Abstract
Active shock absorbers and more sophisticated cushioning materials are being used in lander vibration-damping design due to the requirement for space exploration and scientific study. This has allowed landers to land on more planetary surfaces and carry out a range of intricate scientific studies. As a result, lander damping structure design and optimization are now crucial. To categorize the lander shock absorption structures based on the various structural configurations and principles of operation, to enumerate the features of each, and to forecast the direction of future development. An analysis is conducted on the present state of many sample patents concerning structures that absorb shock during landings. The development stage of currently available shock-absorbing structures is examined in accordance with their properties, and the most recent patented technologies are explained and contrasted. The development stage of currently available shock-absorbing structures is examined in accordance with their properties and the most recent patented methods are explained and contrasted. Problems of the vibration-damping structure are analyzed, and its development trend is prospected. Results showed that Large landers and heavy loads are best served by mechanical damping; medium-sized loads and environments requiring high damping control are best served by magnetorheological fluid damping; complex environments and medium-to-large-sized loads are best served by hydraulic damping; small loads and low damping requirements are best served by collapsed-method damping.