bioactive Agents and Transduction Therapy
Current Signal Transduction Therapy Ginkgolic Acids Confer Potential Anticancer Effects by Targeting Pro- Inflammatory and Oncogenic Signaling Molecules
Current Molecular Pharmacology Anti-Gene Strategies to Down-Regulate Gene Expression in Mammalian Cells
Current Pharmaceutical Design Brain Tumor Causes, Symptoms, Diagnosis and Radiotherapy Treatment
Current Medical Imaging Safety and Side Effects of Cannabidiol, a Cannabis sativa Constituent
Current Drug Safety Intracellular Disposition of Methotrexate in Acute Lymphoblastic Leukemia in Children
Current Drug Metabolism Himalayan Plants as a Source of Anti-Cancer Agents: A Review
The Natural Products Journal Novel Marine-Derived Anti-Cancer Agents
Current Pharmaceutical Design An Antileukemic Glutaminase Free L-Asparaginase from Bacillus brevis
Current Biotechnology Metabolism of the Endocannabinoids Anandamide and 2-Arachidonoyl Glycerol, A Review, with Emphasis on the Pharmacology of Fatty Acid Amide Hydrolase, A Possible Target for the Treatment of Neurodegenerative Diseases and Pain
Current Medicinal Chemistry - Central Nervous System Agents Determination of 7,12-Dimethylbenz[a]Anthracene in Orally Treated Rats by High-Performance Liquid Chromatography and Transfer Stripping Voltammetry
Combinatorial Chemistry & High Throughput Screening Helper T Cells Point the Way to Specific Immunotherapy for Autoimmune Disease
Cardiovascular & Hematological Disorders-Drug Targets Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells
Anti-Cancer Agents in Medicinal Chemistry Nuclear Export as a Novel Therapeutic Target: The CRM1 Connection
Current Cancer Drug Targets