Abstract
Since p53 is the strongest tumor suppressor gene, which can regulate apoptosis, cell cycle arrest and senescence, re-activation of p53 and its pathway seem to be very plausible target for cancer therapy. However, in 50% of human cancers, p53 itself is mutated. In addition, in remaining half of cancers, it is inactivated by distortion of signaling pathways. Moreover, differentially from typical tumor suppressor genes such as Rb, p53 mutations in its DNA binding domain show the dominant negative effect on p53 function. Here, we describe the novel p53 inactivation mechanism by oncogenic K-Ras-Snail axis and smart strategy to reactivation of p53 suppressed by oncogenic K-Ras-Snail through small chemicals (GN25, 29). Since K-Ras mutation is frequently occurred in human pancreatic, colon, and lung cancer, we discuss the clinical implication of new small Snail-p53 inhibitor on these cancers. In addition, the possibility of reactivation of wild type p53, governed by mutant p53, is suggested using our chemicals. Through this, we will provide the new strategy to handling the K-Ras mutated human cancers including pancreatic, lung and colon cancers.
Keywords: Oncogenic K-Ras, p53, Snail, Cancer and Therapy, MDM2, apoptosis, RITA, tumorigenesis, DN-Ras, siRNA, spiro-oxindole, oxindole, chemotherapy, GN25, GN29, adriamycin
Current Pharmaceutical Design
Title: p53 Activation by Blocking Snail : A Novel Pharmacological Strategy for Cancer
Volume: 17 Issue: 6
Author(s): Sun-Hye Lee and Bum-Joon Park
Affiliation:
Keywords: Oncogenic K-Ras, p53, Snail, Cancer and Therapy, MDM2, apoptosis, RITA, tumorigenesis, DN-Ras, siRNA, spiro-oxindole, oxindole, chemotherapy, GN25, GN29, adriamycin
Abstract: Since p53 is the strongest tumor suppressor gene, which can regulate apoptosis, cell cycle arrest and senescence, re-activation of p53 and its pathway seem to be very plausible target for cancer therapy. However, in 50% of human cancers, p53 itself is mutated. In addition, in remaining half of cancers, it is inactivated by distortion of signaling pathways. Moreover, differentially from typical tumor suppressor genes such as Rb, p53 mutations in its DNA binding domain show the dominant negative effect on p53 function. Here, we describe the novel p53 inactivation mechanism by oncogenic K-Ras-Snail axis and smart strategy to reactivation of p53 suppressed by oncogenic K-Ras-Snail through small chemicals (GN25, 29). Since K-Ras mutation is frequently occurred in human pancreatic, colon, and lung cancer, we discuss the clinical implication of new small Snail-p53 inhibitor on these cancers. In addition, the possibility of reactivation of wild type p53, governed by mutant p53, is suggested using our chemicals. Through this, we will provide the new strategy to handling the K-Ras mutated human cancers including pancreatic, lung and colon cancers.
Export Options
About this article
Cite this article as:
Lee Sun-Hye and Park Bum-Joon, p53 Activation by Blocking Snail : A Novel Pharmacological Strategy for Cancer, Current Pharmaceutical Design 2011; 17 (6) . https://dx.doi.org/10.2174/138161211795222658
DOI https://dx.doi.org/10.2174/138161211795222658 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Fullerenes for Cancer Diagnosis and Therapy: Preparation, Biological and Clinical Perspectives
Current Drug Metabolism Discovery of 4-Aryl-4H-Chromenes as Potent Apoptosis Inducers Using a Cell- and Caspase-Based Anti-Cancer Screening Apoptosis Program (ASAP): SAR Studies and the Identification of Novel Vascular Disrupting Agents
Anti-Cancer Agents in Medicinal Chemistry PLK1 Inhibition: Prospective Role for the Treatment of Pediatric Tumors
Current Drug Targets Old Drugs-Current Perspectives
Current Pharmacogenomics Recent Advances in the Development of Novel Therapeutics Targeting Dendritic Cells
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Applications of Nanosystems to Anticancer Drug Therapy (Part II. Dendrimers, Micelles, Lipid-based Nanosystems)
Recent Patents on Anti-Cancer Drug Discovery Pivotal Role of the Interaction Between Herbal Medicines and Gut Microbiota on Disease Treatment
Current Drug Targets Role of Second-Line Systemic Treatment Post-Docetaxel in Metastatic Castrate Resistant Prostate Cancer- Current Strategies and Future Directions
Anti-Cancer Agents in Medicinal Chemistry Use of Complementary Medicine Amongst Patients on Antiretroviral Drugs in an HIV Treatment Centre in Lagos, Nigeria
Current Drug Safety Biological Activities of Artemisinin Derivatives Beyond Malaria
Current Topics in Medicinal Chemistry Sulfonamides as Potential Bioactive Scaffolds
Current Organic Chemistry Tumor Suppression by DNA Base Excision Repair
Mini-Reviews in Medicinal Chemistry Radioactive Gold Nanoparticle in Two Forms (<sup>198</sup><sub>79</sub>Au GNPs and <sup>99m</sup>Tc-GNPs) for Lung Cancer Antiproliferative Induction and Intralesional Imaging: A Proof of Concept
Anti-Cancer Agents in Medicinal Chemistry Pyrimidine Nucleosides in Molecular PET Imaging of Tumor Proliferation
Current Medicinal Chemistry Three Amino Acid Derivatives of Valproic Acid: Design, Synthesis, Theoretical and Experimental Evaluation as Anticancer Agents
Anti-Cancer Agents in Medicinal Chemistry Mechanism of Conjugated Imine and Iminium Species, including Marine Alkaloids: Electron Transfer, Reactive Oxygen Species, Therapeutics and Toxicity
Current Bioactive Compounds Anti-Cancer / Anti-Tumor
Current Bioactive Compounds 3,5-Bis(trifluoromethyl) Phenylammonium triflate(BFPAT) as a Novel Organocatalyst for the Efficient Synthesis of 2,3-dihydroquinazolin-4(1H)-one Derivatives
Current Organic Synthesis Patent Selections:
Recent Patents on Anti-Cancer Drug Discovery Analysis of the Salivary Microbiome in the Periodontal Disease Patients with Hypertension and Non-hypertension
Current Bioinformatics