Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

The Multifunction of TRIM26: From Immune Regulation to Oncology

Author(s): Jialai Zou, Kaiyi Niu, Tao Lu, Jianxun Kan, Hao Cheng and Lijian Xu*

Volume 31, Issue 6, 2024

Published on: 02 July, 2024

Page: [424 - 436] Pages: 13

DOI: 10.2174/0109298665311516240621114519

Abstract

Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.

Graphical Abstract

[1]
Hershko, A.; Ciechanover, A. A H, A C. The ubiquitin system. Annu. Rev. Biochem., 1998, 67(1), 425-479.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.425]
[2]
Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem., 2001, 70(1), 503-533.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.503] [PMID: 11395416]
[3]
Zheng, N.; Shabek, N. Ubiquitin ligases: Structure, function, and regulation. Annu. Rev. Biochem., 2017, 86(1), 129-157.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014922]
[4]
Koegl, M.; Hoppe, T.; Schlenker, S.; Ulrich, H.D.; Mayer, T.U.; Jentsch, S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 1999, 96(5), 635-644.
[http://dx.doi.org/10.1016/S0092-8674(00)80574-7] [PMID: 10089879]
[5]
Huang, Y.; Minaker, S.; Roth, C.; Huang, S.; Hieter, P.; Lipka, V.; Wiermer, M.; Li, X. An E4 ligase facilitates polyubiquitination of plant immune receptor resistance proteins in Arabidopsis. Plant Cell, 2014, 26(1), 485-496.
[http://dx.doi.org/10.1105/tpc.113.119057]
[6]
Popovic, D.; Vucic, D.; Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med., 2014, 20(11), 1242-1253.
[http://dx.doi.org/10.1038/nm.3739] [PMID: 25375928]
[7]
Grabbe, C.; Husnjak, K.; Dikic, I. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol., 2011, 12(5), 295-307.
[http://dx.doi.org/10.1038/nrm3099] [PMID: 21448225]
[8]
Wang, F.; Ruan, L.; Yang, J.; Zhao, Q.; Wei, W. TRIM14 promotes the migration and invasion of gastric cancer by regulating epithelial to mesenchymal transition via activation of AKT signaling regulated by miR 195 5p. Oncol. Rep., 2018, 40(6), 3273-3284.
[http://dx.doi.org/10.3892/or.2018.6750] [PMID: 30272351]
[9]
Koyano, F.; Okatsu, K.; Kosako, H.; Tamura, Y.; Go, E.; Kimura, M.; Kimura, Y.; Tsuchiya, H.; Yoshihara, H.; Hirokawa, T.; Endo, T.; Fon, E.A.; Trempe, J.F.; Saeki, Y.; Tanaka, K.; Matsuda, N. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510(7503), 162-166.
[http://dx.doi.org/10.1038/nature13392] [PMID: 24784582]
[10]
Kane, L.A.; Lazarou, M.; Fogel, A.I.; Li, Y.; Yamano, K.; Sarraf, S.A.; Banerjee, S.; Youle, R.J. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol., 2014, 205(2), 143-153.
[http://dx.doi.org/10.1083/jcb.201402104]
[11]
Sacheck, J.M.; Ohtsuka, A.; McLary, S.C.; Goldberg, A.L. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab., 2004, 287(4), E591-E601.
[http://dx.doi.org/10.1152/ajpendo.00073.2004]
[12]
Hatakeyama, S. TRIM family proteins: Roles in autophagy, immunity, and carcinogenesis. Trends Biochem. Sci., 2017, 42(4), 297-311.
[http://dx.doi.org/10.1016/j.tibs.2017.01.002] [PMID: 28118948]
[13]
Bell, J.L.; Malyukova, A.; Holien, J.K.; Koach, J.; Parker, M.W.; Kavallaris, M.; Marshall, G.M.; Cheung, B.B. TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members. PLoS One, 2012, 7(5), e37470.
[http://dx.doi.org/10.1371/journal.pone.0037470]
[14]
Meroni, G.; Diez-Roux, G. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. BioEssays, 2005, 27(11), 1147-1157.
[http://dx.doi.org/10.1002/bies.20304]
[15]
Short, K.M.; Cox, T.C. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J. Biol. Chem., 2006, 281(13), 8970-8980.
[http://dx.doi.org/10.1074/jbc.M512755200] [PMID: 16434393]
[16]
Ozato, K.; Shin, D-M.; Chang, T-H.; Morse, H.C. III TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol., 2008, 8(11), 849-860.
[http://dx.doi.org/10.1038/nri2413]
[17]
Grütter, M.G.; Luban, J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr. Opin. Virol., 2012, 2(2), 142-150.
[http://dx.doi.org/10.1016/j.coviro.2012.02.003]
[18]
Stevenson, M. TRIMming HIV-1's mainsail. Nat. Immunol., 2004, 5(4), 355-356.
[http://dx.doi.org/10.1038/ni0404-355]
[19]
Gack, M.U.; Albrecht, R.A.; Urano, T.; Inn, K-S.; Huang, I-C.; Carnero, E.; Farzan, M.; Inoue, S.; Jung, J.U.; García-Sastre, A. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe, 2009, 5(5), 439-449.
[http://dx.doi.org/10.1016/j.chom.2009.04.006]
[20]
Zhu, Y.; Afolabi, L.O.; Wan, X.; Shim, J.S.; Chen, L. TRIM family proteins: Roles in proteostasis and neurodegenerative diseases. Open Biol., 2022, 12(8), 220098.
[http://dx.doi.org/10.1098/rsob.220098]
[21]
Zhang, J.; Zhang, Y.; Ren, Z.; Yan, D.; Li, G. The role of TRIM family in metabolic associated fatty liver disease. Front. Endocrinol., 2023, 14, 1210330.
[http://dx.doi.org/10.3389/fendo.2023.1210330]
[22]
Wan, T.; Li, X.; Li, Y. The role of TRIM family proteins in autophagy, pyroptosis, and diabetes mellitus. Cell Biol. Int., 2021, 45(5), 913-926.
[http://dx.doi.org/10.1002/cbin.11550]
[23]
Chu, T.W.; Capossela, A.; Coleman, R.; Goei, V.L.; Nallur, G.; Gruen, J.R. Cloning of a new “finger” protein gene (ZNF173) within the class I region of the human MHC. Genomics, 1995, 29(1), 229-239.
[http://dx.doi.org/10.1006/geno.1995.1236] [PMID: 8530076]
[24]
Meyer, M.; Gaudieri, S.; Rhodes, D.A.; Trowsdale, J. Cluster of TRIM genes in the human MHC class I region sharing the B30.2 domain. Tissue Antigens, 2003, 61(1), 63-71.
[http://dx.doi.org/10.1034/j.1399-0039.2003.610105.x]
[25]
Jia, X.; Zhao, C.; Zhao, W. Emerging roles of MHC class I region-encoded E3 ubiquitin ligases in innate immunity. Front. Immunol., 2021, 12, 687102.
[http://dx.doi.org/10.3389/fimmu.2021.687102] [PMID: 34177938]
[26]
Lc, J.; Ah, K. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci. , 2007, 104(15), 6200-6205.
[http://dx.doi.org/10.1073/pnas.0609174104]
[27]
Wang, P.; Zhao, W.; Zhao, K.; Zhang, L.; Gao, C. TRIM26 negatively regulates interferon-β production and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLoS Pathog., 2015, 11(3), e1004726.
[http://dx.doi.org/10.1371/journal.ppat.1004726] [PMID: 25763818]
[28]
Zhao, J.; Cai, B.; Shao, Z.; Zhang, L.; Zheng, Y.; Ma, C.; Yi, F.; Liu, B.; Gao, C. TRIM26 positively regulates the inflammatory immune response through K11-linked ubiquitination of TAB1. Cell Death Differ., 2021, 28(11), 3077-3091.
[http://dx.doi.org/10.1038/s41418-021-00803-1] [PMID: 34017102]
[29]
Dhawan, T.; Zahoor, M.A.; Heryani, N.; Workenhe, S.T.; Nazli, A.; Kaushic, C. TRIM26 facilitates HSV-2 infection by downregulating antiviral responses through the IRF3 pathway. Viruses, 2021, 13(1), 70.
[http://dx.doi.org/10.3390/v13010070] [PMID: 33419081]
[30]
Qiu, H.; Huang, F.; Xiao, H.; Sun, B.; Yang, R. TRIM22 inhibits the TRAF6-stimulated NF-κB pathway by targeting TAB2 for degradation. Virol. Sin., 2013, 28(4), 209-215.
[http://dx.doi.org/10.1007/s12250-013-3343-4]
[31]
Lee, Y.; Song, B.; Park, C.; Kwon, K-S. TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1. PLoS One, 2013, 8(5), e63255.
[http://dx.doi.org/10.1371/journal.pone.0063255]
[32]
Ran, Y.; Zhang, J.; Liu, L.L.; Pan, Z.Y.; Nie, Y.; Zhang, H.Y.; Wang, Y.Y. Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. J. Mol. Cell Biol., 2016, 8(1), 31-43.
[http://dx.doi.org/10.1093/jmcb/mjv068] [PMID: 26611359]
[33]
Stetson, D.B.; Medzhitov, R. R M. Type I interferons in host defense. Immunity, 2006, 25(3), 373-381.
[http://dx.doi.org/10.1016/j.immuni.2006.08.007]
[34]
Pichlmair, A.; Reis e Sousa, C. Innate recognition of viruses. Immunity, 2007, 27(3), 370-383.
[http://dx.doi.org/10.1016/j.immuni.2007.08.012]
[35]
Kawai, T.; Takahashi, K.; Sato, S.; Coban, C.; Kumar, H.; Kato, H.; Ishii, K.J.; Takeuchi, O.; Akira, S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol., 2005, 6(10), 981-988.
[http://dx.doi.org/10.1038/ni1243]
[36]
Zhao, T.; Yang, L.; Sun, Q.; Arguello, M.; Ballard, D.W.; Hiscott, J.; Lin, R. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol., 2007, 8(6), 592-600.
[http://dx.doi.org/10.1038/ni1465]
[37]
Lin, R.; Heylbroeck, C.; Pitha, P.M.; Hiscott, J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol., 1998, 18(5), 2986-2996.
[http://dx.doi.org/10.1128/MCB.18.5.2986]
[38]
Long, L.; Deng, Y.; Yao, F.; Guan, D.; Feng, Y.; Jiang, H.; Li, X.; Hu, P.; Lu, X.; Wang, H.; Li, J.; Gao, X.; Xie, D. Recruitment of phosphatase PP2A by RACK1 adaptor protein deactivates transcription factor IRF3 and limits type I interferon signaling. Immunity, 2014, 40(4), 515-529.
[http://dx.doi.org/10.1016/j.immuni.2014.01.015] [PMID: 24726876]
[39]
Liang, Y.; Zhang, G.; Li, Q.; Han, L.; Hu, X.; Guo, Y.; Tao, W.; Zhao, X.; Guo, M.; Gan, T.; Tong, Y.; Xu, Y.; Zhou, Z.; Ding, Q.; Wei, W.; Zhong, J. TRIM26 is a critical host factor for HCV replication and contributes to host tropism. Sci. Adv., 2021, 7(2), eabd9732.
[http://dx.doi.org/10.1126/sciadv.abd9732] [PMID: 33523994]
[40]
Raposo, R.A.S.; Abdel-Mohsen, M.; Bilska, M.; Montefiori, D.C.; Nixon, D.F.; Pillai, S.K. Effects of cellular activation on anti-HIV-1 restriction factor expression profile in primary cells. J. Virol., 2013, 87(21), 11924-11929.
[http://dx.doi.org/10.1128/JVI.02128-13] [PMID: 23966394]
[41]
Abdel-Mohsen, M.; Raposo, R.A.S.; Deng, X.; Li, M.; Liegler, T.; Sinclair, E.; Salama, M.S.; Ghanem, H.E.A.; Hoh, R.; Wong, J.K.; David, M.; Nixon, D.F.; Deeks, S.G.; Pillai, S.K. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 2013, 10(1), 106.
[http://dx.doi.org/10.1186/1742-4690-10-106] [PMID: 24131498]
[42]
Huang, H.; Sharma, M.; Zhang, Y.; Li, C.; Liu, K.; Wei, J.; Shao, D.; Li, B.; Ma, Z.; Cao, R.; Qiu, Y. Expression profile of porcine TRIM26 and its inhibitory effect on interferon-β production and antiviral response. Genes , 2020, 11(10), 1226.
[http://dx.doi.org/10.3390/genes11101226] [PMID: 33086712]
[43]
Zhao, P.; Jing, H.; Dong, W.; Duan, E.; Ke, W.; Tao, R.; Li, Y.; Cao, S.; Wang, H.; Zhang, Y.; Sun, Y.; Wang, J. TRIM26-mediated degradation of nucleocapsid protein limits porcine reproductive and respiratory syndrome virus-2 infection. Virus Res., 2022, 311, 198690.
[http://dx.doi.org/10.1016/j.virusres.2022.198690] [PMID: 35077707]
[44]
Nakaya, Y.; Nishizawa, T.; Nishitsuji, H.; Morita, H.; Yamagata, T.; Onomura, D.; Murata, K. TRIM26 positively affects hepatitis B virus replication by inhibiting proteasome-dependent degradation of viral core protein. Sci. Rep., 2023, 13(1), 13584.
[http://dx.doi.org/10.1038/s41598-023-40688-3] [PMID: 37604854]
[45]
Mahlokozera, T.; Patel, B.; Chen, H.; Desouza, P.; Qu, X.; Mao, D.D.; Hafez, D.; Yang, W.; Taiwo, R.; Paturu, M.; Salehi, A.; Gujar, A.D.; Dunn, G.P.; Mosammaparast, N.; Petti, A.A.; Yano, H.; Kim, A.H. Competitive binding of E3 ligases TRIM26 and WWP2 controls SOX2 in glioblastoma. Nat. Commun., 2021, 12(1), 6321.
[http://dx.doi.org/10.1038/s41467-021-26653-6] [PMID: 34732716]
[46]
Murphy, C.M.; Xu, Y.; Li, F.; Nio, K.; Reszka-Blanco, N.; Li, X.; Wu, Y.; Yu, Y.; Xiong, Y.; Su, L. Hepatitis B Virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep., 2016, 16(11), 2846-2854.
[http://dx.doi.org/10.1016/j.celrep.2016.08.026]
[47]
Luo, M.; Hou, J.; Mai, H.; Chen, J.; Chen, H.; Zhou, B.; Hou, J.; Jiang, D.K. TRIM26 inhibits hepatitis B virus replication by promoting HBX degradation and TRIM26 genetic polymorphism predicts PEGIFNα treatment response of HBEAG‐POSITIVE chronic hepatitis B Patients. Aliment. Pharmacol. Ther., 2022, 56(5), 878-889.
[http://dx.doi.org/10.1111/apt.17124] [PMID: 35872575]
[48]
Wang, C.; Deng, L.; Hong, M.; Akkaraju, G.R.; Inoue, J.; Chen, Z.J. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412(6844), 346-351.
[http://dx.doi.org/10.1038/35085597]
[49]
Theivanthiran, B.; Kathania, M.; Zeng, M.; Anguiano, E.; Basrur, V.; Vandergriff, T.; Pascual, V.; Wei, W-Z.; Massoumi, R.; Venuprasad, K. The E3 ubiquitin ligase Itch inhibits p38α signaling and skin inflammation through the ubiquitylation of Tab1. Sci. Signal., 2015, 8(365)
[http://dx.doi.org/10.1126/scisignal.2005903]
[50]
Charlaftis, N.; Suddason, T.; Wu, X.; Anwar, S.; Karin, M.; Gallagher, E. The MEKK 1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J., 2014, 33(21), 2581-2596.
[http://dx.doi.org/10.15252/embj.201488351]
[51]
Lai, P.H.; Wang, W.L.; Ko, C.Y.; Lee, Y.C.; Yang, W.M.; Shen, T.W.; Chang, W.C.; Wang, J.M. HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(10), 1803-1814.
[http://dx.doi.org/10.1016/j.bbamcr.2008.06.008] [PMID: 18619497]
[52]
Lai, H.Y.; Hsu, L.W.; Tsai, H.H.; Lo, Y.C.; Yang, S.H.; Liu, P.Y.; Wang, J.M. CCAAT/enhancer-binding protein delta promotes intracellular lipid accumulation in M1 macrophages of vascular lesions. Cardiovasc. Res., 2017, 113(11), 1376-1388.
[http://dx.doi.org/10.1093/cvr/cvx134] [PMID: 28859294]
[53]
Spek, C.A.; Aberson, H.L.; Butler, J.M.; de Vos, A.F.; Duitman, J.W. CEBPD potentiates the macrophage inflammatory response but CEBPD knock-out macrophages fail to identify CEBPD-dependent pro-inflammatory transcriptional programs. Cells, 2021, 10(9), 2233.
[http://dx.doi.org/10.3390/cells10092233]
[54]
Balamurugan, K.; Sharan, S.; Klarmann, K.D.; Zhang, Y.; Coppola, V.; Summers, G.H.; Roger, T.; Morrison, D.K.; Keller, J.R.; Sterneck, E. FBXW7α attenuates inflammatory signalling by downregulating C/EBPδ and its target gene Tlr4. Nat. Commun., 2013, 4(1), 1662.
[http://dx.doi.org/10.1038/ncomms2677]
[55]
Xu, M.; Tan, J.; Liu, X.; Han, L.; Ge, C.; Zhang, Y.; Luo, F.; Wang, Z.; Xue, X.; Xiong, L.; Wang, X.; Zhang, Q.; Wang, X.; Tian, Q.; Zhang, S.; Meng, Q.; Dai, X.; Kuang, Q.; Li, Q.; Lou, D.; Hu, L.; Liu, X.; Kuang, G.; Luo, J.; Chang, C.; Wang, B.; Chai, J.; Shi, S.; Han, L. Tripartite motif containing 26 prevents steatohepatitis progression by suppressing C/EBPδ signalling activation. Nat. Commun., 2023, 14(1), 6384.
[http://dx.doi.org/10.1038/s41467-023-42040-9] [PMID: 37821436]
[56]
Dou, H.; Theriot, C.A.; Das, A.; Hegde, M.L.; Matsumoto, Y.; Boldogh, I.; Hazra, T.K.; Bhakat, K.K.; Mitra, S. Interaction of the human DNA glycosylase NEIL1 with proliferating cell nuclear antigen. The potential for replication-associated repair of oxidized bases in mammalian genomes. J. Biol. Chem., 2008, 283(6), 3130-3140.
[http://dx.doi.org/10.1074/jbc.M709186200]
[57]
Ml, H.; Pm, H.Lj.B.; Sm, M.; Tk, H.; Gm, L.I.B.; Ae, T.S.M. Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc. Natl. Acad. Sci. , 2013, 110(33), E3090-E3099.
[http://dx.doi.org/10.1073/pnas.1304231110]
[58]
Dou, H.; Mitra, S.; Hazra, T.K. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J. Biol. Chem., 2003, 278(50), 49679-49684.
[http://dx.doi.org/10.1074/jbc.M308658200]
[59]
Zhou, J.; Liu, M.; Fleming, A.M.; Burrows, C.J.; Wallace, S.S. Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context. J. Biol. Chem., 2013, 288(38), 27263-27272.
[http://dx.doi.org/10.1074/jbc.M113.479055]
[60]
Edmonds, M.J.; Carter, R.J.; Nickson, C.M.; Williams, S.C.; Parsons, J.L. Ubiquitylation-dependent regulation of NEIL1 by Mule and TRIM26 is required for the cellular DNA damage response. Nucleic Acids Res., 2017, 45(2), 726-738.
[http://dx.doi.org/10.1093/nar/gkw959] [PMID: 27924031]
[61]
Parsons, J.L.; Dianov, G.L. Co-ordination of base excision repair and genome stability. DNA Repair , 2013, 12(5), 326-333.
[http://dx.doi.org/10.1016/j.dnarep.2013.02.001] [PMID: 23473643]
[62]
Al, J. DNA glycosylases: in DNA repair and beyond. Chromosoma, 2012, 121(1), 1-20.
[http://dx.doi.org/10.1007/s00412-011-0347-4]
[63]
Williams, S.C.; Parsons, J.L. NTH1 is a new target for ubiquitylation-dependent regulation by TRIM26 required for the cellular response to oxidative stress. Mol. Cell. Biol., 2018, 38(12), e00616-17.
[http://dx.doi.org/10.1128/MCB.00616-17] [PMID: 29610152]
[64]
Takahashi, K.; Okita, K.; Nakagawa, M.; Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc., 2007, 2(12), 3081-3089.
[http://dx.doi.org/10.1038/nprot.2007.418]
[65]
Robinton, D.A.; Daley, G.Q. The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481(7381), 295-305.
[http://dx.doi.org/10.1038/nature10761] [PMID: 22258608]
[66]
Zhao, W.; Li, Q.; Ayers, S.; Gu, Y.; Shi, Z.; Zhu, Q.; Chen, Y.; Wang, H.Y.; Wang, R.F. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell, 2013, 152(5), 1037-1050.
[http://dx.doi.org/10.1016/j.cell.2013.02.006] [PMID: 23452852]
[67]
Wang, Y.; He, D.; Yang, L.; Wen, B.; Dai, J.; Zhang, Q.; Kang, J.; He, W.; Ding, Q.; He, D. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis. Biochem. Biophys. Res. Commun., 2015, 463(3), 458-465.
[http://dx.doi.org/10.1016/j.bbrc.2015.05.117] [PMID: 26043685]
[68]
Li, X.; Yuan, J.; Song, C.; Lei, Y.; Xu, J.; Zhang, G.; Wang, W.; Song, G. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Differ., 2021, 28(8), 2315-2332.
[http://dx.doi.org/10.1038/s41418-021-00754-7] [PMID: 33649471]
[69]
Wang, W.; Lei, Y.; Zhang, G.; Li, X.; Yuan, J.; Li, T.; Zhong, W.; Zhang, Y.; Tan, X.; Song, G. USP39 stabilizes β-catenin by deubiquitination and suppressing E3 ligase TRIM26 pre-mRNA maturation to promote HCC progression. Cell Death Dis., 2023, 14(1), 63.
[http://dx.doi.org/10.1038/s41419-023-05593-7] [PMID: 36707504]
[70]
Zhu, Y.; Zhang, C.; Huang, M.; Lin, J.; Fan, X.; Ni, T. TRIM26 induces ferroptosis to inhibit hepatic stellate cell activation and mitigate liver fibrosis through mediating SLC7A11 ubiquitination. Front. Cell Dev. Biol., 2021, 9, 644901.
[http://dx.doi.org/10.3389/fcell.2021.644901] [PMID: 33869196]
[71]
Sun, Y.; Lin, P.; Zhou, X.; Ren, Y.; He, Y.; Liang, J.; Zhu, Z.; Xu, X.; Mao, X. TRIM26 promotes non-small cell lung cancer survival by inducing PBX1 degradation. Int. J. Biol. Sci., 2023, 19(9), 2803-2816.
[http://dx.doi.org/10.7150/ijbs.81726] [PMID: 37324936]
[72]
Tao, J.L.; Luo, M.; Sun, H.; Zhao, H.M.; Sun, Q.S.; Huang, Z.M. Overexpression of tripartite motif containing 26 inhibits non‐small cell lung cancer cell growth by suppressing PI3K/AKT signaling. Kaohsiung J. Med. Sci., 2020, 36(6), 417-422.
[http://dx.doi.org/10.1002/kjm2.12194] [PMID: 32052576]
[73]
Mao, D.D.; Gujar, A.D.; Mahlokozera, T.; Chen, I.; Pan, Y.; Luo, J.; Brost, T.; Thompson, E.A.; Turski, A.; Leuthardt, E.C.; Dunn, G.P.; Chicoine, M.R.; Rich, K.M.; Dowling, J.L.; Zipfel, G.J.; Dacey, R.G.; Achilefu, S.; Tran, D.D.; Yano, H.; Kim, A.H. A CDC20-APC/SOX2 signaling axis regulates human glioblastoma stem-like cells. Cell Rep., 2015, 11(11), 1809-1821.
[http://dx.doi.org/10.1016/j.celrep.2015.05.027] [PMID: 26074073]
[74]
Wang, Z.; Xia, Y.; Wang, Y.; Zhu, R.; Li, H.; Liu, Y.; Shen, N. The E3 ligase TRIM26 suppresses ferroptosis through catalyzing K63-linked ubiquitination of GPX4 in glioma. Cell Death Dis., 2023, 14(10), 695.
[http://dx.doi.org/10.1038/s41419-023-06222-z] [PMID: 37872147]
[75]
Xie, X.; Li, H.; Pan, J.; Han, X. Knockdown of TRIM26 inhibits the proliferation, migration and invasion of bladder cancer cells through the Akt/GSK3β/β-catenin pathway. Chem. Biol. Interact., 2021, 337, 109366.
[http://dx.doi.org/10.1016/j.cbi.2021.109366] [PMID: 33549581]
[76]
Lin, J.; Song, T.; Li, C.; Mao, W. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(5), 118659.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118659]
[77]
Lyu, X.M.; Zhu, X.W.; Zhao, M.; Zuo, X.B.; Huang, Z.X.; Liu, X.; Jiang, T.; Yang, X.X.; Li, X.; Long, X.B.; Wang, J.G.; Li, J.B.; Han, M.Y.; Wang, S.; Liu, T.F.; Zhang, B.; Sun, T.; Cheng, Z.; Qiu, M.C.; Dong, L.; Zheng, L.; Zhang, L.C.; Wang, J.H.; Wei, G.G.; Yao, K.; Wang, Q.; Zheng, H.F.; Li, X. A regulatory mutant onTRIM 26 conferring the risk of nasopharyngeal carcinoma by inducing low immune response. Cancer Med., 2018, 7(8), 3848-3861.
[http://dx.doi.org/10.1002/cam4.1537] [PMID: 29956500]
[78]
Wang, K.; Chai, L.; Qiu, Z.; Zhang, Y.; Gao, H.; Zhang, X. Overexpression of TRIM26 suppresses the proliferation, metastasis, and glycolysis in papillary thyroid carcinoma cells. J. Cell. Physiol., 2019, 234(10), 19019-19027.
[http://dx.doi.org/10.1002/jcp.28541] [PMID: 30927273]
[79]
Xia, K.; Zheng, D.; Wei, Z.; Liu, W.; Guo, W. TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis., 2023, 14(8), 529.
[http://dx.doi.org/10.1038/s41419-023-06048-9] [PMID: 37591850]
[80]
Lu, T.; Wu, Y. Tripartite motif containing 26 is a positive predictor for endometrial carcinoma patients and regulates cell survival in endometrial carcinoma. Horm. Metab. Res., 2022, 54(12), 859-865.
[http://dx.doi.org/10.1055/a-1926-7364] [PMID: 36108622]
[81]
Shen, J.; Wang, R.; Chen, Y.; Fang, Z.; Tang, J.; Yao, J.; Gao, J.; Zhou, W.; Chen, X. Comprehensive analysis of expression profiles and prognosis of TRIM genes in human kidney clear cell carcinoma. Aging , 2022, 14(10), 4606-4617.
[http://dx.doi.org/10.18632/aging.204102] [PMID: 35617983]
[82]
Mitchell, L.E.; Adzick, N.S.; Melchionne, J.; Pasquariello, P.S.; Sutton, L.N.; Whitehead, A.S. Spina bifida. Lancet, 2004, 364(9448), 1885-1895.
[http://dx.doi.org/10.1016/S0140-6736(04)17445-X] [PMID: 15555669]
[83]
Zhang, X.; Pei, L.; Li, R.; Zhang, W.; Yang, H.; Li, Y.; Guo, Y.; Tan, P.; Han, J.J.; Zheng, X.; Ma, R.Z. Spina bifida in fetus is associated with an altered pattern of DNA methylation in placenta. J. Hum. Genet., 2015, 60(10), 605-611.
[http://dx.doi.org/10.1038/jhg.2015.80] [PMID: 26178427]
[84]
Fan, X.; Chen, Y.; Lu, J.; Li, W.; Li, X.; Guo, H.; Chen, Q.; Yang, Y.; Xia, H. AS3MT Polymorphism: A risk factor for epilepsy susceptibility and adverse drug reactions to valproic acid and oxcarbazepine treatment in children from South China. Front. Neurosci., 2021, 15, 705297.
[http://dx.doi.org/10.3389/fnins.2021.705297] [PMID: 34899152]
[85]
de Jong, S.; van Eijk, K.R.; Zeegers, D.W.L.H.; Strengman, E.; Janson, E.; Veldink, J.H.; Van den Berg, L.H.; Cahn, W.; Kahn, R.S.; Boks, M.P.M.; Ophoff, R.A. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur. J. Hum. Genet., 2012, 20(9), 1004-1008.
[http://dx.doi.org/10.1038/ejhg.2012.38] [PMID: 22433715]
[86]
Pekkala, T.; Hall, A.; Mangialasche, F.; Kemppainen, N.; Mecocci, P.; Ngandu, T.; Rinne, J.O.; Soininen, H.; Tuomilehto, J.; Kivipelto, M.; Solomon, A. Association of peripheral insulin resistance and other markers of type 2 diabetes mellitus with brain amyloid deposition in healthy individuals at risk of dementia. J. Alzheimers Dis., 2020, 76(4), 1243-1248.
[http://dx.doi.org/10.3233/JAD-200145] [PMID: 32623394]
[87]
Ruan, Q.; Chen, Y.H. Nuclear factor-κB in immunity and inflammation: The Treg and Th17 connection. Adv Exp Med Biol., 2012, 946, 207-221.
[http://dx.doi.org/10.1007/978-1-4614-0106-3_12]
[88]
Lee, S.; Park, K.; Kim, J.; Min, H.; Seong, R.H. Foxp3 expression in induced regulatory T cells is stabilized by C/EBP in inflammatory environments. EMBO Rep., 2018, 19(12), e45995.
[http://dx.doi.org/10.15252/embr.201845995]
[89]
Patil, A.; Strom, A.R.; Paulo, J.A.; Collings, C.K.; Ruff, K.M.; Shinn, M.K.; Sankar, A.; Cervantes, K.S.; Wauer, T.; St Laurent, J.D.; Xu, G.; Becker, L.A.; Gygi, S.P.; Pappu, R.V.; Brangwynne, C.P.; Kadoch, C. A disordered region controls cBAF activity via condensation and partner recruitment. Cell, 2023, 186(22), 4936-4955.e26.
[http://dx.doi.org/10.1016/j.cell.2023.08.032] [PMID: 37788668]

© 2025 Bentham Science Publishers | Privacy Policy