Abstract
Promoting osteogenic differentiation and efficacious bone regeneration have the potential to revolutionize the treatment of orthopaedic and musculoskeletal disorders. Mesenchymal Stem Cells (MSCs) are bone marrow progenitor cells that have the capacity to differentiate along osteogenic, chondrogenic, myogenic, and adipogenic lineages. Differentiation along these lineages is a tightly controlled process that is in part regulated by the Bone Morphogenetic Proteins (BMPs). BMPs 2 and 7 have been approved for clinical use because their osteoinductive properties act as an adjunctive treatment to surgeries where bone healing is compromised. BMP-9 is one of the least studied BMPs, and recent in vitro and in vivo studies have identified BMP-9 as a potent inducer of osteogenic differentiation in MSCs. BMP-9 exhibits significant molecular cross-talk with the Wnt/ β-catenin and other signaling pathways, and adenoviral expression of BMP-9 in MSCs increases the expression of osteogenic markers and induces trabecular bone and osteiod matrix formation. Furthermore, BMP-9 has been shown to act synergistically in bone formation with other signaling pathways, including Wnt/ β-catenin, IGF, and retinoid signaling pathways. These results suggest that BMP-9 should be explored as an effective bone regeneration agent, especially in combination with adjuvant therapies, for clinical applications such as large segmental bony defects, non-union fractures, and/or spinal fusions.
Keywords: BMP-9, GDF-2, bone formation, mesenchymal stem cells, fracture healing, bone regeneration, cell-based gene therapy, -catenin, osteogenic, spinal fusions, trabecular bone
Current Gene Therapy
Title: BMP-9 Induced Osteogenic Differentiation of Mesenchymal Stem Cells: Molecular Mechanism and Therapeutic Potential
Volume: 11 Issue: 3
Author(s): Ke Yang, Tong-Chuan He, Rex C. Haydon, Hue H. Luu, Russell R. Reid, Zhong-Liang Deng, Guo-Wei Zuo, Bai-Cheng He, Liang Chen, Yuxi Su, Hong Liu, Ning Hu, Mi Li, Xing Liu, Richard Rames, Gaurav Luther, Enyi Huang, Jian-Li Gao, Stephanie H. Kim, Qiong Shi, Chad Teven, Jinyong Luo, Xiaoji Luo, Yang Bi, Joseph Lamplot, Qing Luo, Quan Kang, Gaohui Zhu and Eric R. Wagner
Affiliation:
Keywords: BMP-9, GDF-2, bone formation, mesenchymal stem cells, fracture healing, bone regeneration, cell-based gene therapy, -catenin, osteogenic, spinal fusions, trabecular bone
Abstract: Promoting osteogenic differentiation and efficacious bone regeneration have the potential to revolutionize the treatment of orthopaedic and musculoskeletal disorders. Mesenchymal Stem Cells (MSCs) are bone marrow progenitor cells that have the capacity to differentiate along osteogenic, chondrogenic, myogenic, and adipogenic lineages. Differentiation along these lineages is a tightly controlled process that is in part regulated by the Bone Morphogenetic Proteins (BMPs). BMPs 2 and 7 have been approved for clinical use because their osteoinductive properties act as an adjunctive treatment to surgeries where bone healing is compromised. BMP-9 is one of the least studied BMPs, and recent in vitro and in vivo studies have identified BMP-9 as a potent inducer of osteogenic differentiation in MSCs. BMP-9 exhibits significant molecular cross-talk with the Wnt/ β-catenin and other signaling pathways, and adenoviral expression of BMP-9 in MSCs increases the expression of osteogenic markers and induces trabecular bone and osteiod matrix formation. Furthermore, BMP-9 has been shown to act synergistically in bone formation with other signaling pathways, including Wnt/ β-catenin, IGF, and retinoid signaling pathways. These results suggest that BMP-9 should be explored as an effective bone regeneration agent, especially in combination with adjuvant therapies, for clinical applications such as large segmental bony defects, non-union fractures, and/or spinal fusions.
Export Options
About this article
Cite this article as:
Yang Ke, He Tong-Chuan, C. Haydon Rex, H. Luu Hue, R. Reid Russell, Deng Zhong-Liang, Zuo Guo-Wei, He Bai-Cheng, Chen Liang, Su Yuxi, Liu Hong, Hu Ning, Li Mi, Liu Xing, Rames Richard, Luther Gaurav, Huang Enyi, Gao Jian-Li, H. Kim Stephanie, Shi Qiong, Teven Chad, Luo Jinyong, Luo Xiaoji, Bi Yang, Lamplot Joseph, Luo Qing, Kang Quan, Zhu Gaohui and R. Wagner Eric, BMP-9 Induced Osteogenic Differentiation of Mesenchymal Stem Cells: Molecular Mechanism and Therapeutic Potential, Current Gene Therapy 2011; 11 (3) . https://dx.doi.org/10.2174/156652311795684777
DOI https://dx.doi.org/10.2174/156652311795684777 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Recent Developments in the Synthesis and Biological Activity of Muramylpeptides
Current Medicinal Chemistry Meet Our Editorial Board Member
Current Nanomedicine Potential Cancer Gene Therapy by Baculoviral Transduction
Current Gene Therapy Nitric Oxide-GAPDH Transcriptional Signaling Mediates Behavioral Actions of Cocaine
CNS & Neurological Disorders - Drug Targets Roles of Medicinal Plants and Constituents in Gynecological Cancer Therapy: Current Literature and Future Directions
Current Topics in Medicinal Chemistry Focal Adhesion Kinase as a Cancer Therapy Target
Anti-Cancer Agents in Medicinal Chemistry Roles of NHERF1/EBP50 in Cancer
Current Molecular Medicine Dihydrofolate Reductase Gene Variations in Susceptibility to Disease and Treatment Outcomes
Current Genomics Recent Patents on Proteasome Inhibitors of Natural Origin
Recent Patents on Anti-Cancer Drug Discovery Investigation of the Metal Bonding Properties of Some ARA-II Compounds Using Spectrofluorimetric Method
Current Drug Therapy Structural Aspects of Crystalline Derivatized Cyclodextrins and Their Inclusion Complexes
Current Organic Chemistry Adhesion Dependent Signalling in the Tumour Microenvironment: The Future of Drug Targetting
Current Pharmaceutical Design The Correspondence Between Magnetic Resonance Images and the Clinical and Intraoperative Status of Patients with Spinal Tumors
Current Medical Imaging Imaging Virus-Associated Cancer
Current Pharmaceutical Design Probing Gallic Acid for Its Broad Spectrum Applications
Mini-Reviews in Medicinal Chemistry New Potential Pharmaceutical Applications of Hypericum Species
Mini-Reviews in Medicinal Chemistry Cyclin Dependent Kinase 1 Inhibitors: A Review of Recent Progress
Current Medicinal Chemistry Cardiac Tumors: Clinical Perspective and Therapeutic Considerations
Current Drug Targets Cancer Stem Cells: The ‘Achilles Heel’ of Chemo-Resistant Tumors
Recent Patents on Anti-Cancer Drug Discovery Role of Angiopoietin-like 4 (ANGPTL4), a Member of Matricellular Proteins: from Homeostasis to Inflammation and Cancer Metastasis
Current Angiogenesis (Discontinued)