Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Participation of CWINV and SUS Genes in Sucrose Utilization in the Disruption of Cambium Derivatives Differentiation of Silver Birch

Author(s): Yulia Leonidovna Moshchenskaya*, Natalia Alekseevna Galibina, Aleksandra Aleksandrovna Serkova, Tatyana Vladimirovna Tarelkina, Ksenia Michailovna Nikerova, Maksim Anatol’evich Korzhenevsky, Irina Nikolaevna Sofronova and Ludmila Igorevna Semenova

Volume 31, Issue 6, 2024

Published on: 03 July, 2024

Page: [479 - 489] Pages: 11

DOI: 10.2174/0109298665309207240621094227

Abstract

Background: The mechanisms that control the accumulation of woody biomass are of great interest to the study. Invertase and sucrose synthase are enzymes that are vital for distributing carbon in various biosynthetic pathways. Karelian birch (Betula pendula var. carelica) is a form of silver birch (B. pendula Roth) and is characterized by disruption of the differentiation of cambium derivatives towards both the xylem and phloem, which leads to a change in the proportion of the conducting tissues' structural elements and the figured wood formation. We researched the expression profiles of genes encoding sucrose-cleaving enzymes (CWINV and SUS gene families) and genes encoding CVIF protein, which is responsible for the post-translational regulation of the cell wall invertase activity.

Objective: In our study, 16-year-old common silver birch (Betula pendula var. pendula) and Karelian birch were used for sampling non-figured and figured trunk section tissues, respectively. Samples were selected for the research based on the radial vector: non-conductive, conductive phloem, cambial zone - differentiating xylem - mature xylem.

Methods: The enzyme's activity was investigated by biochemical methods. RT-PCR method was used to determine the level of gene expression. Anatomical and morphological methods were used to determine the stage of differentiation of xylem cambial derivatives.

Results: Our research revealed a shift in the composition of xylem components in figured Karelian birch, characterized by increased parenchymatization and reduced vessel quantity. In all studied trunk tissues of Karelian birch, compared with common silver birch, an increase in the expression of the CWINV gene family and the SUS3 gene and a decrease in the expression of SUS4 were shown.

Conclusion: Therefore, the increase in parenchymatization in figured Karelian birch is linked to a shift in sucrose metabolism towards the apoplastic pathway, indicated by a higher cell wall invertase activity and gene expression. The expression of the SUS4 gene correlates with the decrease in xylem increments and vessel proportion. The research findings will enhance our understanding of how sucrose breaking enzymes regulate secondary growth in woody plants and aid in developing practical timber cultivation methods.

« Previous
[1]
Roitsch, T.; González, M.C. Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci., 2004, 9(12), 606-613.
[http://dx.doi.org/10.1016/j.tplants.2004.10.009] [PMID: 15564128]
[2]
Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol., 2004, 7(3), 235-246.
[http://dx.doi.org/10.1016/j.pbi.2004.03.014] [PMID: 15134743]
[3]
Gibson, S.I. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol., 2000, 124(4), 1532-1539.
[http://dx.doi.org/10.1104/pp.124.4.1532] [PMID: 11115871]
[4]
Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signaling in plants. Plant Cell, 2002, 14(Suppl), S185-S205.
[http://dx.doi.org/10.1105/tpc.010455] [PMID: 12045277]
[5]
Bolouri-Moghaddam, M.R.; Le Roy, K.; Xiang, L.; Rolland, F.; Van den Ende, W. Sugar signalling and antioxidant network connections in plant cells. FEBS J., 2010, 277(9), 2022-2037.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07633.x] [PMID: 20412056]
[6]
Bolouri Moghaddam, M.R.; Van den Ende, W. Sugars and plant innate immunity. J. Exp. Bot., 2012, 63(11), 3989-3998.
[http://dx.doi.org/10.1093/jxb/ers129] [PMID: 22553288]
[7]
Sheen, J. Master regulators in plant glucose signaling networks. J. Plant Biol., 2014, 57(2), 67-79.
[http://dx.doi.org/10.1007/s12374-014-0902-7] [PMID: 25530701]
[8]
Sakr, S.; Wang, M.; Dédaldéchamp, F.; Perez-Garcia, M.D.; Ogé, L.; Hamama, L.; Atanassova, R. The sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci., 2018, 19(9), 2506.
[http://dx.doi.org/10.3390/ijms19092506] [PMID: 30149541]
[9]
Eveland, A.L.; Jackson, D.P. Sugars, signalling, and plant development. J. Exp. Bot., 2012, 63(9), 3367-3377.
[http://dx.doi.org/10.1093/jxb/err379] [PMID: 22140246]
[10]
Sturm, A.; Tang, G.Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci., 1999, 4(10), 401-407.
[http://dx.doi.org/10.1016/S1360-1385(99)01470-3] [PMID: 10498964]
[11]
Kursanov, A.L. Transport assimilyatov v rastenii (in Russia); Nauka: Moskva, 1976.
[12]
Koch, K.E.; Zeng, Y. Molecular approaches to altered C partitioning: Genes for sucrose metabolism. J. Am. Soc. Hortic. Sci., 2002, 127(4), 474-483.
[http://dx.doi.org/10.21273/JASHS.127.4.474]
[13]
Chen, Z.; Gao, K.; Su, X.; Rao, P.; An, X. Genome-wide identification of the invertase gene family in populus. PLoS One, 2015, 10(9), e0138540.
[http://dx.doi.org/10.1371/journal.pone.0138540] [PMID: 26393355]
[14]
Galibina, N.A.; Novitskaya, L.L.; Krasavina, M.S.; Moshchenskaya, J.L. Invertase activity in trunk tissues of Karelian birch. Russ. J. Plant Physiol., 2015, 62(6), 753-760.
[http://dx.doi.org/10.1134/S1021443715060060]
[15]
Yan, W.; Wu, X.; Li, Y.; Liu, G.; Cui, Z.; Jiang, T.; Ma, Q.; Luo, L.; Zhang, P. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Front. Plant Sci., 2019, 10, 541.
[http://dx.doi.org/10.3389/fpls.2019.00541] [PMID: 31114601]
[16]
Huang, L.F.; Bocock, P.N.; Davis, J.M.; Koch, K.E. Regulation of invertase: A ‘suite’ of transcriptional and post-transcriptional mechanisms. Funct. Plant Biol., 2007, 34(6), 499-507.
[http://dx.doi.org/10.1071/FP06227] [PMID: 32689379]
[17]
Tang, G.Q.; Lüscher, M.; Sturm, A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell, 1999, 11(2), 177-189.
[http://dx.doi.org/10.1105/tpc.11.2.177] [PMID: 9927637]
[18]
Zhang, N.; Jiang, J.; Yang, Y.; Wang, Z. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit. J. Zhejiang Univ. Sci. B, 2015, 16(10), 845-856.
[http://dx.doi.org/10.1631/jzus.B1400319] [PMID: 26465132]
[19]
Jin, Y.; Ni, D.A.; Ruan, Y.L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009, 21(7), 2072-2089.
[http://dx.doi.org/10.1105/tpc.108.063719] [PMID: 19574437]
[20]
Wang, L.; Ruan, Y.L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol., 2012, 160(2), 777-787.
[http://dx.doi.org/10.1104/pp.112.203893] [PMID: 22864582]
[21]
Wang, L.; Liao, S.; Ruan, Y.L. Cell wall invertase as a regulator in determining sequential development of endosperm and embryo through glucose signaling early in seed development. Plant Signal. Behav., 2013, 8(1), e22722.
[http://dx.doi.org/10.4161/psb.22722] [PMID: 23221750]
[22]
Chourey, P.S.; Li, Q.B.; Kumar, D. Sugar-hormone cross-talk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize. Mol. Plant, 2010, 3(6), 1026-1036.
[http://dx.doi.org/10.1093/mp/ssq057] [PMID: 20924026]
[23]
Jain, M.; Chourey, P.S.; Boote, K.J.; Allen, L.H., Jr Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). J. Plant Physiol., 2010, 167(7), 578-582.
[http://dx.doi.org/10.1016/j.jplph.2009.11.007] [PMID: 20044168]
[24]
Li, B.; Liu, H.; Zhang, Y.; Kang, T.; Zhang, L.; Tong, J.; Xiao, L.; Zhang, H. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol. J., 2013, 11(9), 1080-1091.
[http://dx.doi.org/10.1111/pbi.12102] [PMID: 23926950]
[25]
French, S.; Abu-Zaitoon, Y.; Uddin, M.; Bennett, K.; Nonhebel, H. Auxin and cell wall invertase related signaling during rice grain development. Plants, 2014, 3(1), 95-112.
[http://dx.doi.org/10.3390/plants3010095] [PMID: 27135493]
[26]
Schaarschmidt, S.; Roitsch, T.; Hause, B. Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J. Exp. Bot., 2006, 57(15), 4015-4023.
[http://dx.doi.org/10.1093/jxb/erl172] [PMID: 17050639]
[27]
Kocal, N.; Sonnewald, U.; Sonnewald, S. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol., 2008, 148(3), 1523-1536.
[http://dx.doi.org/10.1104/pp.108.127977] [PMID: 18784281]
[28]
Bonfig, K.B.; Gabler, A.; Simon, U.K.; Luschin-Ebengreuth, N.; Hatz, M.; Berger, S.; Muhammad, N.; Zeier, J.; Sinha, A.K.; Roitsch, T. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response. Mol. Plant, 2010, 3(6), 1037-1048.
[http://dx.doi.org/10.1093/mp/ssq053] [PMID: 20833735]
[29]
Essmann, J.; Schmitz-Thom, I.; Schön, H.; Sonnewald, S.; Weis, E.; Scharte, J. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol., 2008, 147(3), 1288-1299.
[http://dx.doi.org/10.1104/pp.108.121418] [PMID: 18502974]
[30]
Sun, L.; Yang, D.; Kong, Y.; Chen, Y.; Li, X.Z.; Zeng, L.J.; Li, Q.; Wang, E.T.; He, Z.H. Sugar homeostasis mediated by cell wall invertase Grain incomplete filling 1 (GIF1) plays a role in pre-existing and induced defence in rice. Mol. Plant Pathol., 2014, 15(2), 161-173.
[http://dx.doi.org/10.1111/mpp.12078] [PMID: 24118770]
[31]
Sturm, A.; Chrispeels, M.J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell, 1990, 2(11), 1107-1119.
[http://dx.doi.org/10.1105/tpc.2.11.1107] [PMID: 2152110]
[32]
Benhamou, N.; Grenier, J.; Chrispeels, M.J. Accumulation of beta-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol., 1991, 97(2), 739-750.
[http://dx.doi.org/10.1104/pp.97.2.739] [PMID: 16668461]
[33]
Ehneß, R.; Roitsch, T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J., 1997, 11(3), 539-548.
[http://dx.doi.org/10.1046/j.1365-313X.1997.11030539.x] [PMID: 9107040]
[34]
Hall, J.L.; Williams, L.E. Assimilate transport and partitioning in fungal biotrophic interactions. Funct. Plant Biol., 2000, 27(6), 549-560.
[http://dx.doi.org/10.1071/PP99140]
[35]
Pan, Q-H.; Li, M-J.; Peng, C-C.; Zhang, N.; Zou, X.; Zou, K-Q.; Wang, X-L.; Yu, X-C.; Wang, X-F.; Zhang, D-P. Abscisic acid activates acid invertases in developing grape berry. Physiol. Plant., 2005, 125(2), 157-170.
[http://dx.doi.org/10.1111/j.1399-3054.2005.00552.x]
[36]
Rausch, T.; Greiner, S. Plant protein inhibitors of invertases. Biochim. Biophys. Acta. Proteins Proteomics, 2004, 1696(2), 253-261.
[http://dx.doi.org/10.1016/j.bbapap.2003.09.017] [PMID: 14871666]
[37]
Balibrea Lara, M.E.; Gonzalez Garcia, M.C.; Fatima, T.; Ehneß, R.; Lee, T.K.; Proels, R.; Tanner, W.; Roitsch, T. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell, 2004, 16(5), 1276-1287.
[http://dx.doi.org/10.1105/tpc.018929] [PMID: 15100396]
[38]
Coleman, H.D.; Yan, J.; Mansfield, S.D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc. Natl. Acad. Sci., 2009, 106(31), 13118-13123.
[http://dx.doi.org/10.1073/pnas.0900188106] [PMID: 19625620]
[39]
Asano, T.; Kunieda, N.; Omura, Y.; Ibe, H.; Kawasaki, T.; Takano, M.; Sato, M.; Furuhashi, H.; Mujin, T.; Takaiwa, F.; Wu, C.; Tada, Y.; Satozawa, T.; Sakamoto, M.; Shimada, H. Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: Phosphorylation of sucrose synthase is a possible factor. Plant Cell, 2002, 14(3), 619-628.
[http://dx.doi.org/10.1105/tpc.010454] [PMID: 11910009]
[40]
Sun, J.; Loboda, T.; Sung, S.J.S.; Black, C.C., Jr Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol., 1992, 98(3), 1163-1169.
[http://dx.doi.org/10.1104/pp.98.3.1163] [PMID: 16668741]
[41]
Zrenner, R.; Salanoubat, M.; Willmitzer, L.; Sonnewald, U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants ( Solanum tuberosum L.). Plant J., 1995, 7(1), 97-107.
[http://dx.doi.org/10.1046/j.1365-313X.1995.07010097.x] [PMID: 7894514]
[42]
Subbaiah, C.C.; Sachs, M.M. Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings. Plant Physiol., 2001, 125(2), 585-594.
[http://dx.doi.org/10.1104/pp.125.2.585] [PMID: 11161016]
[43]
Amor, Y.; Haigler, C.H.; Johnson, S.; Wainscott, M.; Delmer, D.P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci., 1995, 92(20), 9353-9357.
[http://dx.doi.org/10.1073/pnas.92.20.9353] [PMID: 7568131]
[44]
Winter, H.; Huber, S.C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit. Rev. Biochem. Mol. Biol., 2000, 35(4), 253-289.
[http://dx.doi.org/10.1080/10409230008984165] [PMID: 11005202]
[45]
Buckeridge, M.S.; Vergara, C.E.; Carpita, N.C. The mechanism of synthesis of a mixed-linkage (1→3),(1→4)β- D -glucan in maize. evidence for multiple sites of glucosyl transfer in the synthase complex1. Plant Physiol., 1999, 120(4), 1105-1116.
[http://dx.doi.org/10.1104/pp.120.4.1105] [PMID: 10444094]
[46]
Coleman, H.D.; Ellis, D.D.; Gilbert, M.; Mansfield, S.D. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol. J., 2006, 4(1), 87-101.
[http://dx.doi.org/10.1111/j.1467-7652.2005.00160.x] [PMID: 17177788]
[47]
Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol., 2014, 65(1), 33-67.
[http://dx.doi.org/10.1146/annurev-arplant-050213-040251] [PMID: 24579990]
[48]
Hauch, S.; Magel, E. Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta, 1998, 207(2), 266-274.
[http://dx.doi.org/10.1007/s004250050482]
[49]
Hertzberg, M.; Aspeborg, H.; Schrader, J.; Andersson, A.; Erlandsson, R.; Blomqvist, K.; Bhalerao, R.; Uhlén, M.; Teeri, T.T.; Lundeberg, J.; Sundberg, B.; Nilsson, P.; Sandberg, G. A transcriptional roadmap to wood formation. Proc. Natl. Acad. Sci., 2001, 98(25), 14732-14737.
[http://dx.doi.org/10.1073/pnas.261293398] [PMID: 11724959]
[50]
Morell, M.; Copeland, L. Sucrose synthase of soybean nodules. Plant Physiol., 1985, 78(1), 149-154.
[http://dx.doi.org/10.1104/pp.78.1.149] [PMID: 16664189]
[51]
Sander, A.; Krausgrill, S.; Greiner, S.; Weil, M.; Rausch, T. Sucrose protects cell wall invertase but not vacuolar invertase against proteinaceous inhibitors. FEBS Lett., 1996, 385(3), 171-175.
[http://dx.doi.org/10.1016/0014-5793(96)00378-X] [PMID: 8647244]
[52]
Sturm, A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol., 1999, 121(1), 1-8.
[http://dx.doi.org/10.1104/pp.121.1.1] [PMID: 10482654]
[53]
Haigler, C.H.; Ivanova-Datcheva, M.; Hogan, P.S.; Salnikov, V.V.; Hwang, S.; Martin, K.; Delmer, D.P. Carbon partitioning to cellulose synthesis.Plant Cell Walls; Carpita, N.C.; Campbell, M.; Tierney, M., Eds.; Springer: Dordrecht, 2001.
[http://dx.doi.org/10.1007/978-94-010-0668-2_3]
[54]
Albrecht, G.; Mustroph, A. Localization of sucrose synthase in wheat roots: Increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta, 2003, 217(2), 252-260.
[http://dx.doi.org/10.1007/s00425-003-0995-6] [PMID: 12783333]
[55]
Sherson, S.M.; Alford, H.L.; Forbes, S.M.; Wallace, G.; Smith, S.M. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J. Exp. Bot., 2003, 54(382), 525-531.
[http://dx.doi.org/10.1093/jxb/erg055] [PMID: 12508063]
[56]
Duncan, K.A.; Huber, S.C. Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation. Plant Cell Physiol., 2007, 48(11), 1612-1623.
[http://dx.doi.org/10.1093/pcp/pcm133] [PMID: 17932116]
[57]
Persia, D.; Cai, G.; Del Casino, C.; Faleri, C.; Willemse, M.T.M.; Cresti, M. Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol., 2008, 147(4), 1603-1618.
[http://dx.doi.org/10.1104/pp.108.115956] [PMID: 18344420]
[58]
Nguyen, Q.A.; Luan, S.; Wi, S.G.; Bae, H.; Lee, D.S.; Bae, H.J. Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway. Front. Plant Sci., 2016, 6, 1216.
[http://dx.doi.org/10.3389/fpls.2015.01216] [PMID: 26793204]
[59]
Iraqi, D.; Quy Le, V.; Lamhamedi, M.S.; Tremblay, F.M. Sucrose utilization during somatic embryo development in black spruce: involvement of apoplastic invertase in the tissue and of extracellular invertase in the medium. J. Plant Physiol., 2005, 162(1), 115-124.
[http://dx.doi.org/10.1016/j.jplph.2003.06.001] [PMID: 15700426]
[60]
Maurel, K.; Leite, G.B.; Bonhomme, M.; Guilliot, A.; Rageau, R.; Pétel, G.; Sakr, S. Trophic control of bud break in peach (Prunus persica) trees: A possible role of hexoses. Tree Physiol., 2004, 24(5), 579-588.
[http://dx.doi.org/10.1093/treephys/24.5.579] [PMID: 14996662]
[61]
Geisler-Lee, J.; Geisler, M.; Coutinho, P.M.; Segerman, B.; Nishikubo, N.; Takahashi, J.; Aspeborg, H.; Djerbi, S.; Master, E.; Andersson-Gunnerås, S.; Sundberg, B.; Karpinski, S.; Teeri, T.T.; Kleczkowski, L.A.; Henrissat, B.; Mellerowicz, E.J. Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol., 2006, 140(3), 946-962.
[http://dx.doi.org/10.1104/pp.105.072652] [PMID: 16415215]
[62]
Bocock, P.N.; Morse, A.M.; Dervinis, C.; Davis, J.M. Evolution and diversity of invertase genes in Populus trichocarpa. Planta, 2008, 227(3), 565-576.
[http://dx.doi.org/10.1007/s00425-007-0639-3] [PMID: 17938954]
[63]
Canam, T.; Unda, F.; Mansfield, S.D. Heterologous expression and functional characterization of two hybrid poplar cell-wall invertases. Planta, 2008, 228(6), 1011-1019.
[http://dx.doi.org/10.1007/s00425-008-0801-6] [PMID: 18704491]
[64]
Mollenhauer, H.H. Plastic embedding mixtures for use in electron microscopy. Stain Technol., 1964, 39, 111-114.
[PMID: 14127791]
[65]
Serkova, A.; Tarelkina, T.; Galibina, N.; Nikerova, K.; Moshchenskaya, Y.; Sofronova, I.; Nikolaeva, N.; Ivanova, D.; Semenova, L.; Novitskaya, L. Changes in the differentiation program of birch cambial derivatives following trunk girdling. Forests, 2022, 13(8), 1171.
[http://dx.doi.org/10.3390/f13081171]
[66]
Salojärvi, J.; Smolander, O.P.; Nieminen, K.; Rajaraman, S.; Safronov, O.; Safdari, P.; Lamminmäki, A.; Immanen, J.; Lan, T.; Tanskanen, J.; Rastas, P.; Amiryousefi, A.; Jayaprakash, B.; Kammonen, J.I.; Hagqvist, R.; Eswaran, G.; Ahonen, V.H.; Serra, J.A.; Asiegbu, F.O.; de Dios Barajas-Lopez, J.; Blande, D.; Blokhina, O.; Blomster, T.; Broholm, S.; Brosché, M.; Cui, F.; Dardick, C.; Ehonen, S.E.; Elomaa, P.; Escamez, S.; Fagerstedt, K.V.; Fujii, H.; Gauthier, A.; Gollan, P.J.; Halimaa, P.; Heino, P.I.; Himanen, K.; Hollender, C.; Kangasjärvi, S.; Kauppinen, L.; Kelleher, C.T.; Kontunen-Soppela, S.; Koskinen, J.P.; Kovalchuk, A.; Kärenlampi, S.O.; Kärkönen, A.K.; Lim, K.J.; Leppälä, J.; Macpherson, L.; Mikola, J.; Mouhu, K.; Mähönen, A.P.; Niinemets, Ü.; Oksanen, E.; Overmyer, K.; Palva, E.T.; Pazouki, L.; Pennanen, V.; Puhakainen, T.; Poczai, P.; Possen, B.J.H.M.; Punkkinen, M.; Rahikainen, M.M.; Rousi, M.; Ruonala, R.; van der Schoot, C.; Shapiguzov, A.; Sierla, M.; Sipilä, T.P.; Sutela, S.; Teeri, T.H.; Tervahauta, A.I.; Vaattovaara, A.; Vahala, J.; Vetchinnikova, L.; Welling, A.; Wrzaczek, M.; Xu, E.; Paulin, L.G.; Schulman, A.H.; Lascoux, M.; Albert, V.A.; Auvinen, P.; Helariutta, Y.; Kangasjärvi, J. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet., 2017, 49(6), 904-912.
[http://dx.doi.org/10.1038/ng.3862] [PMID: 28481341]
[67]
Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res., 2004, 32(Web Server), W327-W331.
[http://dx.doi.org/10.1093/nar/gkh454] [PMID: 15215404]
[68]
Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol., 2021, 38(7), 3022-3027.
[http://dx.doi.org/10.1093/molbev/msab120] [PMID: 33892491]
[69]
Ramakers, C.; Ruijter, J.M.; Deprez, R.H.L.; Moorman, A.F.M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett., 2003, 339(1), 62-66.
[http://dx.doi.org/10.1016/S0304-3940(02)01423-4] [PMID: 12618301]
[70]
Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant, 2020, 13(8), 1194-1202.
[http://dx.doi.org/10.1016/j.molp.2020.06.009] [PMID: 32585190]
[71]
Roitsch, T.; Bittner, M.; Godt, D.E. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol., 1995, 108(1), 285-294.
[http://dx.doi.org/10.1104/pp.108.1.285] [PMID: 7784506]
[72]
Barratt, D.H.P.; Derbyshire, P.; Findlay, K.; Pike, M.; Wellner, N.; Lunn, J.; Feil, R.; Simpson, C.; Maule, A.J.; Smith, A.M. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc. Natl. Acad. Sci., 2009, 106(31), 13124-13129.
[http://dx.doi.org/10.1073/pnas.0900689106] [PMID: 19470642]
[73]
Carlson, S.J.; Chourey, P.S. A re-evaluation of the relative roles of two invertases, INCW2 and IVR1, in developing maize kernels and other tissues. Plant Physiol., 1999, 121(3), 1025-1035.
[http://dx.doi.org/10.1104/pp.121.3.1025] [PMID: 10557252]
[74]
Welham, T.; Pike, J.; Horst, I.; Flemetakis, E.; Katinakis, P.; Kaneko, T.; Sato, S.; Tabata, S.; Perry, J.; Parniske, M.; Wang, T.L. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J. Exp. Bot., 2009, 60(12), 3353-3365.
[http://dx.doi.org/10.1093/jxb/erp169] [PMID: 19474088]
[75]
Novitskaya, L.L. Karel’skaya bereza: mekhanizmy rosta i razvitiya strukturnykh anomalii (Karelian Birch: Mechanisms of Growth and Development of Structural Anomalies); Verso: Petrozavodsk, 2008.

© 2025 Bentham Science Publishers | Privacy Policy