Abstract
One of the factors responsible for the poor immunogenicity of synthetic peptide antigens is the lack of conformational integrity. Embedding the minimal epitopes in helix-promoting peptide sequences has successfully enhanced the immunogenicity of the epitopes derived from the α-helical regions of the M protein of group A streptococci (Streptococcus pyogenes, GAS). However, the introduction of “foreign” peptide sequences is believed to have an unfavourable impact on the antigen specificity. In the current study, we employed a non-peptide approach, using topological carbohydrate templates, to induce helical conformation of the peptide antigens. Utilized together with the advances of the lipid core peptide system and chemoselective ligation, five GAS vaccine candidates incorporating the minimal epitope J14i (ASREAKKQVEKALE) were synthesized with high purity. Circular dichroism studies indicated that the template-assembled peptides formed α-helix bundles. This atom-economic strategy also reduces the complexity and cost of vaccine production by simply reducing the peptide epitope size.
Keywords: Conformational mimetic, carbohydrate template, self-adjuvanting lipopeptide vaccine, lipid core peptide, α-helicity, group A streptococcus, infectious disease