Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Comparing the Soluble Form of Recombinant Human Insulin-like Growth Factor-1 (rhIGF-1) in Escherichia coli Using Thioredoxin as Fused and Co-expressed Protein

Author(s): Sara Hemmati, Parvaneh Maghami, Javad Ranjbari* and Maryam Tabarzad*

Volume 31, Issue 6, 2024

Published on: 03 July, 2024

Page: [469 - 478] Pages: 10

DOI: 10.2174/0109298665314267240624091046

Abstract

Introduction: Insulin-like growth factor-1 (IGF-1) is a single-chain polypeptide with various physiological functions. Escherichia coli is one of the most desirable hosts for recombinant protein production, especially for human proteins whose post-translation modifications are not essential for their bioactivity, such as hIGF-1.

Objectives: In this study, bacterial thioredoxin (Trx) was studied as a fused and non-fused protein to convert the insoluble form of recombinant human IGF-1 (rhIGF-1) to its soluble form in E. coli.

Methods: The rhIGF-1 was expressed in the E. coli Origami strain in the form of fused-Trx. It was co-expressed with Trx and then purified and quantified. In the next step, the biological activity of rhIGF-1 was evaluated by alkaline phosphatase (ALP) activity assay in human adipose- derived stem cells (hASCs) regarding the differentiation enhancement effect of IGF-1 through the osteogenic process.

Results: Results showed that Trx in both the fused and non-fused forms had a positive effect on the production of the soluble form of rhIGF-1. A significant increase in ALP activity in hASCs after rhIGF-1 treatment was observed, confirming protein bioactivity.

Conclusion: It was strongly suggested that the overproduction of Trx could increase the solubility of co-expressed recombinant proteins by changing the redox state in E. coli cells.

Graphical Abstract

[1]
Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol., 2001, 54(5), 311-316.
[http://dx.doi.org/10.1136/mp.54.5.311] [PMID: 11577173]
[2]
Al-Samerria, S.; Radovick, S. The role of insulin-like growth factor-1 (IGF-1) in the control of neuroendocrine regulation of growth. Cells, 2021, 10(10), 2664.
[http://dx.doi.org/10.3390/cells10102664] [PMID: 34685644]
[3]
Iranpoor, H.; Omidinia, E.; Vatankhah, V.; Gharanjik, V.; Shahbazi, M. Expression of recombinant human insulin-like growth factor type 1 (rhIGF-1) in Escherichia coli. Avicenna J. Med. Biotechnol., 2015, 7(3), 101-105.
[PMID: 26306149]
[4]
Aguirre, G.A.; De Ita, J.R.; de la Garza, R.G.; Castilla-Cortazar, I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med., 2016, 14(1), 3.
[http://dx.doi.org/10.1186/s12967-015-0762-z] [PMID: 26733412]
[5]
Wong, S.C.; Dobie, R.; Altowati, M.A.; Werther, G.A.; Farquharson, C.; Ahmed, S.F. Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: Current evidence, gaps in knowledge, and future directions. Endocr. Rev., 2016, 37(1), 62-110.
[http://dx.doi.org/10.1210/er.2015-1026] [PMID: 26720129]
[6]
Ipsa, E.; Cruzat, V.F.; Kagize, J.N.; Yovich, J.L.; Keane, K.N. Growth hormone and insulin-like growth factor action in reproductive tissues. Front. Endocrinol. (Lausanne), 2019, 10, 777.
[http://dx.doi.org/10.3389/fendo.2019.00777] [PMID: 31781044]
[7]
Terpe, K. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2006, 72(2), 211-222.
[http://dx.doi.org/10.1007/s00253-006-0465-8] [PMID: 16791589]
[8]
Ranjbari, J. Engineered recombinant protein production systems originated from Escherichia coli. Trends Peptide Protein Sci., 2019, 3(2018), 1-6.
[9]
Rasooli, F.; Hashemi, A. Efficient expression of EpEX in the cytoplasm of Escherichia coli using thioredoxin fusion protein. Res. Pharm. Sci., 2019, 14(6), 554-565.
[http://dx.doi.org/10.4103/1735-5362.272564] [PMID: 32038735]
[10]
Esposito, D.; Chatterjee, D.K. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol., 2006, 17(4), 353-358.
[http://dx.doi.org/10.1016/j.copbio.2006.06.003] [PMID: 16781139]
[11]
LaVallie, E.R. Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli Methods Enzymol, 2000, 326, 322-40.
[http://dx.doi.org/10.1016/S0076-6879(00)26063-1]
[12]
Nataraj, N.B.; Sukumaran, S.K.; Sambasivam, G.; Sudhakaran, R. Truncated thioredoxin peptides serves as an efficient fusion tag for production of proinsulin. Protein Pept. Lett., 2020, 27(5), 419-431.
[http://dx.doi.org/10.2174/0929866526666191028150843] [PMID: 31746289]
[13]
Tomala, M.; Lavrentieva, A.; Moretti, P.; Rinas, U.; Kasper, C.; Stahl, F.; Schambach, A.; Warlich, E.; Martin, U.; Cantz, T.; Scheper, T. Preparation of bioactive soluble human leukemia inhibitory factor from recombinant Escherichia coli using thioredoxin as fusion partner. Protein Expr. Purif., 2010, 73(1), 51-57.
[http://dx.doi.org/10.1016/j.pep.2010.04.002] [PMID: 20381622]
[14]
Witkowska-Sędek, E.; Stelmaszczyk-Emmel, A.; Majcher, A.; Demkow, U.; Pyrżak, B. The relationship between alkaline phosphatase and bone alkaline phosphatase activity and the growth hormone/insulin-like growth factor-1 axis and vitamin D status in children with growth hormone deficiency. Acta Biochim. Pol., 2018, 65(2), 269-275.
[PMID: 29649340]
[15]
Trivedi, S.; Srivastava, K.; Gupta, A.; Saluja, T.S.; Kumar, S.; Mehrotra, D.; Singh, S.K. A quantitative method to determine osteogenic differentiation aptness of scaffold. J. Oral Biol. Craniofac. Res., 2020, 10(2), 158-160.
[http://dx.doi.org/10.1016/j.jobcr.2020.04.006] [PMID: 32489814]
[16]
Levi, B.; James, A.W.; Wan, D.C.; Glotzbach, J.P.; Commons, G.W.; Longaker, M.T. Regulation of human adipose-derived stromal cell osteogenic differentiation by insulin-like growth factor-1 and platelet-derived growth factor-α. Plast. Reconstr. Surg., 2010, 126(1), 41-52.
[http://dx.doi.org/10.1097/PRS.0b013e3181da8858] [PMID: 20220555]
[17]
Doorn, J.; Roberts, S.J.; Hilderink, J.; Groen, N.; van Apeldoorn, A.; van Blitterswijk, C.; Schrooten, J.; de Boer, J. Insulin-like growth factor-I enhances proliferation and differentiation of human mesenchymal stromal cells in vitro. Tissue Eng. Part A, 2013, 19(15-16), 1817-1828.
[http://dx.doi.org/10.1089/ten.tea.2012.0522] [PMID: 23530894]
[18]
Ranjbari, J.; Babaeipour, V.; Vahidi, H.; Moghimi, H.; Mofid, M.R.; Namvaran, M.M.; Jafari, S. Enhanced production of insulin-like growth factor I protein in Escherichia coli by optimization of five key factors. Iran. J. Pharm. Res., 2015, 14(3), 907-917.
[http://dx.doi.org/10.22037/ijpr.2015.1685] [PMID: 26330880]
[19]
Alonso, V.S.M.; Kraïem, H.; Bouhaouala-Zahar, B.; Bideaux, C.; Aceves, L.C.A.; Fillaudeau, L. A protocol for recombinant protein quantification by densitometry. MicrobiologyOpen, 2020, 9(6), 1175-1182.
[http://dx.doi.org/10.1002/mbo3.1027] [PMID: 32255275]
[20]
Niu, L.X.; Li, J-Y.; Ji, X-X.; Yang, B-S. Efficient expression and purification of recombinant human enteropeptidase light chain in Esherichia coli. Braz. Arch. Biol. Technol., 2015, 58(2), 154-165.
[http://dx.doi.org/10.1590/S1516-8913201400094]
[21]
Emamipour, N.; Vossoughi, M.; Mahboudi, F.; Golkar, M.; Fard-Esfahani, P. Soluble expression of IGF1 fused to DsbA in SHuffle™ T7 strain: Optimization of expression and purification by Box-Behnken design. Appl. Microbiol. Biotechnol., 2019, 103(8), 3393-3406.
[http://dx.doi.org/10.1007/s00253-019-09719-w] [PMID: 30868206]
[22]
Youssef, A.; Aboalola, D.; Han, V.K.M. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/9453108] [PMID: 28298931]
[23]
Khoramgah, M.S.; Ghanbarian, H.; Ranjbari, J.; Ebrahimi, N.; Tabatabaei Mirakabad, F.S.; Ahmady Roozbahany, N.; Abbaszadeh, H.A.; Hosseinzadeh, S. Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds. Bioimpacts, 2023, 13(1), 31-42.
[http://dx.doi.org/10.34172/bi.2021.23711] [PMID: 36817003]
[24]
Yasukawa, T.; Kanei-Ishii, C.; Maekawa, T.; Fujimoto, J.; Yamamoto, T.; Ishii, S. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem., 1995, 270(43), 25328-25331.
[http://dx.doi.org/10.1074/jbc.270.43.25328] [PMID: 7592692]
[25]
Kaur, J.; Kumar, A.; Kaur, J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol., 2018, 106, 803-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.080] [PMID: 28830778]
[26]
Costa, S.; Almeida, A.; Castro, A.; Domingues, L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: The novel Fh8 system. Front. Microbiol., 2014, 5, 63.
[http://dx.doi.org/10.3389/fmicb.2014.00063] [PMID: 24600443]
[27]
Ki, M.R.; Pack, S.P. Fusion tags to enhance heterologous protein expression. Appl. Microbiol. Biotechnol., 2020, 104(6), 2411-2425.
[http://dx.doi.org/10.1007/s00253-020-10402-8] [PMID: 31993706]
[28]
Kim, Y.S.; Lee, H.J.; Han, M.; Yoon, N.; Kim, Y.; Ahn, J. Effective production of human growth factors in Escherichia coli by fusing with small protein 6HFh8. Microb. Cell Fact., 2021, 20(1), 9.
[http://dx.doi.org/10.1186/s12934-020-01502-1] [PMID: 33413407]
[29]
Ebrahimifard, M.; Forghanifard, M.M.; Yamchi, A.; Zarrinpour, V.; Sharbatkhari, M. A simple and efficient method for cytoplasmic production of human enterokinase light chain in E. coli. AMB Express, 2022, 12(1), 160.
[http://dx.doi.org/10.1186/s13568-022-01504-9] [PMID: 36574134]
[30]
Zhansaya, A.; Malika, N.; Boris, D.; Kanat, T.; Kanatbek, M.; Yerlan, R.; Kasym, M. Expression of recombinant CTLA-4 and PD-L1 proteins fused with thioredoxin, and determination of their ligand-binding activities. Rep. Biochem. Mol. Biol., 2022, 11(2), 310-319.
[http://dx.doi.org/10.52547/rbmb.11.2.310] [PMID: 36164623]
[31]
Tursunov, K.; Tokhtarova, L.; Kanayev, D.; Mustafina, R.; Mukantayev, K. Effect of thioredoxin on the immunogenicity of the recombinant P32 protein of lumpy skin disease virus. Vet. World, 2022, 15(10), 2384-2390.
[http://dx.doi.org/10.14202/vetworld.2022.2384-2390] [PMID: 36425142]
[32]
Damough, S.; Alizadeh, R.; Komijani, S.; Shirin, M.; Adeli, A.; Mafakher, L.; Mahboudi, F.; Talebkhan, G.Y. Computational and experimental evaluation of linker peptides and thioredoxin fusion tag in CD20-rituximab specific interactions. Iran. J. Pharm. Res., 2023, 21(1), e134267.
[http://dx.doi.org/10.5812/ijpr-134267] [PMID: 36942068]
[33]
Babaeipour, V.; Vahidi, H.; Alikhani, S.; Ranjbari, J.; Alibakhshi, A.; Tabarzad, M. Effect of acyl homoserine lactone on recombinant production of human insulin-like growth factor-1 in batch culture of Escherichia coli. Protein Pept. Lett., 2018, 25(11), 980-985.
[http://dx.doi.org/10.2174/0929866525666181019150657] [PMID: 30338727]
[34]
Zhang, D.; Wei, P.; Fan, L.; Lian, J.; Huang, L.; Cai, J.; Xu, Z. High-level soluble expression of hIGF-1 fusion protein in recombinant Escherichia coli. Process Biochem., 2010, 45(8), 1401-1405.
[http://dx.doi.org/10.1016/j.procbio.2010.05.014]
[35]
Li, H.; Hui, X.; Li, P.; Xu, A.; Li, S.; Jin, S.; Wu, D. Expression and efficient purification of tag-cleaved active recombinant human insulin-like growth factor-II from Escherichia coli. Biotechnol. Bioprocess Eng., 2015, 20(2), 234-241.
[http://dx.doi.org/10.1007/s12257-014-0562-y]
[36]
Aboutalebi, F.; Lachinani, L.; Khazaei, Y.; Forouzanfar, M.; Nasr-Esfahani, M.H.; Ghaedi, K.; Dormiani, K. An efficient method for bacterial production and activity assessment of recombinant human insulin like growth factor 1. Mol. Biol. Rep., 2018, 45(6), 1957-1966.
[http://dx.doi.org/10.1007/s11033-018-4348-8] [PMID: 30203241]
[37]
Hui, M. Soluble expression of human insulin-like growth factor-1 with the assistance of SUMO fusion partner. J. Chem. Pharm. Res., 2014, 6(4), 1059-1066.
[38]
Falak, S.; Sajed, M.; Rashid, N. Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia (Bratisl.), 2022, 77(3), 893-905.
[http://dx.doi.org/10.1007/s11756-021-00994-5]
[39]
Akuta, T.; Kikuchi-Ueda, T.; Imaizumi, K.; Oshikane, H.; Nakaki, T.; Okada, Y.; Sultana, S.; Kobayashi, K.; Kiyokawa, N.; Ono, Y. Expression of bioactive soluble human stem cell factor (SCF) from recombinant Escherichia coli by coproduction of thioredoxin and efficient purification using arginine in affinity chromatography. Protein Expr. Purif., 2015, 105, 1-7.
[http://dx.doi.org/10.1016/j.pep.2014.09.015] [PMID: 25286400]
[40]
Imaizumi, K.; Nishikawa, S.I.; Tarui, H.; Akuta, T. High-level expression and efficient one-step chromatographic purification of a soluble human leukemia inhibitory factor (LIF) in Escherichia coli. Protein Expr. Purif., 2013, 90(1), 20-26.
[http://dx.doi.org/10.1016/j.pep.2013.04.006] [PMID: 23628981]
[41]
Yamaguchi, H.; Miyazaki, M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules, 2014, 4(1), 235-251.
[http://dx.doi.org/10.3390/biom4010235] [PMID: 24970214]
[42]
Metzger, K.F.J.; Padutsch, W.; Pekarsky, A.; Kopp, J.; Voloshin, A.M.; Kühnel, H.; Maurer, M. IGF1 inclusion bodies: A QbD based process approach for efficient USP as well as early DSP unit operations. J. Biotechnol., 2020, 312, 23-34.
[http://dx.doi.org/10.1016/j.jbiotec.2020.02.014] [PMID: 32114153]
[43]
Liu, H.; Zhang, H.; Wang, S.; Cui, J.; Weng, W.; Liu, X.; Tang, H.; Hu, Y.; Li, X.; Zhang, K.; Zhou, F.; Jing, Y.; Su, J. Bone-targeted bioengineered bacterial extracellular vesicles delivering siRNA to ameliorate osteoporosis. Compos., Part B Eng., 2023, 255, 110610.
[http://dx.doi.org/10.1016/j.compositesb.2023.110610]
[44]
Liu, H.; Wu, Y.; Wang, F.; Wang, S.; Ji, N.; Wang, M.; Zhou, G.; Han, R.; Liu, X.; Weng, W.; Tan, H.; Jing, Y.; Zhang, W.; Zhang, H.; Shi, Z.; Su, J. Bone-targeted engineered bacterial extracellular vesicles delivering miRNA to treat osteoporosis. Compos., Part B Eng., 2023, 267, 111047.
[http://dx.doi.org/10.1016/j.compositesb.2023.111047]
[45]
Steijvers, E.; Ghei, A.; Xia, Z. Manufacturing artificial bone allografts: A perspective. Biomater. Transl., 2022, 3(1), 65-80.
[http://dx.doi.org/10.12336/biomatertransl.2022.01.007] [PMID: 35837344]

© 2025 Bentham Science Publishers | Privacy Policy