Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Volatilome is Inflammasome- and Lipidome-dependent in Ischemic Heart Disease

Author(s): Basheer Abdullah Marzoog*

Volume 20, Issue 6, 2024

Published on: 19 July, 2024

Article ID: e190724232038 Pages: 9

DOI: 10.2174/011573403X302934240715113647

Price: $65

Abstract

Ischemic heart disease (IHD) is a pathology of global interest because it is widespread and has high morbidity and mortality. IHD pathophysiology involves local and systemic changes, including lipidomic, proteomic, and inflammasome changes in serum plasma. The modulation in these metabolites is viable in the pre-IHD, during the IHD period, and after management of IHD in all forms, including lifestyle changes and pharmacological and surgical interventions. Therefore, these biochemical markers (metabolite changes; lipidome, inflammasome, proteome) can be used for early prevention, treatment strategy, assessment of the patient's response to the treatment, diagnosis, and determination of prognosis. Lipidomic changes are associated with the severity of inflammation and disorder in the lipidome component, and correlation is related to disturbance of inflammasome components. Main inflammasome biomarkers that are associated with coronary artery disease progression include IL‐1β, Nucleotide-binding oligomerization domain- like receptor family pyrin domain containing 3 (NLRP3), and caspase‐1. Meanwhile, the main lipidome biomarkers related to coronary artery disease development involve plasmalogen lipids, lysophosphatidylethanolamine (LPE), and phosphatidylethanolamine (PE). The hypothesis of this paper is that the changes in the volatile organic compounds associated with inflammasome and lipidome changes in patients with coronary artery disease are various and depend on the severity and risk factor for death from cardiovascular disease in the time span of 10 years. In this paper, we explore the potential origin and pathway in which the lipidome and or inflammasome molecules could be excreted in the exhaled air in the form of volatile organic compounds (VOCs).

[1]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2023 update: A report from the American heart association. Circulation 2023; 147(8): e93-e621.
[http://dx.doi.org/10.1161/CIR.0000000000001123] [PMID: 36695182]
[2]
Salonen I, Huttunen K, Hirvonen MR, et al. Exhaled nitric oxide and atherosclerosis. Eur J Clin Invest 2012; 42(8): 873-80.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02662.x] [PMID: 22428603]
[3]
Nurmohamed NS, Kraaijenhof JM, Mayr M, et al. Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction. Eur Heart J 2023; 44(18): 1594-607.
[http://dx.doi.org/10.1093/eurheartj/ehad161] [PMID: 36988179]
[4]
Močnik M, Marčun Varda N. Lipid biomarkers and atherosclerosis—old and new in cardiovascular risk in childhood. Int J Mol Sci 2023; 24(3): 2237.
[http://dx.doi.org/10.3390/ijms24032237] [PMID: 36768558]
[5]
Zhu D, Vernon ST, D’Agostino Z, et al. Lipidomics profiling and risk of coronary artery disease in the BioHEART-CT discovery cohort. Biomolecules 2023; 13(6): 917.
[http://dx.doi.org/10.3390/biom13060917] [PMID: 37371497]
[6]
Dugani SB, Moorthy MV, Li C, et al. Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women. JAMA Cardiol 2021; 6: 437.
[http://dx.doi.org/10.1001/jamacardio.2020.7073]
[7]
Olsen MB, Gregersen I, Sandanger Ø, et al. Targeting the inflammasome in cardiovascular disease. JACC Basic Transl Sci 2022; 7(1): 84-98.
[http://dx.doi.org/10.1016/j.jacbts.2021.08.006] [PMID: 35128212]
[8]
Abdullah Marzoog B. Cytokines and regulating epithelial cell division. Curr Drug Targets 2024; 25(3): 190-200.
[http://dx.doi.org/10.2174/0113894501279979240101051345] [PMID: 38213162]
[9]
Thacker SG, Zarzour A, Chen Y, et al. High‐density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology 2016; 149(3): 306-19.
[http://dx.doi.org/10.1111/imm.12638] [PMID: 27329564]
[10]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[11]
Marzoog BA. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56(2): 166-78.
[http://dx.doi.org/10.5115/acb.22.190] [PMID: 36879408]
[12]
Marzoog BA. Endothelial dysfunction under the scope of arterial hypertension, coronary heart disease, and diabetes mellitus using the angioscan. Cardiovasc Hematol Agents Med Chem 2024; 22(2): 181-6.
[http://dx.doi.org/10.2174/0118715257246589231018053646] [PMID: 37921186]
[13]
Marzoog BA. Autophagy behavior in post-myocardial infarction injury. Cardiovasc Hematol Disord Drug Targets 2023; 23(1): 2-10.
[http://dx.doi.org/10.2174/1871529X23666230503123612] [PMID: 37138481]
[14]
Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022; 18(6): e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[15]
Marzoog BA. The metabolic syndrome puzzles; Possible pathogenesis and management. Curr Diabetes Rev 2023; 19(4): e290422204258.
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[16]
Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56(1): 16-24.
[http://dx.doi.org/10.5115/acb.22.098] [PMID: 36267005]
[17]
Abdullah Marzoog B. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females. Emir Med J 2023; 4(1): e281122211293.
[http://dx.doi.org/10.2174/04666221128110145]
[18]
Xie D, Guo H, Li M, et al. Splenic monocytes mediate inflammatory response and exacerbate myocardial ischemia/reperfusion injury in a mitochondrial cell-free DNA-TLR9-NLRP3-dependent fashion. Basic Res Cardiol 2023; 118(1): 44.
[http://dx.doi.org/10.1007/s00395-023-01014-0] [PMID: 37814087]
[19]
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464(7293): 1357-61.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[20]
Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011; 123(6): 594-604.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.982777] [PMID: 21282498]
[21]
Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflam-masome activation by bacterial toxins and particulate matter. Immunity 2013; 38(6): 1142-53.
[http://dx.doi.org/10.1016/j.immuni.2013.05.016] [PMID: 23809161]
[22]
Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013; 14(8): 812-20.
[http://dx.doi.org/10.1038/ni.2639] [PMID: 23812099]
[23]
Zong P, Feng J, Yue Z, et al. TRPM2 deficiency in mice protects against atherosclerosis by inhibiting TRPM2–CD36 inflammatory axis in macrophages. Nature Cardiovascular Research 2022; 1(4): 344-60.
[http://dx.doi.org/10.1038/s44161-022-00027-7] [PMID: 35445217]
[24]
Harm T, Dittrich K, Brun A, et al. Large-scale lipidomics profiling reveals characteristic lipid signatures associated with an increased cardiovascular risk. Clin Res Cardiol 2023; 112(11): 1664-78.
[http://dx.doi.org/10.1007/s00392-023-02260-x] [PMID: 37470807]
[25]
Kosek V, Hajšl M, Bechyňská K, et al. Long-term effects on the lipidome of acute coronary syndrome patients. Metab 2022; 12: 124.
[http://dx.doi.org/10.3390/metabo12020124]
[26]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[27]
Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA guidelines for exercise testing: Executive summary. Circulation 1997; 96(1): 345-54.
[http://dx.doi.org/10.1161/01.CIR.96.1.345] [PMID: 9236456]
[28]
Phillips M, Cataneo RN, Greenberg J, Grodman R, Salazar M. Breath markers of oxidative stress in patients with unstable angina. Heart Dis 2003; 5(2): 95-9.
[http://dx.doi.org/10.1097/01.hdx.0000061701.99611.e8] [PMID: 12713676]
[29]
Das S, Pal S, Mitra M. Significance of exhaled breath test in clinical diagnosis: A special focus on the detection of diabetes mellitus. J Med Biol Eng 2016; 36(5): 605-24.
[http://dx.doi.org/10.1007/s40846-016-0164-6] [PMID: 27853412]
[30]
Cikach FS Jr, Dweik RA. Cardiovascular biomarkers in exhaled breath. Prog Cardiovasc Dis 2012; 55(1): 34-43.
[http://dx.doi.org/10.1016/j.pcad.2012.05.005] [PMID: 22824108]
[31]
Sharma A, Kumar R, Varadwaj P. Smelling the disease: Diagnostic potential of breath analysis. Mol Diagnosis Ther 2023; 273(27): 321-47.
[http://dx.doi.org/10.1007/s40291-023-00640-7]
[32]
Nardi Agmon I, Broza YY, Alaa G, et al. Detecting coronary artery disease using exhaled breath analysis. Cardiology 2022; 147(4): 389-97.
[http://dx.doi.org/10.1159/000525688] [PMID: 35820369]
[33]
Trefz P, Obermeier J, Lehbrink R, Schubert JK, Miekisch W, Fischer DC. Exhaled volatile substances in children suffering from type 1 diabetes mellitus: Results from a cross-sectional study. Sci Rep 2019; 9(1): 15707.
[http://dx.doi.org/10.1038/s41598-019-52165-x] [PMID: 31673076]
[34]
van de Kant KDG, van der Sande LJTM, Jöbsis Q, van Schayck OCP, Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir Res 2012; 13(1): 117.
[http://dx.doi.org/10.1186/1465-9921-13-117] [PMID: 23259710]
[35]
Amal H, Leja M, Funka K, et al. Breath testing as potential colorectal cancer screening tool. Int J Cancer 2016; 138(1): 229-36.
[http://dx.doi.org/10.1002/ijc.29701] [PMID: 26212114]
[36]
Chapman EA, Baker J, Aggarwal P, et al. GC-MS techniques investigating potential biomarkers of dying in the last weeks with lung cancer. Int J Mol Sci 2023; 24(2): 1591.
[http://dx.doi.org/10.3390/ijms24021591] [PMID: 36675106]
[37]
Chung J, Akter S, Han S, et al. Diagnosis by volatile organic compounds in exhaled breath from patients with gastric and colorectal cancers. Int J Mol Sci 2022; 24(1): 129.
[http://dx.doi.org/10.3390/ijms24010129] [PMID: 36613569]
[38]
Sukaram T, Tansawat R, Apiparakoon T, et al. Exhaled volatile organic compounds for diagnosis of hepatocellular carcinoma. Sci Rep 2022; 12(1): 5326.
[http://dx.doi.org/10.1038/s41598-022-08678-z] [PMID: 35351916]
[39]
Politi L, Monasta L, Rigressi MN, et al. Discriminant profiles of volatile compounds in the alveolar air of patients with squamous cell lung cancer, lung adenocarcinoma or colon cancer. Molecules 2021; 26(3): 550.
[http://dx.doi.org/10.3390/molecules26030550] [PMID: 33494458]
[40]
Di Gilio A, Catino A, Lombardi A, et al. Breath analysis for early detection of malignant pleural mesothelioma: Volatile organic compounds (VOCs) determination and possible biochemical pathways. Cancers 2020; 12(5): 1262.
[http://dx.doi.org/10.3390/cancers12051262] [PMID: 32429446]
[41]
Catino A, de Gennaro G, Di Gilio A, et al. Breath analysis: A systematic review of volatile organic compounds (VOCs) in diagnostic and therapeutic management of pleural mesothelioma. Cancers 2019; 11(6): 831.
[http://dx.doi.org/10.3390/cancers11060831] [PMID: 31207975]
[42]
Rodrigues D, Pinto J, Araújo AM, et al. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography–mass spectrometry. Metabolomics 2018; 14(5): 62.
[http://dx.doi.org/10.1007/s11306-018-1361-9] [PMID: 30830384]
[43]
Princivalle A, Monasta L, Butturini G, Bassi C, Perbellini L. Pancreatic ductal adenocarcinoma can be detected by analysis of volatile organic compounds (VOCs) in alveolar air. BMC Cancer 2018; 18(1): 529.
[http://dx.doi.org/10.1186/s12885-018-4452-0] [PMID: 29728093]
[44]
Chin ST, Romano A, Doran SLF, Hanna GB. Cross-platform mass spectrometry annotation in breathomics of oesophageal-gastric cancer. Sci Rep 2018; 8(1): 5139.
[http://dx.doi.org/10.1038/s41598-018-22890-w] [PMID: 29572531]
[45]
Brekelmans MP, Fens N, Brinkman P, et al. Smelling the diagnosis: The electronic nose as diagnostic tool in inflammatory arthritis. A case-reference study. PLoS One 2016; 11(3): e0151715.
[http://dx.doi.org/10.1371/journal.pone.0151715] [PMID: 26982569]
[46]
DeLano FA, Chow J, Schmid-Schönbein GW. Volatile decay products in breath during peritonitis shock are attenuated by enteral blockade of pancreatic digestive proteases. Shock 2017; 48(5): 571-5.
[http://dx.doi.org/10.1097/SHK.0000000000000888] [PMID: 28498300]
[47]
Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H. Detection of cancer through exhaled breath: A systematic review. Oncotarget 2015; 6(36): 38643-57.
[http://dx.doi.org/10.18632/oncotarget.5938] [PMID: 26440312]
[48]
Hanna GB, Boshier PR, Markar SR, Romano A. Accuracy and methodologic challenges of volatile organic compound–based exhaled breath tests for cancer diagnosis. JAMA Oncol 2019; 5(1): e182815.
[http://dx.doi.org/10.1001/jamaoncol.2018.2815] [PMID: 30128487]
[49]
Gruber M, Tisch U, Jeries R, et al. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: A feasibility study. Br J Cancer 2014; 111(4): 790-8.
[http://dx.doi.org/10.1038/bjc.2014.361] [PMID: 24983369]
[50]
Bajtarevic A, Ager C, Pienz M, et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009; 9(1): 348.
[http://dx.doi.org/10.1186/1471-2407-9-348] [PMID: 19788722]
[51]
Xu Z, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer 2013; 108(4): 941-50.
[http://dx.doi.org/10.1038/bjc.2013.44] [PMID: 23462808]
[52]
Peled N, Hakim M, Bunn PA Jr, et al. Non-invasive breath analysis of pulmonary nodules. J Thorac Oncol 2012; 7(10): 1528-33.
[http://dx.doi.org/10.1097/JTO.0b013e3182637d5f] [PMID: 22929969]
[53]
Ionescu R, Broza Y, Shaltieli H, et al. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes. ACS Chem Neurosci 2011; 2(12): 687-93.
[http://dx.doi.org/10.1021/cn2000603] [PMID: 22860162]
[54]
Buszewski B, Ligor T, Jezierski T, Wenda-Piesik A, Walczak M, Rudnicka J. Identification of volatile lung cancer markers by gas chromatographymass spectrometry: Comparison with discrimination by canines. Anal Bioanal Chem 2012; 404(1): 141-6.
[http://dx.doi.org/10.1007/s00216-012-6102-8] [PMID: 22660158]
[55]
Stott S, Broza YY, Gharra A, Wang Z, Barker RA, Haick H. The utility of breath analysis in the diagnosis and staging of parkinson’s disease. J Parkinsons Dis 2022; 12(3): 993-1002.
[http://dx.doi.org/10.3233/JPD-213133] [PMID: 35147553]
[56]
Marcondes-Braga FG, Gioli-Pereira L, Bernardez-Pereira S, et al. Exhaled breath acetone for predicting cardiac and overall mortality in chronic heart failure patients. ESC Heart Fail 2020; 7(4): 1744-52.
[http://dx.doi.org/10.1002/ehf2.12736] [PMID: 32383349]
[57]
Marcondes-Braga FG, Batista GL, Bacal F, Gutz I. Exhaled breath analysis in heart failure. Curr Heart Fail Rep 2016; 13(4): 166-71.
[http://dx.doi.org/10.1007/s11897-016-0294-8] [PMID: 27287200]
[58]
Bykova AA, Malinovskaya LK, Chomakhidze PS, et al. Exhaled breath analysis in diagnostics of cardiovascular diseases. Kardiologiia 2019; 59(7): 61-7.
[http://dx.doi.org/10.18087/cardio.2019.7.10263] [PMID: 31322091]
[59]
Bykova AA, Malinovskaya LK, Trushina OV, et al. Exhaled breath analysis in diagnosis of chronic heart failure with reduced left ventricular ejection fraction Cardiology and cardiovascular surgery 2019; 12(6): 568-76.
[http://dx.doi.org/10.17116/kardio201912061568]
[60]
Marcondes-Braga FG, Batista GL, Gutz IGR, et al. Impact of exhaled breath acetone in the prognosis of patients with heart failure with reduced ejection fraction (HFrEF). PLoS One 2016; 11(12): e0168790.
[http://dx.doi.org/10.1371/journal.pone.0168790] [PMID: 28030609]
[61]
Malinovskaya LK, Bykova AA, Chomahidze PSH, Kopylov PHYU, Syrkin AL, Betelin VB. P3758Exhaled breath analysis in the differen-tial diagnostics of heart failure. Eur Heart J 2018; 39(Suppl. 1)
[http://dx.doi.org/10.1093/eurheartj/ehy563.P3758]
[62]
Biagini D, Lomonaco T, Ghimenti S, et al. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatographytandem mass spectrometry. J Breath Res 2017; 11(4): 047110.
[http://dx.doi.org/10.1088/1752-7163/aa94e7] [PMID: 29052557]
[63]
Yokokawa T, Sato T, Suzuki S, et al. Elevated exhaled acetone concentration in stage C heart failure patients with diabetes mellitus. BMC Cardiovasc Disord 2017; 17(1): 280.
[http://dx.doi.org/10.1186/s12872-017-0713-0] [PMID: 29145814]
[64]
Yokokawa T, Sato T, Suzuki S, et al. Change of exhaled acetone concentration levels in patients with acute decompensated heart failure a preliminary study. Int Heart J 2018; 59(4): 808-12.
[http://dx.doi.org/10.1536/ihj.17-482] [PMID: 29794390]
[65]
Zhou Q, Wang Q, Chen B, et al. Factors influencing breath analysis results in patients with diabetes mellitus. J Breath Res 2019; 13(4): 046012.
[http://dx.doi.org/10.1088/1752-7163/ab285a] [PMID: 31489846]
[66]
Broza YY, Khatib S, Gharra A, et al. Screening for gastric cancer using exhaled breath samples. Br J Surg 2019; 106(9): 1122-5.
[http://dx.doi.org/10.1002/bjs.11294] [PMID: 31259390]
[67]
Peled N, Fuchs V, Kestenbaum EH, Oscar E, Bitran R. An update on the use of exhaled breath analysis for the early detection of lung cancer. Lung Cancer 2021; 12: 81-92.
[http://dx.doi.org/10.2147/LCTT.S320493] [PMID: 34429674]
[68]
Wang MH, Yuk-Fai Lau S, Chong KC, et al. Estimation of clinical parameters of chronic kidney disease by exhaled breath full-scan mass spectrometry data and iterative PCA with intensity screening algorithm. J Breath Res 2017; 11(3): 036007.
[http://dx.doi.org/10.1088/1752-7163/aa7635] [PMID: 28566556]
[69]
Zeng Q, Li P, Cai Y, et al. Detection of creatinine in exhaled breath of humans with chronic kidney disease by extractive electrospray ionization mass spectrometry. J Breath Res 2016; 10(1): 016008.
[http://dx.doi.org/10.1088/1752-7155/10/1/016008] [PMID: 26857588]
[70]
Badjagbo K. Exhaled breath analysis for early cancer detection: principle and progress in direct mass spectrometry techniques. Clinical Chemistry and Laboratory Medicine (CCLM) 2012; 50(11): 1893-902.
[http://dx.doi.org/10.1515/cclm-2012-0208] [PMID: 22718640]
[71]
Chan MJ, Li YJ, Wu CC, et al. Breath ammonia is a useful biomarker predicting kidney function in chronic kidney disease patients. Biomedicines 2020; 8(11): 468.
[http://dx.doi.org/10.3390/biomedicines8110468] [PMID: 33142890]
[72]
Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, et al. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed Chromatogr 2019; 33(12): e4684.
[http://dx.doi.org/10.1002/bmc.4684] [PMID: 31423612]
[73]
Marzoog BA, Volatilome A. Volatilome: A novel tool for risk scoring in ischemic heart disease. Curr Cardiol Rev 2024; 20.
[http://dx.doi.org/10.2174/011573403X304090240705063536]
[74]
Marzoog B. Breathomics detect the cardiovascular disease: Delusion or dilution of the metabolomic signature. Curr Cardiol Rev 2024; 20(4): e020224226647.
[http://dx.doi.org/10.2174/011573403X283768240124065853] [PMID: 38318837]
[75]
Zhang Y, Tu J, Li Y, et al. Inflammation macrophages contribute to cardiac homeostasis. Cardiology Plus 2023; 8(1): 6-17.
[http://dx.doi.org/10.1097/CP9.0000000000000035]
[76]
Sharma I, Behl T, Bungau S, et al. Understanding the role of inflammasome in angina pectoris. Curr Protein Pept Sci 2021; 22(3): 228-36.
[http://dx.doi.org/10.2174/1389203721999201208200242] [PMID: 33292150]
[77]
Lavine KJ, Epelman S, Uchida K, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci USA 2014; 111(45): 16029-34.
[http://dx.doi.org/10.1073/pnas.1406508111] [PMID: 25349429]
[78]
Rajamäki K, Mäyränpää MI, Risco A, et al. p38δ MAPK. Arterioscler Thromb Vasc Biol 2016; 36(9): 1937-46.
[http://dx.doi.org/10.1161/ATVBAHA.115.307312] [PMID: 27417584]
[79]
Tall AR, Bornfeldt KE. Inflammasomes and atherosclerosis: A mixed picture. Circ Res 2023; 132(11): 1505-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.123.321637] [PMID: 37228237]
[80]
Marzoog BA. Autophagy behavior in endothelial cell dysfunction. Emir Med J 2023; 5: e140723218726.
[http://dx.doi.org/10.2174/0250688204666230714110857]
[81]
Marzoog BA. Nicotinamide mononucleotide in the context of myocardiocyte longevity. Curr Aging Sci 2024; 17(2): 103-8.
[http://dx.doi.org/10.2174/0118746098266041231212105020] [PMID: 38151845]
[82]
Marzoog BA. Transcription factors – The essence of heart regeneration: A potential novel therapeutic strategy. Curr Mol Med 2023; 23(3): 232-8.
[http://dx.doi.org/10.2174/1566524022666220216123650] [PMID: 35170408]
[83]
Abdullah Marzoog B. Caveolae’s behavior in norm and pathology. Emir Med J 2023; 4(2): e080523216639.
[http://dx.doi.org/10.2174/0250688204666230508112229]
[84]
Abdullah Marzoog B. Cell physiological behavior in the context of local hypothermia. Emir Med J 2023; 5: e100723218576.
[http://dx.doi.org/10.2174/0250688204666230710102624]
[85]
Marzoog BA. Autophagy behavior in endothelial cell regeneration. Curr Aging Sci 2023; 16.
[http://dx.doi.org/10.2174/0118746098260689231002044435] [PMID: 37861048]
[86]
Abdullah Marzoog B. Autophagy behavior under local hypothermia in myocardiocytes injury. Cardiovasc Hematol Agents Med Chem 2023; 21.
[http://dx.doi.org/10.2174/1871525721666230803102554]
[87]
Marzoog BA. Incidence rate of post coronary artery shunt complications; Age dependent! Cardiovasc Hematol Agents Med Chem 2024; 22.
[http://dx.doi.org/10.2174/0118715257265595231128070227] [PMID: 38265403]
[88]
Marzoog BA. Endothelial cell aging and autophagy dysregulation. Cardiovasc Hematol Agents Med Chem 2024; 22.
[http://dx.doi.org/10.2174/0118715257275690231129101408] [PMID: 38265402]
[89]
Marzoog BA, Vlasova TI. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy. Egypt J Med Hum Genet 2022; 23(1): 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[90]
Tabassum R, Ripatti S. Integrating lipidomics and genomics: Emerging tools to understand cardiovascular diseases. Cell Mol Life Sci 2021; 78(6): 2565-84.
[http://dx.doi.org/10.1007/s00018-020-03715-4] [PMID: 33449144]
[91]
Abrahams T, Nicholls SJ. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges. Expert Opin Drug Discov 2023; 1-10.
[http://dx.doi.org/10.1080/17460441.2023.2292039] [PMID: 38402906]
[92]
Hinterwirth H, Stegemann C, Mayr M. Lipidomics. Circ Cardiovasc Genet 2014; 7(6): 941-54.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000550] [PMID: 25516624]
[93]
Severino P, D’Amato A, Pucci M, et al. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int J Mol Sci 2020; 21(21): 8118.
[http://dx.doi.org/10.3390/ijms21218118] [PMID: 33143256]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy