Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Assessment of Lifetime Risk for Cardiovascular Disease: Time to Move Forward

Author(s): Evangelia G. Sigala and Demosthenes B. Panagiotakos*

Volume 20, Issue 6, 2024

Published on: 03 July, 2024

Article ID: e030724231561 Pages: 16

DOI: 10.2174/011573403X311031240703080650

Price: $65

Abstract

Over the past decades, there has been a notable increase in the risk of Cardiovascular Disease (CVD), even among younger individuals. Policymakers and the health community have revised CVD prevention programs to include younger people in order to take these new circumstances into account. A variety of CVD risk assessment tools have been developed in the past years with the aim of identifying potential CVD candidates at the population level; however, they can hardly discriminate against younger individuals at high risk of CVD.Therefore, in addition to the traditional 10-year CVD risk assessment, lifetime CVD risk assessment has recently been recommended by the American Heart Association/American College of Cardiology and the European Society of Cardiology prevention guidelines, particularly for young individuals. Methodologically, the benefits of these lifetime prediction models are the incorporation of left truncation observed in survival curves and the risk of competing events which are not considered equivalent in the common survival analysis. Thus, lifetime risk data are easily understandable and can be utilized as a risk communication tool for Public Health surveillance. However, given the peculiarities behind these estimates, structural harmonization should be conducted in order to create a sex-, race-specific tool that is sensitive to accurately identifying individuals who are at high risk of CVD. In this review manuscript, we present the most commonly used lifetime CVD risk tools, elucidate several methodological and critical points, their limitations, and the rationale behind their integration into everyday clinical practice.

[1]
Timmis A, Vardas P, Townsend N, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J 2022; 43(8): 716-99.
[http://dx.doi.org/10.1093/eurheartj/ehab892] [PMID: 35016208]
[2]
Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J Am Coll Cardiol 2020; 76(25): 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[3]
Sun J, Qiao Y, Zhao M, Magnussen CG, Xi B. Global, regional, and national burden of cardiovascular diseases in youths and young adults aged 15–39 years in 204 countries/territories, 1990–2019: a systematic analysis of Global Burden of Disease Study 2019. BMC Med 2023; 21(1): 222.
[http://dx.doi.org/10.1186/s12916-023-02925-4] [PMID: 37365627]
[4]
Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42(34): 3227-337.
[http://dx.doi.org/10.1093/eurheartj/ehab484] [PMID: 34458905]
[5]
Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 139(25): e1082-143.
[PMID: 30586774]
[6]
Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 140(11): e596-646.
[http://dx.doi.org/10.1161/CIR.0000000000000678] [PMID: 30879355]
[7]
Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J Am Coll Cardiol 2018; 71(19): e127-248.
[http://dx.doi.org/10.1016/j.jacc.2017.11.006] [PMID: 29146535]
[8]
SDG target 3.4 reduce by one third premature mortality from non-communicable diseases through prevention and treatment and promote mental health and well-being. 2023. Available from: https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/sdg-target-3.4-noncommunicable-diseases-and-mental-health
[9]
United States Transforming our world: The 2030 agenda for sustainable development 2016. Available from: https://sdgs.un.org/2030agenda
[10]
Panagiotakos DB, Stavrinos V. Methodological issues in cardiovascular epidemiology: the risk of determining absolute risk through statistical models. Vasc Health Risk Manag 2006; 2(3): 309-15.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.309] [PMID: 17326336]
[11]
Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol 2009; 54(14): 1209-27.
[http://dx.doi.org/10.1016/j.jacc.2009.07.020] [PMID: 19778661]
[12]
Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease. J Am Coll Cardiol 2019; 73(24): 3153-67.
[http://dx.doi.org/10.1016/j.jacc.2018.11.005] [PMID: 30423392]
[13]
D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117(6): 743-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.699579] [PMID: 18212285]
[14]
Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk. Circulation 2014; 129(25_suppl_2)(Suppl. 2): S49-73.
[http://dx.doi.org/10.1161/01.cir.0000437741.48606.98] [PMID: 24222018]
[15]
Conroy R, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003; 24(11): 987-1003.
[http://dx.doi.org/10.1016/S0195-668X(03)00114-3] [PMID: 12788299]
[16]
Hageman S, Pennells L, Ojeda F, et al. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 2021; 42(25): 2439-54.
[http://dx.doi.org/10.1093/eurheartj/ehab309] [PMID: 34120177]
[17]
de Vries TI, Cooney MT, Selmer RM, et al. SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur Heart J 2021; 42(25): 2455-67.
[http://dx.doi.org/10.1093/eurheartj/ehab312] [PMID: 34120185]
[18]
Cooney MT, Selmer R, Lindman A, et al. Cardiovascular risk estimation in older persons: SCORE O.P. Eur J Prev Cardiol 2016; 23(10): 1093-103.
[http://dx.doi.org/10.1177/2047487315588390] [PMID: 26040999]
[19]
Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008; 336(7659): 1475-82.
[http://dx.doi.org/10.1136/bmj.39609.449676.25] [PMID: 18573856]
[20]
Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 2017; 357: j2099.
[http://dx.doi.org/10.1136/bmj.j2099] [PMID: 28536104]
[21]
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ 2007; 335(7611): 136.
[http://dx.doi.org/10.1136/bmj.39261.471806.55] [PMID: 17615182]
[22]
Budoff MJ, Young R, Burke G, et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA). Eur Heart J 2018; 39(25): 2401-8.
[http://dx.doi.org/10.1093/eurheartj/ehy217] [PMID: 29688297]
[23]
McClelland RL, Jorgensen NW, Budoff M, et al. 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors. J Am Coll Cardiol 2015; 66(15): 1643-53.
[http://dx.doi.org/10.1016/j.jacc.2015.08.035] [PMID: 26449133]
[24]
Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2005; 93(2): 172-6.
[http://dx.doi.org/10.1136/hrt.2006.108167] [PMID: 17090561]
[25]
NHS Scotland ASSIGN Score – prioritising prevention of cardiovascular disease. 2023. Available from: https://www.assign-score.com
[26]
Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk predic-tion: The Reynolds Risk Score for men. Circulation 2008; 118(22): 2243-51.
[27]
Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 2007; 297(6): 611-9.
[http://dx.doi.org/10.1001/jama.297.6.611] [PMID: 17299196]
[28]
Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 2002; 105(3): 310-5.
[http://dx.doi.org/10.1161/hc0302.102575] [PMID: 11804985]
[29]
McGorrian C, Yusuf S, Islam S, et al. Estimating modifiable coronary heart disease risk in multiple regions of the world: the INTERHEART Modifiable Risk Score. Eur Heart J 2011; 32(5): 581-9.
[http://dx.doi.org/10.1093/eurheartj/ehq448] [PMID: 21177699]
[30]
Navar AM, Wang TY, Mi X, et al. Influence of cardiovascular risk communication tools and presentation formats on patient perceptions and preferences. JAMA Cardiol 2018; 3(12): 1192-9.
[http://dx.doi.org/10.1001/jamacardio.2018.3680] [PMID: 30419113]
[31]
Jackson R, Lawes C, Bennett D, Milne R, Rodgers A. Treatment with drugs to lower blood pressure and blood cholesterol based on an individual’s absolute cardiovascular risk. Lancet 2005; 365(9457): 434-41.
[http://dx.doi.org/10.1016/S0140-6736(05)70240-3] [PMID: 15680460]
[32]
Gidlow CJ, Ellis NJ, Riley V, et al. Cardiovascular disease risk communication in NHS Health Checks: A qualitative video-stimulated re-call interview study with practitioners BJGP Open 2021; 5(5): BJGPO.2021.0049..
[http://dx.doi.org/10.3399/BJGPO.2021.0049] [PMID: 34172476]
[33]
Lloyd-Jones DM, Leip EP, Larson MG, et al. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006; 113(6): 791-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.548206] [PMID: 16461820]
[34]
Wilson PWF. Prediction of cardiovascular disease events. Cardiol Clin 2011; 29(1): 1-13.
[http://dx.doi.org/10.1016/j.ccl.2010.10.004] [PMID: 21257097]
[35]
Alagona P Jr, Ahmad TA. Cardiovascular disease risk assessment and prevention: current guidelines and limitations. Med Clin North Am 2015; 99(4): 711-31.
[http://dx.doi.org/10.1016/j.mcna.2015.02.003] [PMID: 26042878]
[36]
Ruwanpathirana T, Owen A, Reid CM. Review on cardiovascular risk prediction. Cardiovasc Ther 2015; 33(2): 62-70.
[http://dx.doi.org/10.1111/1755-5922.12110] [PMID: 25758853]
[37]
Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular risk prediction models and scores in the era of personalized medicine. J Pers Med 2022; 12(7): 1180.
[http://dx.doi.org/10.3390/jpm12071180] [PMID: 35887677]
[38]
Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: The Framingham study. Am J Cardiol 1976; 38(1): 46-51.
[http://dx.doi.org/10.1016/0002-9149(76)90061-8] [PMID: 132862]
[39]
Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 2004; 110(9): 1042-6.
[http://dx.doi.org/10.1161/01.CIR.0000140263.20897.42] [PMID: 15313941]
[40]
Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi‐state models. Stat Med 2007; 26(11): 2389-430.
[http://dx.doi.org/10.1002/sim.2712] [PMID: 17031868]
[41]
Huebner M, Wolkewitz M, Enriquez-Sarano M, Schumacher M. Competing risks need to be considered in survival analysis models for cardiovascular outcomes. J Thorac Cardiovasc Surg 2017; 153(6): 1427-31.
[http://dx.doi.org/10.1016/j.jtcvs.2016.12.039] [PMID: 28526103]
[42]
Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in the presence of competing risks. Circulation 2016; 133(6): 601-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017719] [PMID: 26858290]
[43]
Dhingra R, Vasan RS. Age as a risk factor. Med Clin North Am 2012; 96(1): 87-91.
[http://dx.doi.org/10.1016/j.mcna.2011.11.003] [PMID: 22391253]
[44]
Ridker PM, Cook N. Should age and time be eliminated from cardiovascular risk prediction models? Rationale for the creation of a new national risk detection program. Circulation 2005; 111(5): 657-8.
[http://dx.doi.org/10.1161/01.CIR.0000154544.90488.52] [PMID: 15699285]
[45]
Navar AM, Stone NJ, Martin SS. What to say and how to say it. Curr Opin Cardiol 2016; 31(5): 537-44.
[http://dx.doi.org/10.1097/HCO.0000000000000322] [PMID: 27428113]
[46]
Petr EJ, Ayers CR, Pandey A, et al. Perceived lifetime risk for cardiovascular disease (from the Dallas Heart Study). Am J Cardiol 2014; 114(1): 53-8.
[http://dx.doi.org/10.1016/j.amjcard.2014.04.006] [PMID: 24834788]
[47]
Bonner C, Batcup C, Cornell S, et al. Interventions Using Heart Age for Cardiovascular Disease Risk Communication: Systematic Review of Psychological, Behavioral, and Clinical Effects. JMIR Cardio 2021; 5(2): e31056.
[http://dx.doi.org/10.2196/31056] [PMID: 34738908]
[48]
Karmali KN, Lloyd-Jones DM. Adding a life-course perspective to cardiovascular-risk communication. Nat Rev Cardiol 2013; 10(2): 111-5.
[http://dx.doi.org/10.1038/nrcardio.2012.185] [PMID: 23296067]
[49]
Marma AK, Lloyd-Jones DM. Systematic examination of the updated Framingham heart study general cardiovascular risk profile. Circulation 2009; 120(5): 384-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.835470] [PMID: 19620502]
[50]
ACC ASCVD Risk Estimator + 2023. 2023. Available from: https://tools.acc.org/ASCVD-Risk-Estimator-Plus/#!/calculate/estimate
[51]
AHA 2018 Prevention Guidelines Tool CV Risk Calculator. 2023. Available from: https://professional.heart.org/en/science-news/food-is-medicine
[53]
ClinRisk Ltd. QRISK3. 2023. Available from: https://qrisk.org
[54]
Multi-ethnic study of atherosclerosis. MESA 10-Year CHD risk with coronary artery calcification. 2023. Available from: https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx
[55]
Reynolds Risk Score 2023. Available from: https://www.scymed.com/en/smnxph/phqgg440.htm
[56]
MDApp Cardiovascular Risk PROCAM Score Calculator. 2017. Available from: https://www.mdapp.co/cardiovascular-risk-procam-score-calculator-255/
[57]
Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. Lancet 1999; 353(9147): 89-92.
[http://dx.doi.org/10.1016/S0140-6736(98)10279-9] [PMID: 10023892]
[58]
Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol 2007; 6(12): 1106-14.
[http://dx.doi.org/10.1016/S1474-4422(07)70291-0] [PMID: 18031707]
[59]
Conner SC, Beiser A, Benjamin EJ, LaValley MP, Larson MG, Trinquart L. A comparison of statistical methods to predict the residual lifetime risk. Eur J Epidemiol 2022; 37(2): 173-94.
[http://dx.doi.org/10.1007/s10654-021-00815-8] [PMID: 34978669]
[60]
Feuer EJ, Wun LM, Boring CC, Flanders WD, Timmel MJ, Tong T. The lifetime risk of developing breast cancer. J Natl Cancer Inst 1993; 85(11): 892-7.
[http://dx.doi.org/10.1093/jnci/85.11.892] [PMID: 8492317]
[61]
Geskus RB. Data analysis with competing risks and intermediate states. CRC Press 2015.
[http://dx.doi.org/10.1201/b18695]
[62]
Beiser A, D’Agostino RB Sr, Seshadri S, Sullivan LM, Wolf PA. Computing estimates of incidence, including lifetime risk: Alzheimer’s disease in the Framingham Study. The Practical Incidence Estimators (PIE) macro. Stat Med 2000; 19(11-12): 1495-522.
[http://dx.doi.org/10.1002/(SICI)1097-0258(20000615/30)19:11/12<1495::AID-SIM441>3.0.CO;2-E] [PMID: 10844714]
[63]
Deo SV, Deo V, Sundaram V. Survival analysis—part 3: intermediate events and the importance of competing risks. Indian Journal of Thoracic and Cardiovascular Surgery 2021; 37(3): 367-70.
[http://dx.doi.org/10.1007/s12055-021-01151-y] [PMID: 33967437]
[64]
Lacny S, Wilson T, Clement F, et al. Kaplan–Meier survival analysis overestimates cumulative incidence of health-related events in competing risk settings: a meta-analysis. J Clin Epidemiol 2018; 93: 25-35.
[http://dx.doi.org/10.1016/j.jclinepi.2017.10.006] [PMID: 29045808]
[65]
Hageman SHJ, Dorresteijn JAN, Pennells L, et al. The relevance of competing risk adjustment in cardiovascular risk prediction models for clinical practice. Eur J Prev Cardiol 2023; 30(16): 1741-7.
[http://dx.doi.org/10.1093/eurjpc/zwad202] [PMID: 37338108]
[66]
Lloyd-Jones DM, Wilson PWF, Larson MG, et al. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol 2004; 94(1): 20-4.
[http://dx.doi.org/10.1016/j.amjcard.2004.03.023] [PMID: 15219502]
[67]
Imai Y, Mizuno Tanaka S, Satoh M, et al. Prediction of Lifetime Risk of Cardiovascular Disease Deaths Stratified by Sex in the Japanese Population. J Am Heart Assoc 2021; 10(23): e021753.
[http://dx.doi.org/10.1161/JAHA.121.021753] [PMID: 34845914]
[68]
Panagiotakos D, Chrysohoou C, Damigou E, et al. Prediction of lifetime risk for cardiovascular disease, by risk factors level: the ATTICA epidemiological cohort study (2002–2022). Ann Epidemiol 2023; 87: 17-24.
[http://dx.doi.org/10.1016/j.annepidem.2023.09.010] [PMID: 37866102]
[69]
Collett D. Modelling survival data in medical research. (4th ed.), Boca Raton: CRC Press, Taylor and Francis 2023.
[http://dx.doi.org/10.1201/9781003282525]
[70]
De Backer G, De Bacquer D. Lifetime-risk prediction: a complicated business. Lancet 1999; 353(9147): 82-3.
[http://dx.doi.org/10.1016/S0140-6736(98)00404-8] [PMID: 10023886]
[71]
Licher S, Heshmatollah A, van der Willik KD, et al. Lifetime risk and multimorbidity of non-communicable diseases and disease-free life expectancy in the general population: A population-based cohort study. PLoS Med 2019; 16(2): e1002741.
[http://dx.doi.org/10.1371/journal.pmed.1002741] [PMID: 30716101]
[72]
Bender AP, Punyko J, Williams AN, Bushhouse SA. A standard person-years approach to estimating lifetime cancer risk. Cancer Causes Control 1992; 3(1): 69-75.
[http://dx.doi.org/10.1007/BF00051915] [PMID: 1536916]
[73]
Qwasmeh AAH, Saleh BAA. Radiation dose and lifetime risk for radiation-induced cancer due to natural radioactivity in tap water from Jordan. Radiat Environ Biophys 2023; 62(2): 279-85.
[http://dx.doi.org/10.1007/s00411-023-01018-3] [PMID: 36862217]
[74]
Aldekheel M, Farahani VJ, Sioutas C. Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities. Toxics 2023; 11(8): 697.
[http://dx.doi.org/10.3390/toxics11080697] [PMID: 37624202]
[75]
Otansev P, Bingöldağ N. Indoor Radon Concentration and Excess Lifetime Cancer Risk. Radiat Prot Dosimetry 2022; 198(1-2): 53-61.
[http://dx.doi.org/10.1093/rpd/ncab191] [PMID: 35043176]
[76]
Wetmore JB, Otarola L, Paulino LJ, et al. Estimating lifetime risk for breast cancer as a screening tool for identifying those who would benefit from additional services among women utilizing mobile mammography. J Cancer Policy 2022; 34: 100354.
[http://dx.doi.org/10.1016/j.jcpo.2022.100354] [PMID: 35995395]
[77]
Fraser GE, Shavlik D. Risk factors, lifetime risk, and age at onset of breast cancer. Ann Epidemiol 1997; 7(6): 375-82.
[http://dx.doi.org/10.1016/S1047-2797(97)00042-2] [PMID: 9279446]
[78]
Bruder C, Bulliard JL, Germann S, et al. Estimating lifetime and 10-year risk of lung cancer. Prev Med Rep 2018; 11: 125-30.
[http://dx.doi.org/10.1016/j.pmedr.2018.06.010] [PMID: 29942733]
[79]
Rigel DS, Friedman RJ, Kopf AW. Lifetime risk for development of skin cancer in the U.S. population: Current estimate is now 1 in 5. J Am Acad Dermatol 1996; 35(6): 1012-3.
[http://dx.doi.org/10.1016/S0190-9622(96)90139-5] [PMID: 8959974]
[80]
Alharfi S, Furey N, Al-Shakhshir H, Ghannoum M, Cooper GS. Fecal Microbiome Associated with Both Colon Adenomas and Lifetime Colorectal Cancer Risk. Dig Dis Sci 2023; 68(4): 1492-9.
[http://dx.doi.org/10.1007/s10620-022-07673-8] [PMID: 35986796]
[81]
Grundy A, Sandhu S, Arseneau J, et al. Lifetime caffeine intake and the risk of epithelial ovarian cancer. Cancer Epidemiol 2022; 76: 102058.
[http://dx.doi.org/10.1016/j.canep.2021.102058] [PMID: 34800867]
[82]
Dalmartello M, Vermunt J, Negri E, Levi F, La Vecchia C. Adult lifetime body mass index trajectories and endometrial cancer risk. BJOG 2022; 129(9): 1521-9.
[http://dx.doi.org/10.1111/1471-0528.17087] [PMID: 34962692]
[83]
Lloyd T, Hounsome L, Mehay A, Mee S, Verne J, Cooper A. Lifetime risk of being diagnosed with, or dying from, prostate cancer by major ethnic group in England 2008–2010. BMC Med 2015; 13(1): 171.
[http://dx.doi.org/10.1186/s12916-015-0405-5] [PMID: 26224061]
[84]
Rowe TW, Katzourou IK, Stevenson-Hoare JO, Bracher-Smith MR, Ivanov DK, Escott-Price V. Machine learning for the life-time risk prediction of Alzheimer’s disease: a systematic review. Brain Commun 2021; 3(4): fcab246.
[http://dx.doi.org/10.1093/braincomms/fcab246] [PMID: 34805994]
[85]
Seshadri S, Drachman DA, Lippa CF. Apolipoprotein E epsilon 4 allele and the lifetime risk of Alzheimer’s disease. What physicians know, and what they should know. Arch Neurol 1995; 52(11): 1074-9.
[http://dx.doi.org/10.1001/archneur.1995.00540350068018] [PMID: 7487559]
[86]
Lobo A, Lopez-Anton R, Santabárbara J, et al. Incidence and lifetime risk of dementia and Alzheimer’s disease in a Southern European population. Acta Psychiatr Scand 2011; 124(5): 372-83.
[http://dx.doi.org/10.1111/j.1600-0447.2011.01754.x] [PMID: 21848704]
[87]
Oakley Browne MA, Elisabeth Wells J, Scott KM, Mcgee MA. Lifetime prevalence and projected lifetime risk of DSM-IV disorders in Te Rau Hinengaro: The New Zealand Mental Health Survey. Aust N Z J Psychiatry 2006; 40(10): 865-74.
[http://dx.doi.org/10.1080/j.1440-1614.2006.01905.x] [PMID: 16959012]
[88]
Bonnewyn A, Bruffaerts R, Vilagut G, Almansa J, Demyttenaere K. Lifetime risk and age-of-onset of mental disorders in the Belgian gen-eral population. Soc Psychiatry Psychiatr Epidemiol 2007; 42(7): 522-9.
[http://dx.doi.org/10.1007/s00127-007-0191-2] [PMID: 17473902]
[89]
Crowson CS, Matteson EL, Myasoedova E, et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum 2011; 63(3): 633-9.
[http://dx.doi.org/10.1002/art.30155] [PMID: 21360492]
[90]
Hess KL, Hu X, Lansky A, Mermin J, Hall HI. Lifetime risk of a diagnosis of HIV infection in the United States. Ann Epidemiol 2017; 27(4): 238-43.
[http://dx.doi.org/10.1016/j.annepidem.2017.02.003] [PMID: 28325538]
[91]
Tuomilehto J, Bahijri S. Lifetime risk of diabetes mellitus — how high? Nat Rev Endocrinol 2016; 12(3): 127-8.
[http://dx.doi.org/10.1038/nrendo.2015.227] [PMID: 26729040]
[92]
Narayan KMV, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA 2003; 290(14): 1884-90.
[http://dx.doi.org/10.1001/jama.290.14.1884] [PMID: 14532317]
[93]
McMahon GM, Hwang SJ, Fox CS. Residual lifetime risk of chronic kidney disease. Nephrol Dial Transplant 2017; 32(10): 1705-9.
[PMID: 27358274]
[94]
Gaillard F, Fournier C, Legendre C. Lifetime ESKD risk stratification for living kidney donor studies. Am J Transplant 2019; 19(9): 2658-9.
[http://dx.doi.org/10.1111/ajt.15524] [PMID: 31278848]
[95]
Wang Z, Hoy WE. Remaining lifetime risk for developing end stage renal disease among Australian Aboriginal people with diabetes. Diabetes Res Clin Pract 2014; 103(3): e24-6.
[http://dx.doi.org/10.1016/j.diabres.2013.12.048] [PMID: 24456995]
[96]
Melton LJRD. Lifetime risk of a hip fracture. Am J Public Health 1990; 80(4): 500-1.
[http://dx.doi.org/10.2105/AJPH.80.4.500] [PMID: 2316781]
[97]
Wang YXJ, Griffith JF, Blake GM, et al. Revision of the 1994 World Health Organization T-score definition of osteoporosis for use in older East Asian women and men to reconcile it with their lifetime risk of fragility fracture. Skeletal Radiol 2023.
[PMID: 37889317]
[98]
Chen V, Ning H, Allen N, et al. Lifetime Risks for Hypertension by Contemporary Guidelines in African American and White Men and Women. JAMA Cardiol 2019; 4(5): 455-9.
[http://dx.doi.org/10.1001/jamacardio.2019.0529] [PMID: 30916719]
[99]
van Riel ACMJ, Blok IM, Zwinderman AH, et al. Lifetime Risk of Pulmonary Hypertension for All Patients After Shunt Closure. J Am Coll Cardiol 2015; 66(9): 1084-6.
[http://dx.doi.org/10.1016/j.jacc.2015.06.1318] [PMID: 26314539]
[100]
Ligthart S, van Herpt TTW, Leening MJG, et al. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol 2016; 4(1): 44-51.
[http://dx.doi.org/10.1016/S2213-8587(15)00362-9] [PMID: 26575606]
[101]
Pencina MJ, D’Agostino RB Sr, Larson MG, Massaro JM, Vasan RS. Predicting the 30-year risk of cardiovascular disease: the framingham heart study. Circulation 2009; 119(24): 3078-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.816694] [PMID: 19506114]
[102]
Saito I. Lifetime Risk of Coronary Heart Disease in Japan. J Atheroscler Thromb 2021; 28(1): 1-2.
[http://dx.doi.org/10.5551/jat.ED131] [PMID: 32493882]
[103]
Urbut SM, Yeung MW, Khurshid S, et al. MSGene: Derivation and validation of a multistate model for lifetime risk of coronary artery disease using genetic risk and the electronic health record. medRxiv 2023.
[http://dx.doi.org/10.1101/2023.11.08.23298229]
[104]
Wang Z, Hoy WE. Lifetime risk of developing coronary heart disease in Aboriginal Australians: a cohort study. BMJ Open 2013; 3(1): e002308.
[http://dx.doi.org/10.1136/bmjopen-2012-002308] [PMID: 23370013]
[105]
Thomas EA, Enduru N, Tin A, et al. Polygenic Risk, Midlife Life’s Simple 7, and Lifetime Risk of Stroke. J Am Heart Assoc 2022; 11(15): e025703.
[http://dx.doi.org/10.1161/JAHA.122.025703] [PMID: 35862192]
[106]
Turin TC, Kokubo Y, Murakami Y, et al. Lifetime risk of stroke in Japan. Stroke 2010; 41(7): 1552-4.
[http://dx.doi.org/10.1161/STROKEAHA.110.581363] [PMID: 20489172]
[107]
Wang Y, Liu J, Wang W, et al. Lifetime risk of stroke in young-aged and middle-aged Chinese population. J Hypertens 2016; 34(12): 2434-40.
[http://dx.doi.org/10.1097/HJH.0000000000001084] [PMID: 27512963]
[108]
Zhao HL, Huang Y. Lifetime Risk of Stroke in the Global Burden of Disease Study. N Engl J Med 2019; 380(14): 1377-8.
[http://dx.doi.org/10.1056/NEJMc1900607] [PMID: 30943348]
[109]
Brugger N, Krause R, Carlen F, et al. Effect of lifetime endurance training on left atrial mechanical function and on the risk of atrial fibril-lation. Int J Cardiol 2014; 170(3): 419-25.
[http://dx.doi.org/10.1016/j.ijcard.2013.11.032] [PMID: 24342396]
[110]
Guo Y, Tian Y, Wang H, Si Q, Wang Y, Lip GYH. Prevalence, incidence, and lifetime risk of atrial fibrillation in China: new insights into the global burden of atrial fibrillation. Chest 2015; 147(1): 109-19.
[http://dx.doi.org/10.1378/chest.14-0321] [PMID: 24921459]
[111]
Heeringa J, van der Kuip DAM, Hofman A, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 2006; 27(8): 949-53.
[http://dx.doi.org/10.1093/eurheartj/ehi825] [PMID: 16527828]
[112]
Kheirbek RE, Fokar A, Moore HJ, Shara N, Doukky R, Fletcher RD. Association between lifetime risk of atrial fibrillation and mortality in the oldest old. Clin Cardiol 2018; 41(5): 634-9.
[http://dx.doi.org/10.1002/clc.22941] [PMID: 29566272]
[113]
Staerk L, Wang B, Preis SR, et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: cohort study based on longitudinal data from the Framingham Heart Study. BMJ 2018; 361: k1453.
[http://dx.doi.org/10.1136/bmj.k1453] [PMID: 29699974]
[114]
Jaspers NEM, Blaha MJ, Matsushita K, et al. Prediction of individualized lifetime benefit from cholesterol lowering, blood pressure lower-ing, antithrombotic therapy, and smoking cessation in apparently healthy people. Eur Heart J 2020; 41(11): 1190-9.
[http://dx.doi.org/10.1093/eurheartj/ehz239] [PMID: 31102402]
[115]
Zipkin DA, Umscheid CA, Keating NL, et al. Evidence-based risk communication: a systematic review. Ann Intern Med 2014; 161(4): 270-80.
[http://dx.doi.org/10.7326/M14-0295] [PMID: 25133362]
[116]
Pierson CA. Understanding and communicating risk. J Am Assoc Nurse Pract 2015; 27(3): 123.
[http://dx.doi.org/10.1002/2327-6924.12244] [PMID: 25739355]
[117]
Himes DO, Root AE, Gammon A, Luthy KE. Breast Cancer Risk Assessment: Calculating Lifetime Risk Using the Tyrer-Cuzick Model. J Nurse Pract 2016; 12(9): 581-92.
[http://dx.doi.org/10.1016/j.nurpra.2016.07.027]
[118]
Gail MH, Costantino JP, Pee D, et al. Projecting individualized absolute invasive breast cancer risk in African American women. J Natl Cancer Inst 2007; 99(23): 1782-92.
[http://dx.doi.org/10.1093/jnci/djm223] [PMID: 18042936]
[119]
Matsuno RK, Costantino JP, Ziegler RG, et al. Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J Natl Cancer Inst 2011; 103(12): 951-61.
[http://dx.doi.org/10.1093/jnci/djr154] [PMID: 21562243]
[120]
Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989; 81(24): 1879-86.
[http://dx.doi.org/10.1093/jnci/81.24.1879] [PMID: 2593165]
[121]
Banegas MP, John EM, Slattery ML, et al. Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women. J Natl Cancer Inst 2017; 109(2): djw215.
[http://dx.doi.org/10.1093/jnci/djw215] [PMID: 28003316]
[122]
Saadatagah S, Varughese MG, Nambi V. Coronary Artery Disease Risk Prediction in Young Adults: How Can We Overcome the Dominant Effect of Age? Curr Atheroscler Rep 2023; 25(6): 257-65.
[http://dx.doi.org/10.1007/s11883-023-01106-1] [PMID: 37195598]
[123]
Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014; 129(25_suppl_2)(Suppl. 2): S1-S45.
[http://dx.doi.org/10.1161/01.cir.0000437738.63853.7a] [PMID: 24222016]
[124]
Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2016; 37(29): 2315-81.
[http://dx.doi.org/10.1093/eurheartj/ehw106] [PMID: 27222591]
[125]
Hageman SHJ, Kaptoge S, de Vries TI, et al. Prediction of individual lifetime cardiovascular risk and potential treatment benefit: develop-ment and recalibration of the LIFE-CVD2 model to four European risk regions. Eur J Prev Cardiol 2023; 30(18): 1975-85.
[http://dx.doi.org/10.1093/eurjpc/zwae174] [PMID: 38752762]
[126]
LIFE-CVD: A new lifetime risk score model that estimates treatment benefit. J American College of Cardiology 2023. Available from: https://www.acc.org/Latest-in-Cardiology/Articles/2019/06/24/14/13/LIFE-CVD-A-New-Lifetime-Risk-Score-Model-That-Estimates-Treatment-Benefit
[127]
Brotons C, Moral I, Fernández D, et al. Estimation of Lifetime Risk of Cardiovascular Disease (IBERLIFERISK): A New Tool for Cardio-vascular Disease Prevention in Primary Care. Rev Esp Cardiol (Engl Ed) 2019; 72(7): 562-8.
[http://dx.doi.org/10.1016/j.rec.2018.05.028] [PMID: 30097396]
[128]
Brotons C, Moral-Peláez I, Vicuña J, Ameixeiras C, Fernández-Lavandera C, Sánchez-Chaparro MÁ. Update and validation of the lifetime cardiovascular risk in Spain: IBERLIFERISK2. Clínica e Investigación en Arteriosclerosis (English Edition) 2023; 35(3): 115-22.
[http://dx.doi.org/10.1016/j.artere.2023.05.008] [PMID: 36344347]
[129]
Brotons C, Calvo-Bonacho E, Moral I, et al. Comparison of application of different methods to estimate lifetime cardiovascular risk. Eur J Prev Cardiol 2016; 23(6): 564-71.
[http://dx.doi.org/10.1177/2047487315579616] [PMID: 25827686]
[130]
Dorresteijn JAN, Kaasenbrood L, Cook NR, et al. How to translate clinical trial results into gain in healthy life expectancy for individual patients. BMJ 2016; 352: i1548.
[131]
Berry JD, Dyer A, Cai X, et al. Lifetime risks of cardiovascular disease. N Engl J Med 2012; 366(4): 321-9.
[http://dx.doi.org/10.1056/NEJMoa1012848] [PMID: 22276822]
[132]
Hippisley-Cox J, Coupland C, Robson J, Brindle P. Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database BMJ 2010; 341(dec09 1): c6624.
[http://dx.doi.org/10.1136/bmj.c6624] [PMID: 21148212]
[133]
Joint British Societies’ consensus recommendations for the prevention of cardiovascular disease (JBS3). Heart 2014; 100 (Suppl. 2): ii1-ii67.
[http://dx.doi.org/10.1136/heartjnl-2014-305693] [PMID: 24667225]
[134]
National Institute for Health and Care Excellence Recommendations | Cardiovascular disease: Risk assessment and reduction, including lipid modification | Guidance | NICE. 2023. Available from: https://www.nice.org.uk/guidance/ng238/chapter/Recommendations#identifying-and-assessing-cardiovascular-disease-risk-for-people-without-established-cardiovascular
[135]
ClinRisk Ltd QRISK3-lifetime. 2023. Available from: https://qrisk.org/lifetime/
[136]
Livingstone S, Morales DR, Fleuriot J, Donnan PT, Guthrie B. External validation of the QLifetime cardiovascular risk prediction tool: population cohort study. BMC Cardiovasc Disord 2023; 23(1): 194.
[http://dx.doi.org/10.1186/s12872-023-03209-8] [PMID: 37061672]
[137]
de Vries TI, Jaspers NEM, Visseren FLJ, Dorresteijn JAN. An update to the lifetime-perspective CardioVascular Disease (LIFE-CVD) model for prediction of individualized lifetime benefit from cardiovascular risk factor management in apparently healthy people. MedRxiv 2021; 2021; 253400.
[http://dx.doi.org/10.1101/2021.03.15.21253400]
[138]
U-prevent LIFE-CVD model. 2023. Available from: https://u-prevent.com/calculators/lifeCvd
[139]
Hageman SHJ, Lu W, Kaptoge S, et al. Prediction of lifetime cardiovascular risk and individual lifetime treatment benefit in four European risk regions: geographic recalibration of the LIFE-CVD model Eur Heart J 2022; 43: S2.: ehac544.2276..
[http://dx.doi.org/10.1093/eurheartj/ehac544.2276]
[140]
Iberliferisk 2023. Available from: https://www.iberliferisk.com
[141]
Marma AK, Berry JD, Ning H, Persell SD, Lloyd-Jones DM. Distribution of 10-year and lifetime predicted risks for cardiovascular disease in US adults: findings from the National Health and Nutrition Examination Survey 2003 to 2006. Circ Cardiovasc Qual Outcomes 2010; 3(1): 8-14.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.109.869727] [PMID: 20123666]
[142]
Berry JD, Liu K, Folsom AR, et al. Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease: the coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis. Circulation 2009; 119(3): 382-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.800235] [PMID: 19139385]
[143]
Paixao ARM, Ayers CR, Rohatgi A, et al. Cardiovascular lifetime risk predicts incidence of coronary calcification in individuals with low short-term risk: the Dallas Heart Study. J Am Heart Assoc 2014; 3(6): e001280.
[http://dx.doi.org/10.1161/JAHA.114.001280] [PMID: 25424574]
[144]
Lloyd-Jones DM, Dyer AR, Wang R, Daviglus ML, Greenland P. Risk factor burden in middle age and lifetime risks for cardiovascular and non-cardiovascular death (Chicago Heart Association Detection Project in Industry). Am J Cardiol 2007; 99(4): 535-40.
[http://dx.doi.org/10.1016/j.amjcard.2006.09.099] [PMID: 17293199]
[145]
Wang Y, Liu J, Wang W, et al. Lifetime risk for cardiovascular disease in a Chinese population: the Chinese Multi–Provincial Cohort Study. Eur J Prev Cardiol 2015; 22(3): 380-8.
[http://dx.doi.org/10.1177/2047487313516563] [PMID: 24336461]
[146]
Wilkins JT, Ning H, Berry J, Zhao L, Dyer AR, Lloyd-Jones DM. Lifetime risk and years lived free of total cardiovascular disease. JAMA 2012; 308(17): 1795-801.
[http://dx.doi.org/10.1001/jama.2012.14312] [PMID: 23117780]
[147]
European Commission Cardiovascular diseases prevention | Knowledge for policy. 2021. Available from: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/cardiovascular-diseases-prevention_en
[148]
World Health Organization Cardiovascular diseases (CVDs). Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[149]
Hayıroğlu Mİ. Telemedicine: Current Concepts and Future Perceptions. Anatol J Cardiol 2019; 22 (Suppl. 2): 21-2.
[http://dx.doi.org/10.14744/AnatolJCardiol.2019.12525] [PMID: 31670712]
[150]
Tekkeşin Aİ, Hayıroğlu Mİ, Çinier G, et al. Lifestyle intervention using mobile technology and smart devices in patients with high cardio-vascular risk: A pragmatic randomised clinical trial. Atherosclerosis 2021; 319: 21-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.12.020] [PMID: 33465658]
[151]
Hayıroğlu Mİ, Çınar T, Çinier G, et al. The effect of 1-year mean step count on the change in the atherosclerotic cardiovascular disease risk calculation in patients with high cardiovascular risk: a sub-study of the LIGHT randomized clinical trial. Kardiol Pol 2021; 79(10): 1140-2.
[http://dx.doi.org/10.33963/KP.a2021.0108] [PMID: 34506630]
[152]
Magnussen C, Ojeda FM, Leong DP, et al. Global effect of modifiable risk factors on cardiovascular disease and mortality. N Engl J Med 2023; 389(14): 1273-85.
[http://dx.doi.org/10.1056/NEJMoa2206916] [PMID: 37632466]
[153]
Katsagoni CN, Psarra G, Georgoulis M, Tambalis K, Panagiotakos DB, Sidossis LS. High and moderate adherence to Mediterranean life-style is inversely associated with overweight, general and abdominal obesity in children and adolescents: The MediLIFE-index. Nutr Res 2020; 73: 38-47.
[http://dx.doi.org/10.1016/j.nutres.2019.09.009] [PMID: 31841746]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy