Abstract
Background and Purpose: Microglial activation plays an important role in neurodegenerative diseases by producing an array of proinflammatory enzymes and cytokines. Ginsenoside Rg1 (Rg1), a well-known Chinese herbal medicine, has been well recognized for its anti-inflammatory effect. This study sought to determine the anti-inflammatory effects of Rg1and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated murine BV-2 microglial cells.
Experimental Approach: Murine BV-2 microglial cells were treated with Rg1 (10, 20, and 40 μM) and/or LPS (1 μg·ml-1). The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR assay and double immunofluorescence labeling, respectively. Phosphorylation levels of mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP- responsive element (CRE)-binding protein (CREB) were measured by western blot. U73122 (5 μM), a specific phospholipase C (PLC) inhibitor, was used to determine if PLC signaling pathway might be involved in Rg1s action on activated BV-2 cells.
Key Results: Pretreatment with Rg1 significantly attenuated the LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. U73122 blocked the effects of Rg1 on LPS-induced microglial activation. In addition, PLC-γ1 inhibition partially abolished the inhibitory effect of Rg1 on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK).
Conclusion and Implications: This investigation demonstrates that Rg1 significantly attenuates overactivation of microglial cells by repressing expression levels of neurotoxic proinflammatory mediators and cytokines via activation of PLC-γ1 signaling pathway.
Keywords: BV-2 cells, Ginsenoside Rg1, lipopolysaccharide, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, phospholipase C-γ1, mitogen-activated protein kinases, extracellular signal regulated kinase1/2, c-Jun N-terminal protein kinase, p38 mitogen-activated protein kinase, cyclic AMP-responsive element (CRE)-binding protein, nuclear factor-κB, inhibitor κB-α
Current Medicinal Chemistry
Title: Ginsenoside Rg1 Attenuates Lipopolysaccharide-Induced Inflammatory Responses Via the Phospholipase C-γ1 Signaling Pathway in Murine BV-2 Microglial Cells
Volume: 19 Issue: 5
Author(s): Y. Zong, Q.-L. Ai, L.-M. Zhong, J.-N. Dai, P. Yang, Y. He, J. Sun, E.-A. Ling and D. Lu
Affiliation:
Keywords: BV-2 cells, Ginsenoside Rg1, lipopolysaccharide, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, phospholipase C-γ1, mitogen-activated protein kinases, extracellular signal regulated kinase1/2, c-Jun N-terminal protein kinase, p38 mitogen-activated protein kinase, cyclic AMP-responsive element (CRE)-binding protein, nuclear factor-κB, inhibitor κB-α
Abstract: Background and Purpose: Microglial activation plays an important role in neurodegenerative diseases by producing an array of proinflammatory enzymes and cytokines. Ginsenoside Rg1 (Rg1), a well-known Chinese herbal medicine, has been well recognized for its anti-inflammatory effect. This study sought to determine the anti-inflammatory effects of Rg1and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated murine BV-2 microglial cells.
Experimental Approach: Murine BV-2 microglial cells were treated with Rg1 (10, 20, and 40 μM) and/or LPS (1 μg·ml-1). The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR assay and double immunofluorescence labeling, respectively. Phosphorylation levels of mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP- responsive element (CRE)-binding protein (CREB) were measured by western blot. U73122 (5 μM), a specific phospholipase C (PLC) inhibitor, was used to determine if PLC signaling pathway might be involved in Rg1s action on activated BV-2 cells.
Key Results: Pretreatment with Rg1 significantly attenuated the LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. U73122 blocked the effects of Rg1 on LPS-induced microglial activation. In addition, PLC-γ1 inhibition partially abolished the inhibitory effect of Rg1 on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK).
Conclusion and Implications: This investigation demonstrates that Rg1 significantly attenuates overactivation of microglial cells by repressing expression levels of neurotoxic proinflammatory mediators and cytokines via activation of PLC-γ1 signaling pathway.
Export Options
About this article
Cite this article as:
Zong Y., Ai Q.-L., Zhong L.-M., Dai J.-N., Yang P., He Y., Sun J., Ling E.-A. and Lu D., Ginsenoside Rg1 Attenuates Lipopolysaccharide-Induced Inflammatory Responses Via the Phospholipase C-γ1 Signaling Pathway in Murine BV-2 Microglial Cells, Current Medicinal Chemistry 2012; 19 (5) . https://dx.doi.org/10.2174/092986712798992066
DOI https://dx.doi.org/10.2174/092986712798992066 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Pharmacological Inhibition of Voltage-gated Ca<sup>2+</sup> Channels for Chronic Pain Relief
Current Neuropharmacology Exercise as Treatment for Neuropathy in the Setting of Diabetes and Prediabetic Metabolic Syndrome: A Review of Animal Models and Human Trials
Current Diabetes Reviews Targeting Stress Activated Protein Kinases, JNK and p38, as New Therapeutic Approach for Neurodegenerative Diseases
Central Nervous System Agents in Medicinal Chemistry Stem Cell Therapy for Ischaemic Stroke: Translation from Preclinical Studies to Clinical Treatment
CNS & Neurological Disorders - Drug Targets Single Amino Acid Repeats Connect Viruses to Neurodegeneration
Current Drug Discovery Technologies Defining the Mechanism of Action of 4-Phenylbutyrate to Develop a Small-Molecule-Based Therapy for Alzheimers Disease
Current Medicinal Chemistry Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier
Current Pharmaceutical Design Metabotropic Glutamate Receptors in the Control of Neuronal Activity and as Targets for Development of Anti-Epileptogenic Drugs
Current Medicinal Chemistry Therapeutic Prospects for Parathyroid Hormone and Parathyroid Hormone Analogs
Current Medicinal Chemistry - Immunology, Endocrine & Metabolic Agents Potential Cancer Gene Therapy by Baculoviral Transduction
Current Gene Therapy Neurotuberculosis: An Overview
Central Nervous System Agents in Medicinal Chemistry Progenitor Cell Properties and the Engineering of Tissues
Current Neurovascular Research Current Perspectives on the Therapeutic Utility of VR1 Antagonists
Current Medicinal Chemistry CGRP, a Vasodilator Neuropeptide that Stimulates Neuromuscular Transmission and EC Coupling
Current Vascular Pharmacology COX-2 Inhibitors Celecoxib and Parecoxib: Valuable Options for Postoperative Pain Management
Current Topics in Medicinal Chemistry Current and Promising Therapies in Autosomal Recessive Ataxias
CNS & Neurological Disorders - Drug Targets Colloidal Supramolecular Aggregates for Therapeutic Application in Neuromedicine
Current Medicinal Chemistry Palmitoylethanolamide Restores Myelinated-Fibre Function in Patients with Chemotherapy-Induced Painful Neuropathy
CNS & Neurological Disorders - Drug Targets Proteins in Microglial Activation - Inputs and Outputs by Subsets
Current Protein & Peptide Science Pros and Cons of Medical Cannabis use by People with Chronic Brain Disorders
Current Neuropharmacology