Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Circular RNA hsa_circ_0005939 Regulates UHRF1BP1L Expression by Targeting miR-4693-3p to Promote Colorectal Cancer Progression

Author(s): Hua Ge*, Yan Yan, Haomin Wang, Jun Bian, Zhilong Deng, Xian Su, Kaiyuan Luo and Jianfeng Bin

Volume 31, Issue 6, 2024

Published on: 24 June, 2024

Page: [437 - 446] Pages: 10

DOI: 10.2174/0109298665297110240611115010

Abstract

Introduction: Colorectal cancer (CRC) is the second most common and fatal cancer in China. circRNAs are different expressed between tumor and non-tumor tissues, and they are proved to be correlated with tumorigenesis and cancer progression.

Objective: We aimed to explore the biological and molecular function of hsa_circ_0005939 in CRC.

Methods: We collected and compared ten CRC tissues and four noncancerous tissues and performed circRNA sequencing. We investigated the hsa_circ_0005939 expression in fresh tissues from CRC and adjacent tissues by qPCR. Meanwhile, functional roles of hsa_circ_0005939 in CRC cells were explored by CCK-8, colony formation, wounding healing, cell apoptosis and western blot assays. RNA-FISH was used to confirm the cellular distribution of hsa_circ_0005939. Bioinformatic prediction and luciferase reporter assay were used to determine the mechanisms of hsa_circ_0005939.

Results: Our results indicated that hsa_circ_0005939 was up-regulated in CRC tissues and cells. Up-regulation of hsa_circ_0005939 was associated with the occurrence and the number of lymph node metastasis of CRC. Hsa_circ_0005939 down-regulation inhibited cell proliferation, increased cell apoptosis and caused G2 phase arrest of CRC cells. Mechanistically, luciferase assay revealed that hsa_circ_0005939 acts as a molecular sponge for miR-4693-3p and then enhanced Ubiquitin Like With PHD And Ring Finger Domains 1 binding protein 1 like (UHRF1BP1L) expression.

Conclusion: Our findings indicated an oncogenic role of hsa_circ_0005939 in CRC, and it enhanced malignant phenotypes of CRC cells through miR-4693-3p/UHRF1BP1L axis. Our study may offer promising biomarkers and therapeutic targets for CRC.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[3]
Loree, J.M.; Kopetz, S. Recent developments in the treatment of metastatic colorectal cancer. Ther. Adv. Med. Oncol., 2017, 9(8), 551-564.
[http://dx.doi.org/10.1177/1758834017714997] [PMID: 28794806]
[4]
Lech, G.; Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol., 2016, 22(5), 1745-1755.
[http://dx.doi.org/10.3748/wjg.v22.i5.1745] [PMID: 26855534]
[5]
Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[6]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[7]
Wilusz, J.E.; Sharp, P.A. Molecular biology. A circuitous route to noncoding RNA. Science, 2013, 340(6131), 440-441.
[http://dx.doi.org/10.1126/science.1238522] [PMID: 23620042]
[8]
Lasda, E.; Parker, R. Circular RNAs: Diversity of form and function. RNA, 2014, 20(12), 1829-1842.
[http://dx.doi.org/10.1261/rna.047126.114] [PMID: 25404635]
[9]
Wang, M.; Yu, F.; Wu, W.; Zhang, Y.; Chang, W.; Ponnusamy, M.; Wang, K.; Li, P. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int. J. Biol. Sci., 2017, 13(12), 1497-1506.
[http://dx.doi.org/10.7150/ijbs.22531] [PMID: 29230098]
[10]
Chen, L.; Kong, R.; Wu, C.; Wang, S.; Liu, Z.; Liu, S.; Li, S.; Chen, T.; Mao, C.; Liu, S. Circ-MALAT1 functions as both an mRNA translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells. Adv. Sci., 2020, 7(4), 1900949.
[http://dx.doi.org/10.1002/advs.201900949] [PMID: 32099751]
[11]
Wang, F.; Wang, J.; Cao, X.; Xu, L.; Chen, L. Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits tumor growth by promoting p16 expression. Biomed. Pharmacother., 2018, 98, 775-782.
[http://dx.doi.org/10.1016/j.biopha.2018.01.015] [PMID: 29571246]
[12]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[13]
Xu, Y.; Yao, Y.; Leng, K.; Ji, D.; Qu, L.; Liu, Y.; Cui, Y. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/ CBX8 signal pathway. Cell. Physiol. Biochem., 2018, 51(4), 1710-1722.
[http://dx.doi.org/10.1159/000495675] [PMID: 30504704]
[14]
Xu, Y.; Yao, Y.; Zhong, X.; Leng, K.; Qin, W.; Qu, L.; Cui, Y.; Jiang, X. Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells. Biochem. Biophys. Res. Commun., 2018, 496(2), 455-461.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.077] [PMID: 29337065]
[15]
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 2013, 1303, 3997.
[16]
Gao, Y.; Wang, J.; Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol., 2015, 16(1), 4.
[http://dx.doi.org/10.1186/s13059-014-0571-3] [PMID: 25583365]
[17]
Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2), 141-157.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[18]
Du, W.W.; Yang, W.; Chen, Y.; Wu, Z.K.; Foster, F.S.; Yang, Z.; Li, X.; Yang, B.B. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J., 2016, 38(18), ehw001.
[http://dx.doi.org/10.1093/eurheartj/ehw001] [PMID: 26873092]
[19]
Wang, Y.; Liu, J.; Ma, J.; Sun, T.; Zhou, Q.; Wang, W.; Wang, G.; Wu, P.; Wang, H.; Jiang, L.; Yuan, W.; Sun, Z.; Ming, L. Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol. Cancer, 2019, 18(1), 116.
[http://dx.doi.org/10.1186/s12943-019-1041-z] [PMID: 31277663]
[20]
Stark, V.A.; Facey, C.O.B.; Viswanathan, V.; Boman, B.M. The role of miRNAs, miRNA clusters, and isomirs in development of cancer stem cell populations in colorectal cancer. Int. J. Mol. Sci., 2021, 22(3), 1424.
[http://dx.doi.org/10.3390/ijms22031424] [PMID: 33572600]
[21]
Yang, F.; Xuan, G.; Chen, Y.; Cao, L.; Zhao, M.; Wang, C.; Chen, E. MicroRNAs are key molecules involved in the gene regulation network of colorectal cancer. Front. Cell Dev. Biol., 2022, 10, 828128.
[http://dx.doi.org/10.3389/fcell.2022.828128] [PMID: 35465317]
[22]
Huang, C.; Liu, J.; Xu, L.; Hu, W.; Wang, J.; Wang, M.; Yao, X. MicroRNA-17 promotes cell proliferation and migration in human colorectal cancer by downregulating SIK1. Cancer Manag. Res., 2019, 11, 3521-3534.
[http://dx.doi.org/10.2147/CMAR.S191087] [PMID: 31118777]
[23]
Liu, Y.; Chen, X.; Cheng, R.; Yang, F.; Yu, M.; Wang, C.; Cui, S.; Hong, Y.; Liang, H.; Liu, M.; Zhao, C.; Ding, M.; Sun, W.; Liu, Z.; Sun, F.; Zhang, C.; Zhou, Z.; Jiang, X.; Chen, X. The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer. Mol. Cancer, 2018, 17(1), 11.
[http://dx.doi.org/10.1186/s12943-017-0751-3] [PMID: 29351796]
[24]
Li, J.; Mao, X.; Wang, X.; Miao, G.; Li, J. miR-433 reduces cell viability and promotes cell apoptosis by regulating MACC1 in colorectal cancer. Oncol. Lett., 2017, 13(1), 81-88.
[http://dx.doi.org/10.3892/ol.2016.5445] [PMID: 28123526]
[25]
Chen, W.; Cai, G.; Liao, Z.; Lin, K.; Li, G.; Li, Y. miRNA-766 induces apoptosis of human colon cancer cells through the p53/Bax signaling pathway by MDM4. Exp. Ther. Med., 2019, 17(5), 4100-4108.
[http://dx.doi.org/10.3892/etm.2019.7436] [PMID: 31007746]
[26]
Su, C.; Huang, D.P.; Liu, J.W.; Liu, W.Y.; Cao, Y.O. miR-27a-3p regulates proliferation and apoptosis of colon cancer cells by potentially targeting BTG1. Oncol. Lett., 2019, 18(3), 2825-2834.
[http://dx.doi.org/10.3892/ol.2019.10629] [PMID: 31452761]
[27]
Takano, Y.; Masuda, T.; Iinuma, H.; Yamaguchi, R.; Sato, K.; Tobo, T.; Hirata, H.; Kuroda, Y.; Nambara, S.; Hayashi, N.; Iguchi, T.; Ito, S.; Eguchi, H.; Ochiya, T.; Yanaga, K.; Miyano, S.; Mimori, K. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget, 2017, 8(45), 78598-78613.
[http://dx.doi.org/10.18632/oncotarget.20009] [PMID: 29108252]
[28]
Roshani Asl, E.; Rasmi, Y.; Baradaran, B. MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling. J. Cell. Physiol., 2021, 236(10), 7071-7087.
[http://dx.doi.org/10.1002/jcp.30378] [PMID: 33821473]
[29]
Abhishek, S.; Nivya, M.A.; Nakarakanti, N.K.; Deeksha, W.; Khosla, S.; Rajakumara, E. Biochemical and dynamic basis for combinatorial recognition of H3R2K9me2 by dual domains of UHRF1. Biochimie, 2018, 149, 105-114.
[http://dx.doi.org/10.1016/j.biochi.2018.04.010] [PMID: 29656054]
[30]
Gillingham, A.K.; Bertram, J.; Begum, F.; Munro, S. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. eLife, 2019, 8, e45916.
[http://dx.doi.org/10.7554/eLife.45916] [PMID: 31294692]
[31]
Jansen, I.E.; Ye, H.; Heetveld, S.; Lechler, M.C.; Michels, H.; Seinstra, R.I.; Lubbe, S.J.; Drouet, V.; Lesage, S.; Majounie, E.; Gibbs, J.R.; Nalls, M.A.; Ryten, M.; Botia, J.A.; Vandrovcova, J.; Simon-Sanchez, J.; Castillo-Lizardo, M.; Rizzu, P.; Blauwendraat, C.; Chouhan, A.K.; Li, Y.; Yogi, P.; Amin, N.; van Duijn, C.M.; Morris, H.R.; Brice, A.; Singleton, A.B.; David, D.C.; Nollen, E.A.; Jain, S.; Shulman, J.M.; Heutink, P. Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biol., 2017, 18(1), 22.
[http://dx.doi.org/10.1186/s13059-017-1147-9] [PMID: 28137300]
[32]
Hanna, M.G.; Suen, P.H.; Wu, Y.; Reinisch, K.M.; De Camilli, P. SHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic. J. Cell Biol., 2022, 221(6), e202111018.
[http://dx.doi.org/10.1083/jcb.202111018] [PMID: 35499567]

© 2025 Bentham Science Publishers | Privacy Policy