Abstract
Thyroid gland presents a wide spectrum of tumours derived from follicular cells that range from well differentiated, papillary and follicular carcinoma (PTC and FTC, respectively), usually carrying a good prognosis, to the clinically aggressive, poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC). It is usually accepted that PDTC and UTC occur either de novo or progress from a pre-existing well differentiated carcinoma through a multistep process of genetic and epigenetic changes that lead to clonal expansion and neoplastic development. Mutations and epigenetic alterations in PDTC and UTC are far from being totally clarified. Assuming that PDTC and UTC may derive from well differentiated thyroid carcinomas (WDTC), it is expected that some PDTC and UTC would harbour genetic alterations that are typical of PTC and FTC. This is the case for some molecular markers (BRAF and NRAS) that are present in WDTC, PDTC and UTC. Other genes, namely P53, are almost exclusively detected in less differentiated and undifferentiated thyroid tumours, supporting a diagnosis of PDTC or, much more often, UTC. Thyroid-specific rearrangements RET/PTC and PAX8/PPARγ, on the other hand, are rarely found in PDTC and UTC, suggesting that these genetic alterations do not predispose cells to dedifferentiation. In the present review we have summarized the molecular changes associated with the two most aggressive types of thyroid cancer.
Keywords: telomerase, PI3K, β-catenin, undifferentiated thyroid carcinoma, BRAF, RAS, Poorly differentiated thyroid carcinoma, P53, Genetic Alterations, WNT PATHWAY
Current Genomics
Title: Genetic Alterations in Poorly Differentiated and Undifferentiated Thyroid Carcinomas
Volume: 12 Issue: 8
Author(s): Paula Soares, Jorge Lima, Ana Preto, Patricia Castro, Joao Vinagre, Ricardo Celestino, Joana P. Couto, Hugo Prazeres, Catarina Eloy, Valdemar Maximo and M. Sobrinho-Simoes
Affiliation:
Keywords: telomerase, PI3K, β-catenin, undifferentiated thyroid carcinoma, BRAF, RAS, Poorly differentiated thyroid carcinoma, P53, Genetic Alterations, WNT PATHWAY
Abstract: Thyroid gland presents a wide spectrum of tumours derived from follicular cells that range from well differentiated, papillary and follicular carcinoma (PTC and FTC, respectively), usually carrying a good prognosis, to the clinically aggressive, poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC). It is usually accepted that PDTC and UTC occur either de novo or progress from a pre-existing well differentiated carcinoma through a multistep process of genetic and epigenetic changes that lead to clonal expansion and neoplastic development. Mutations and epigenetic alterations in PDTC and UTC are far from being totally clarified. Assuming that PDTC and UTC may derive from well differentiated thyroid carcinomas (WDTC), it is expected that some PDTC and UTC would harbour genetic alterations that are typical of PTC and FTC. This is the case for some molecular markers (BRAF and NRAS) that are present in WDTC, PDTC and UTC. Other genes, namely P53, are almost exclusively detected in less differentiated and undifferentiated thyroid tumours, supporting a diagnosis of PDTC or, much more often, UTC. Thyroid-specific rearrangements RET/PTC and PAX8/PPARγ, on the other hand, are rarely found in PDTC and UTC, suggesting that these genetic alterations do not predispose cells to dedifferentiation. In the present review we have summarized the molecular changes associated with the two most aggressive types of thyroid cancer.
Export Options
About this article
Cite this article as:
Soares Paula, Lima Jorge, Preto Ana, Castro Patricia, Vinagre Joao, Celestino Ricardo, P. Couto Joana, Prazeres Hugo, Eloy Catarina, Maximo Valdemar and Sobrinho-Simoes M., Genetic Alterations in Poorly Differentiated and Undifferentiated Thyroid Carcinomas, Current Genomics 2011; 12 (8) . https://dx.doi.org/10.2174/138920211798120853
DOI https://dx.doi.org/10.2174/138920211798120853 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Patent Selections:
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Mitochondrial Uncoupling and the Regulation of Glucose Homeostasis
Current Diabetes Reviews How to Keep Oxidative Stress Under Control?
Current Nutrition & Food Science Vitamin D and Metabolic Syndrome: Is There a Link?
Current Pharmaceutical Design Insulin Resistance, Oxidative Stress and Cardiovascular Complications: Role of Sirtuins
Current Pharmaceutical Design Clinical Applications of the Urokinase Receptor (uPAR) for Cancer Patients
Current Pharmaceutical Design Cancer and the Endogenous “Pineal Clock”: A Means of Early Diagnosis and Successful Treatment as Well as Prevention of Cancers
Current Aging Science Aurora Kinase Inhibitors in Head and Neck Cancer
Current Topics in Medicinal Chemistry Mining the Dark Matter of the Cancer Proteome for Novel Biomarkers
Current Cancer Therapy Reviews Lipid Nanoparticles for the Delivery of Biopharmaceuticals
Current Pharmaceutical Biotechnology TNF-Related Apoptosis-Inducing Ligand (TRAIL) as a Pro-Apoptotic Signal Transducer with Cancer Therapeutic Potential
Current Pharmaceutical Design Withdrawal Notice: Comparison of Pharmaceutical Effect of Alemtuzumab and Natalizumab and Their Side Effects in Treatment of Various Stages of Multiple Sclerosis Patients
CNS & Neurological Disorders - Drug Targets Novel Patents Targeting Interleukin-17A; Implications in Cancer and Inflammation
Recent Patents on Anti-Cancer Drug Discovery Tumor-Targeting Peptides and Small Molecules as Anti-Cancer Agents to Overcome Drug Resistance
Current Medicinal Chemistry Selective Activation of Intracellular Signalling Pathways in Dendritic Cells for Cancer Immunotherapy
Anti-Cancer Agents in Medicinal Chemistry Epigenetics, Depression and Antidepressant Treatment
Current Pharmaceutical Design Vascular Effects of Estrogenic Menopausal Hormone Therapy
Reviews on Recent Clinical Trials Aptamers: Potential Applications to Pancreatic Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Drug Transporters and Multiple Drug Resistance in the Most Common Pediatric Solid Tumors
Current Drug Metabolism Role of the Akt Pathway in Prostate Cancer
Current Cancer Drug Targets