Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Benzimidazole as a Privileged Scaffold in Drug Design and Discovery

Author(s): Ram Kumar, Arockia Babu Marianesan and Shilpi Pathak*

Volume 24, Issue 17, 2024

Published on: 30 May, 2024

Page: [1504 - 1528] Pages: 25

DOI: 10.2174/0115680266314704240522112439

Price: $65

Abstract

Benzimidazole is a privileged drug design and discovery scaffold with various pharmacological activities, including antimicrobial, anticancer, antitubercular, anti-inflammatory, antidiabetic, antihypertensive, antimalarial, and many more. This scaffold can be observed in the structure of numerous FDA-approved drugs and employed in medicinal chemistry to develop novel bioactive compounds through rational drug design. Its broad pharmacological significance is due to physicochemical attributes, including H-bond donor-acceptor efficiency, π-π stacking interactions, and hydrophobic interactions; these characteristics enable benzimidazole derivatives to bind with macromolecules efficiently. This article emphasizes mechanisms, SAR, and docking studies to unveil benzimidazole's various active hybrids accountable for diversified activities. It will assist researchers in strategically designing various novel benzimidazole-endowed hybrids to develop clinically active therapeutic candidates.

« Previous
Graphical Abstract

[1]
Lipkus, A.H.; Yuan, Q.; Lucas, K.A.; Funk, S.A.; Bartelt, W.F., III; Schenck, R.J.; Trippe, A.J. Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J. Org. Chem., 2008, 73(12), 4443-4451.
[http://dx.doi.org/10.1021/jo8001276] [PMID: 18505297]
[2]
Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K. Introduction. Compr. Heterocycl. Chem., 2008, III, 1.
[3]
Pawlowski, R.; Stanek, F.; Stodulski, M. Recent advances on metal-free, visible-light- induced catalysis for assembling nitrogen- and oxygen-based heterocyclic scaffolds. Molecules, 2019, 24(8), 1533.
[http://dx.doi.org/10.3390/molecules24081533] [PMID: 31003464]
[4]
Song, B.; Park, E.Y.; Kim, K.J.; Ki, S.H. Repurposing of benzimidazole anthelmintic drugs as cancer therapeutics. Cancers, 2022, 14(19), 4601.
[http://dx.doi.org/10.3390/cancers14194601] [PMID: 36230527]
[5]
Hassan, M.M.; Xu, Y.; Zareef, M.; Li, H.; Rong, Y.; Chen, Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: A review. Crit. Rev. Food Sci. Nutr., 2023, 63(16), 2851-2872.
[http://dx.doi.org/10.1080/10408398.2021.1980765 ] [PMID: 34565253]
[6]
Ashfaq, M.; Shah, S.S.A.; Najam, T.; Ahmad, M.M.; Tabassum, R.; Rivera, G. Synthetic thioamide, benzimidazole, quinolone and derivatives with carboxylic acid and ester moieties: A strategy in the design of antituberculosis agents. Curr. Med. Chem., 2014, 21(7), 911-931.
[http://dx.doi.org/10.2174/09298673113206660302 ] [PMID: 24164193]
[7]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[8]
Dhahri, M.; Khan, F.A.; Emwas, A.H.; Alnoman, R.B.; Jaremko, M.; Rezki, N.; Aouad, M.R.; Hagar, M. Synthesis, DFT molecular geometry and anticancer activity of symmetrical 2,2’-(2-oxo-1 hbenzo[ d]imidazole-1,3(2 h)-diyl) diacetate and its arylideneacetohydrazide derivatives. In: Mater; , 2022; 15, p. (7)2544.
[9]
Hartwell, L.H.; Kastan, M.B. Cell cycle control and cancer. Science, 1994, 266(5192), 1821-1828.
[http://dx.doi.org/10.1126/science.7997877] [PMID: 7997877]
[10]
Yadav, P.; Shah, K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3‐ d]pyrimidines scaffold. Chem. Biol. Drug Des., 2021, 97(3), 633-648.
[http://dx.doi.org/10.1111/cbdd.13800] [PMID: 32946161]
[11]
Li, Y.; Tan, C.; Gao, C.; Zhang, C.; Luan, X.; Chen, X.; Liu, H.; Chen, Y.; Jiang, Y. Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorg. Med. Chem., 2011, 19(15), 4529-4535.
[http://dx.doi.org/10.1016/j.bmc.2011.06.022] [PMID: 21724404]
[12]
Demirayak, S.; Kayagil, I.; Yurttas, L. Microwave supported synthesis of some novel 1,3-Diarylpyrazino[1,2-a]benzimidazole derivatives and investigation of their anticancer activities. Eur. J. Med. Chem., 2011, 46(1), 411-416.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.007] [PMID: 21122952]
[13]
Sondhi, S.M.; Rani, R.; Singh, J.; Roy, P.; Agrawal, S.K.; Saxena, A.K. Solvent free synthesis, anti-inflammatory and anticancer activity evaluation of tricyclic and tetracyclic benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(7), 2306-2310.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.147] [PMID: 20188544]
[14]
Penning, T.D.; Zhu, G.D.; Gandhi, V.B.; Gong, J.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Donawho, C.K.; Frost, D.J.; Bontcheva-Diaz, V.; Bouska, J.J.; Osterling, D.J.; Olson, A.M.; Marsh, K.C.; Luo, Y.; Giranda, V.L. Discovery of the Poly(ADP-ribose) Polymerase (PARP) Inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1 H -benzimidazole-4-carboxamide (ABT-888) for the Treatment of Cancer. J. Med. Chem., 2009, 52(2), 514-523.
[http://dx.doi.org/10.1021/jm801171j] [PMID: 19143569]
[15]
Lio, S.C.; Johnson, J.; Chatterjee, A.; Ludwig, J.W.; Millis, D.; Banie, H.; Sircar, J.C.; Sinha, A.; Richards, M.L. Disruption of Golgi processing by 2-phenyl benzimidazole analogs blocks cell proliferation and slows tumor growth. Cancer Chemother. Pharmacol., 2008, 61(6), 1045-1058.
[http://dx.doi.org/10.1007/s00280-007-0564-y] [PMID: 17690881]
[16]
Vaidya, A.; Pathak, D.; Shah, K. 1,3,4‐oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chem. Biol. Drug Des., 2021, 97(3), 572-591.
[http://dx.doi.org/10.1111/cbdd.13795] [PMID: 32946168]
[17]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B, 2023, 13(2), 478-497.
[http://dx.doi.org/10.1016/j.apsb.2022.09.010] [PMID: 36873180]
[18]
Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25(2), 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[19]
Grimmett, M.R. Imidazole and Benzimidazole Synthesis; Elsevier, 1997, pp. 1-265.
[20]
Townsend, L.B.; Wise, D.S. The synthesis and chemistry of certain anthelmintic benzimidazoles. Parasitol. Today, 1990, 6(4), 107-112.
[http://dx.doi.org/10.1016/0169-4758(90)90226-T ] [PMID: 15463311]
[21]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[22]
Akkachairin, B.; Rodphon, W.; Reamtong, O.; Mungthin, M.; Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorg. Chem., 2020, 98, 103732.
[http://dx.doi.org/10.1016/j.bioorg.2020.103732] [PMID: 32171989]
[23]
Ahadi, H.; Emami, S. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. Eur. J. Med. Chem., 2020, 187, 111970.
[http://dx.doi.org/10.1016/j.ejmech.2019.111970] [PMID: 31881454]
[24]
Pathak, S.; Sharma, R. A comprehensive review on the benzimidazole scaffold as a potential nucleus for anticancer activity. Lett. Org. Chem., 2023, 20(9), 802-817.
[http://dx.doi.org/10.2174/1570178620666230330105103]
[25]
Hue, B.T.B.; Nguyen, P.H.; De, T.Q.; Van Hieu, M.; Jo, E.; Van Tuan, N.; Thoa, T.T.; Anh, L.D.; Son, N.H.; La Duc Thanh, D.; Dupont-Rouzeyrol, M.; Grailhe, R.; Windisch, M.P. Benzimidazole derivatives as novel zika virus inhibitors. ChemMedChem, 2020, 15(15), 1453-1463.
[http://dx.doi.org/10.1002/cmdc.202000124] [PMID: 32281263]
[26]
Sethi, R.; Jain, S.; Arora, S.; Saini, D.; Jain, N. Synthesis, characterization and molecular docking studies of novel n-(benzimidazol-1-ylmethyl)-4-chlorobenzamide analogues for potential anti-inflammatory and antimicrobial activity. Antiinflamm. Antiallergy Agents Med. Chem., 2018, 17(1), 16-31.
[http://dx.doi.org/10.2174/1871523017666180426125141 ] [PMID: 29697033]
[27]
Kumar, K.; Awasthi, D.; Lee, S.Y.; Cummings, J.E.; Knudson, S.E.; Slayden, R.A.; Ojima, I. Benzimidazole-based antibacterial agents against Francisella tularensis. Bioorg. Med. Chem., 2013, 21(11), 3318-3326.
[http://dx.doi.org/10.1016/j.bmc.2013.02.059] [PMID: 23623254]
[28]
Chandrika, N.T.; Shrestha, S.K.; Ngo, H.X.; Garneau-Tsodikova, S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem., 2016, 24(16), 3680-3686.
[http://dx.doi.org/10.1016/j.bmc.2016.06.010] [PMID: 27301676]
[29]
Chaturvedi, A.K.; Verma, A.K.; Thakur, J.P.; Roy, S.; Bhushan Tripathi, S.; Kumar, B.S.; Khwaja, S.; Sachan, N.K.; Sharma, A.; Chanda, D.; Shanker, K.; Saikia, D.; Negi, A.S. A novel synthesis of 2-arylbenzimidazoles in molecular sieves-MeOH system and their antitubercular activity. Bioorg. Med. Chem., 2018, 26(15), 4551-4559.
[http://dx.doi.org/10.1016/j.bmc.2018.07.049] [PMID: 30097361]
[30]
Shah, D.I.; Sharma, M.; Bansal, Y.; Bansal, G.; Singh, M.; Angiotensin, I.I.; Angiotensin, I.I. AT1 receptor antagonists: Design, synthesis and evaluation of substituted carboxamido benzimidazole derivatives. Eur. J. Med. Chem., 2008, 43(9), 1808-1812.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.008] [PMID: 18158200]
[31]
Alpan, A.S.; Sarıkaya, G.; Çoban, G.; Parlar, S.; Armagan, G.; Alptüzün, V. Mannich‐benzimidazole derivatives as antioxidant and anticholinesterase inhibitors: Synthesis, biological evaluations, and molecular docking study. Arch. Pharm., 2017, 350(7), e1600351.
[http://dx.doi.org/10.1002/ardp.201600351] [PMID: 28379621]
[32]
Babkov, D.A.; Zhukowskaya, O.N.; Borisov, A.V.; Babkova, V.A.; Sokolova, E.V.; Brigadirova, A.A.; Litvinov, R.A.; Kolodina, A.A.; Morkovnik, A.S.; Sochnev, V.S.; Borodkin, G.S.; Spasov, A.A. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg. Med. Chem. Lett., 2019, 29(17), 2443-2447.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.035] [PMID: 31358465]
[33]
Bhrigu, B.; Siddiqui, N.; Pathak, D.; Alam, M.S.; Ali, R.; Azad, B. Anticonvulsant evaluation of some newer benzimidazole derivatives: Design and synthesis. Acta Pol. Pharm., 2012, 69(1), 53-62.
[PMID: 22574507]
[34]
Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Jethava, D.J.; Acharya, P.T.; Patel, D.B.; Patel, H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini Rev. Med. Chem., 2020, 20(7), 532-565.
[http://dx.doi.org/10.2174/1389557519666191122125453] [PMID: 31755386]
[35]
Anand, K.; Wakode, S. Development of drugs based on benzimidazole heterocycle: Recent advancement and insights. Int. J. Chem. Stud., 2017, 5, 350-362.
[36]
Son, D.S.; Lee, E.S.; Adunyah, S.E. The antitumor potentials of benzimidazole anthelmintics as repurposing drugs. Immune Netw., 2020, 20(4), e29.
[http://dx.doi.org/10.4110/in.2020.20.e29] [PMID: 32895616]
[37]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[38]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[39]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[40]
Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the definition of cancer. Mol. Cancer Res., 2023, 21(11), 1142-1147.
[http://dx.doi.org/10.1158/1541-7786.MCR-23-0411 ] [PMID: 37409952]
[41]
Amini, M.; Zayeri, F.; Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health, 2021, 21(1), 401.
[http://dx.doi.org/10.1186/s12889-021-10429-0] [PMID: 33632204]
[42]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[43]
Corrie, P.G. Cytotoxic chemotherapy: Clinical aspects. Medicine, 2008, 36(1), 24-28.
[http://dx.doi.org/10.1016/j.mpmed.2007.10.012]
[44]
Othman, D.I.A.; Hamdi, A.; Tawfik, S.S.; Elgazar, A.A.; Mostafa, A.S. Identification of new benzimidazole-triazole hybrids as anticancer agents: Multi-target recognition, in vitro and in silico studies. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2166037.
[http://dx.doi.org/10.1080/14756366.2023.2166037 ] [PMID: 36651111]
[45]
Ren, Y.; Wang, Y.; Li, G.; Zhang, Z.; Ma, L.; Cheng, B.; Chen, J. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J. Med. Chem., 2021, 64(8), 4498-4515.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01837 ] [PMID: 33788562]
[46]
Atmaca, H.; İlhan, S.; Batır, M.B.; Pulat, Ç.Ç.; Güner, A.; Bektaş, H. Novel benzimidazole derivatives: Synthesis, in vitro cytotoxicity, apoptosis and cell cycle studies. Chem. Biol. Interact., 2020, 327, 109163.
[http://dx.doi.org/10.1016/j.cbi.2020.109163] [PMID: 32534988]
[47]
Rasal, N.K.; Sonawane, R.B.; Jagtap, S.V. Potential 2,4-dimethyl-1H-pyrrole-3-carboxamide bearing benzimidazole template: Design, synthesis, in vitro anticancer and in silico ADME study. Bioorg. Chem., 2020, 97, 103660.
[http://dx.doi.org/10.1016/j.bioorg.2020.103660] [PMID: 32086056]
[48]
Akhtar, M.J.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Rafi, M.; Hassan, M.Q.; Akhtar, M.S.; Siddiqui, A.A.; Partap, S.; Pasha, S.; Yar, M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem., 2018, 78, 158-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.002] [PMID: 29571113]
[49]
Ibrahim, H.A.; Awadallah, F.M.; Refaat, H.M.; Amin, K.M. Molecular docking simulation, synthesis and 3D pharmacophore studies of novel 2-substituted-5-nitro-benzimidazole derivatives as anticancer agents targeting VEGFR-2 and c-Met. Bioorg. Chem., 2018, 77, 457-470.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.014] [PMID: 29453077]
[50]
Mantu, D.; Antoci, V.; Moldoveanu, C.; Zbancioc, G.; Mangalagiu, I.I. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzyme Inhib. Med. Chem., 2016, 31(sup2), 96-103.
[http://dx.doi.org/10.1080/14756366.2016.1190711] [PMID: 27250919]
[51]
Błaszczak-Świątkiewicz, K.; Mikiciuk-Olasik, E. Some characteristics of activity of potential chemotherapeutics - benzimidazole derivatives. Adv. Med. Sci., 2015, 60(1), 125-132.
[http://dx.doi.org/10.1016/j.advms.2015.01.004] [PMID: 25725479]
[52]
Bazine, I.; Bendjedid, S.; Boukhari, A. Potential antibacterial and antifungal activities of novel sulfamidophosphonate derivatives bearing the quinoline or quinolone moiety. Arch. Pharm., 2021, 354(3), 2000291.
[http://dx.doi.org/10.1002/ardp.202000291] [PMID: 33283901]
[53]
Shinde, R.A.; Adole, V.A.; Jagdale, B.S.; Pawar, T.B. Superfast synthesis, antibacterial and antifungal studies of halo-aryl and heterocyclic tagged 2,3-dihydro-1H-inden-1-one candidates. Monatsh. Chem., 2021, 152(6), 649-658.
[http://dx.doi.org/10.1007/s00706-021-02772-0]
[54]
Reddy, G.M.; Kumari, A.K.; Reddy, V.H.; Garcia, J.R. Novel pyranopyrazole derivatives comprising a benzoxazole core as antimicrobial inhibitors: Design, synthesis, microbial resistance and machine aided results. Bioorg. Chem., 2020, 100, 103908.
[http://dx.doi.org/10.1016/j.bioorg.2020.103908] [PMID: 32413632]
[55]
Odusami, J.A.; Ikhile, M.I.; Izunobi, J.U.; Olasupo, I.A.; Osunsanmi, F.O.; Opoku, A.R.; Fotsing, M.C.D.; Asekun, O.T.; Familoni, O.B.; Ndinteh, D.T. Synthesis of substituted N-(2′-nitrophenyl)pyrrolidine-2-carboxamides towards the design of proline-rich antimicrobial peptide mimics to eliminate bacterial resistance to antibiotics. Bioorg. Chem., 2020, 105, 104340.
[http://dx.doi.org/10.1016/j.bioorg.2020.104340] [PMID: 33096308]
[56]
El Faydy, M.; Dahaieh, N.; Ounine, K.; Lakhrissi, B.; Warad, I.; Tüzün, B.; Zarrouk, A. Synthesis, identification, antibacterial activity, adme/t and 1bna-docking investigations of 8-quinolinol analogs bearing a benzimidazole moiety. Arab. J. Sci. Eng., 2022, 47(1), 497-510.
[http://dx.doi.org/10.1007/s13369-021-05749-7]
[57]
Di Luca, M.; Marzo, T. Development of effective antibacterial treatment: Lessons from the past and novel approaches. Antibiot, 2021, 10, 230.
[58]
Mohanty, P.; Behera, S.; Behura, R.; Shubhadarshinee, L.; Mohapatra, P.; Barick, A.K.; Jali, B.R. Antibacterial activity of thiazole and its derivatives: A review. Biointerface Res. Appl. Chem., 2022, 12, 2171-2195.
[59]
Aguirre Rivera, J.; Larsson, J.; Volkov, I.L.; Seefeldt, A.C.; Sanyal, S.; Johansson, M. Real-time measurements of aminoglycoside effects on protein synthesis in live cells. Proc. Natl. Acad. Sci. USA, 2021, 118(9), e2013315118.
[http://dx.doi.org/10.1073/pnas.2013315118] [PMID: 33619089]
[60]
Almeida, L.; Dhillon-LaBrooy, A.; Castro, C.N.; Adossa, N.; Carriche, G.M.; Guderian, M.; Lippens, S.; Dennerlein, S.; Hesse, C.; Lambrecht, B.N.; Berod, L.; Schauser, L.; Blazar, B.R.; Kalesse, M.; Müller, R.; Moita, L.F.; Sparwasser, T. Ribosome-targeting antibiotics impair T cell effector function and ameliorate autoimmunity by blocking mitochondrial protein synthesis. Immunity, 2021, 54(1), 68-83.e6.
[http://dx.doi.org/10.1016/j.immuni.2020.11.001] [PMID: 33238133]
[61]
Darwis, W.; Supriati, R. Antibacterial potency of lichen teloschisthes flavicans from kepahiang district against staphylococcus aureus and pseudomonas aeruginosa. Proc. 3rd KOBI Congr. Int. Natl. Conf. (KOBICINC 2020), Atlantis Press23 June2021, 14, pp. 547-552.
[62]
Wei, M. Synergistic antibacterial combination of sapindoside A and B changes the fatty acid compositions and membrane properties of cutibacterium acnes. Microbiol. Res., 2021, 255.
[63]
Sonousi, A.; Quirke, J.C.K.; Waduge, P.; Janusic, T.; Gysin, M.; Haldimann, K.; Xu, S.; Hobbie, S.N.; Sha, S.H.; Schacht, J.; Chow, C.S.; Vasella, A.; Böttger, E.C.; Crich, D. An advanced apralog with increased in vitro and in vivo activity toward gram‐negative pathogens and reduced ex vivo cochleotoxicity. ChemMedChem, 2021, 16(2), 335-339.
[http://dx.doi.org/10.1002/cmdc.202000726] [PMID: 33007139]
[64]
Butler, D.; Chen, D.; O’Dwyer, K.; Lewandowski, T.; Aubart, K.; Zalacain, M. Potent sub-MIC effect of GSK1322322 and other peptide deformylase inhibitors on in vitro growth of Staphylococcus aureus. Antimicrob. Agents Chemother., 2014, 58(1), 290-296.
[http://dx.doi.org/10.1128/AAC.01292-13] [PMID: 24165188]
[65]
Mishra, R.; Chaurasia, H.; Singh, V.K.; Naaz, F.; Singh, R.K.; Mishra, R.; Chaurasia, H.; Singh, V.K.; Naaz, F.; Singh, R.K. Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. J. Mol. Struct., 2021, 1243, 130763.
[http://dx.doi.org/10.1016/j.molstruc.2021.130763]
[66]
Chatterjee, S.; Ghosh, R.; Mandal, N.C. Inhibition of biofilm- and hyphal- development, two virulent features of Candida albicans by secondary metabolites of an endophytic fungus Alternaria tenuissima having broad spectrum antifungal potential. Microbiol. Res., 2020, 232, 126386.
[http://dx.doi.org/10.1016/j.micres.2019.126386] [PMID: 31816593]
[67]
Kral, K.; Bieg, T.; Nawrot, U.; Włodarczyk, K.; Lalik, A.; Hahn, P.; Wandzik, I. New monomeric and dimeric uridinyl derivatives as inhibitors of chitin synthase. Bioorg. Chem., 2015, 61, 13-20.
[http://dx.doi.org/10.1016/j.bioorg.2015.05.007] [PMID: 26051755]
[68]
Lungu, L.; Blaja, S.; Cucicova, C.; Ciocarlan, A.; Barba, A.; Kulcițki, V.; Shova, S.; Vornicu, N.; Geana, E.I.; Mangalagiu, I.I.; Aricu, A. Synthesis and antimicrobial activity evaluation of homodrimane sesquiterpenoids with a benzimidazole unit. Molecules, 2023, 28(3), 933.
[http://dx.doi.org/10.3390/molecules28030933] [PMID: 36770601]
[69]
Diaconu, D.; Antoci, V.; Mangalagiu, V.; Amariucai-Mantu, D.; Mangalagiu, I.I. Quinoline-imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep., 2022, 12(1), 16988.
[http://dx.doi.org/10.1038/s41598-022-21435-6] [PMID: 36216981]
[70]
Chaurasia, H.; Singh, V.K.; Mishra, R.; Yadav, A.K.; Ram, N.K.; Singh, P.; Singh, R.K. Molecular modelling, synthesis and antimicrobial evaluation of benzimidazole nucleoside mimetics. Bioorg. Chem., 2021, 115, 105227.
[http://dx.doi.org/10.1016/j.bioorg.2021.105227] [PMID: 34399320]
[71]
Abdel-Motaal, M.; Almohawes, K.; Tantawy, M.A. Antimicrobial evaluation and docking study of some new substituted benzimidazole-2yl derivatives. Bioorg. Chem., 2020, 101, 103972.
[http://dx.doi.org/10.1016/j.bioorg.2020.103972] [PMID: 32506017]
[72]
Shaikh, I.N.; Hosamani, K.M.; Kurjogi, M.M. Design, synthesis, and evaluation of new α‐aminonitrile‐based benzimidazole biomolecules as potent antimicrobial and antitubercular agents. Arch. Pharm. (Weinheim), 2018, 351(2), 1700205.
[http://dx.doi.org/10.1002/ardp.201700205] [PMID: 29356105]
[73]
El-Gohary, N.S.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur. J. Med. Chem., 2017, 137, 439-449.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.064] [PMID: 28623814]
[74]
Ranjith, P.K.; Rajeesh, P.; Haridas, K.R.; Susanta, N.K.; Guru Row, T.N.; Rishikesan, R.; Suchetha Kumari, N. Design and synthesis of positional isomers of 5 and 6-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles as possible antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(18), 5228-5234.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.072] [PMID: 23942420]
[75]
Campaniço, A.; Moreira, R.; Lopes, F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem., 2018, 150, 525-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.020] [PMID: 29549838]
[76]
Dheda, K.; Barry, C.E., III; Maartens, G. Tuberculosis. Lancet, 2016, 387(10024), 1211-1226.
[http://dx.doi.org/10.1016/S0140-6736(15)00151-8 ] [PMID: 26377143]
[77]
Park, M.; Satta, G.; Kon, O.M. An update on multidrug-resistant tuberculosis. Clin. Med., 2019, 19, 135.
[78]
Dartois, V. The path of anti-tuberculosis drugs: From blood to lesions to mycobacterial cells. Nat. Rev. Microbiol., 2014, 12(3), 159-167.
[http://dx.doi.org/10.1038/nrmicro3200] [PMID: 24487820]
[79]
Koch, A.; Cox, H.; Mizrahi, V. Drug-resistant tuberculosis: Challenges and opportunities for diagnosis and treatment. Curr. Opin. Pharmacol., 2018, 42, 7-15.
[http://dx.doi.org/10.1016/j.coph.2018.05.013] [PMID: 29885623]
[80]
Falzon, D.; Schünemann, H.J.; Harausz, E.; González-Angulo, L.; Lienhardt, C.; Jaramillo, E.; Weyer, K. World health organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur. Respir. J., 2017, 49(3), 1602308.
[http://dx.doi.org/10.1183/13993003.02308-2016] [PMID: 28331043]
[81]
Tiberi, S.; du Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F.; Mfinanga, S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; Ippolito, G.; Migliori, G.B.; Maeurer, M.J.; Zumla, A. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis., 2018, 18(7), e183-e198.
[http://dx.doi.org/10.1016/S1473-3099(18)30110-5 ] [PMID: 29580819]
[82]
Fattorini, L.; Piccaro, G.; Mustazzolu, A.; Giannoni, F. Targeting dormant bacilli to fight tuberculosis. Mediterr. J. Hematol. Infect. Dis., 2013, 5(1), e2013072.
[http://dx.doi.org/10.4084/mjhid.2013.072] [PMID: 24363887]
[83]
Haranahalli, K.; Tong, S.; Kim, S.; Awwa, M.; Chen, L.; Knudson, S.E.; Slayden, R.A.; Singleton, E.; Russo, R.; Connell, N.; Ojima, I. Structure-activity relationship studies on 2,5,6-trisubstituted benzimidazoles targeting Mtb -FtsZ as antitubercular agents. RSC Medicinal Chemistry, 2021, 12(1), 78-94.
[http://dx.doi.org/10.1039/D0MD00256A] [PMID: 34046600]
[84]
Malasala, S.; Ahmad, M.N.; Gour, J.; Shukla, M.; Kaul, G.; Akhir, A.; Gatadi, S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis, biological evaluation and molecular modelling insights of 2-arylquinazoline benzamide derivatives as anti-tubercular agents. J. Mol. Struct., 2020, 1218, 128493.
[http://dx.doi.org/10.1016/j.molstruc.2020.128493]
[85]
Sirim, M.M.; Krishna, V.S.; Sriram, D.; Unsal Tan, O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur. J. Med. Chem., 2020, 188, 112010.
[http://dx.doi.org/10.1016/j.ejmech.2019.112010] [PMID: 31893548]
[86]
Dhameliya, T.M.; Patel, K.I.; Tiwari, R.; Vagolu, S.K.; Panda, D.; Sriram, D.; Chakraborti, A.K. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg. Chem., 2021, 107, 104538.
[http://dx.doi.org/10.1016/j.bioorg.2020.104538] [PMID: 33349456]
[87]
Gong, Y.; Somersan Karakaya, S.; Guo, X.; Zheng, P.; Gold, B.; Ma, Y.; Little, D.; Roberts, J.; Warrier, T.; Jiang, X.; Pingle, M.; Nathan, C.F.; Liu, G. Benzimidazole-based compounds kill mycobacterium tuberculosis. Eur. J. Med. Chem., 2014, 75, 336-353.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.039] [PMID: 24556148]
[88]
Bennett, J.S.; Daugherty, A.; Herrington, D.; Greenland, P.; Roberts, H.; Taubert, K.A. The use of nonsteroidal anti-inflammatory drugs (NSAIDs): A science advisory from the american heart association. Circulation, 2005, 111(13), 1713-1716.
[http://dx.doi.org/10.1161/01.CIR.0000160005.90598.41 ] [PMID: 15781731]
[89]
Rainsford, K.D. Anti-inflammatory drugs in the 21st century. Subcell. Biochem., 2007, 42, 3-27.
[http://dx.doi.org/10.1007/1-4020-5688-5_1] [PMID: 17612044]
[90]
Green, G.A. Understanding NSAIDs: From aspirin to COX-2. Clin. Cornerstone, 2001, 3(5), 50-59.
[http://dx.doi.org/10.1016/S1098-3597(01)90069-9 ] [PMID: 11464731]
[91]
Laine, L. Approaches to nonsteroidal anti-inflammatory drug use in the high-risk patient. Gastroenterology, 2001, 120(3), 594-606.
[http://dx.doi.org/10.1053/gast.2001.21907] [PMID: 11179238]
[92]
Vonkeman, H.E.; van de Laar, M.A.F.J. Nonsteroidal anti-inflammatory drugs: Adverse effects and their prevention. Semin. Arthritis Rheum., 2010, 39(4), 294-312.
[http://dx.doi.org/10.1016/j.semarthrit.2008.08.001 ] [PMID: 18823646]
[93]
Unsal-Tan, O.; Ozadali, K.; Piskin, K.; Balkan, A. Molecular modeling, synthesis and screening of some new 4-thiazolidinone derivatives with promising selective COX-2 inhibitory activity. Eur. J. Med. Chem., 2012, 57, 59-64.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.046] [PMID: 23047224]
[94]
Dogné, J.M.; Supuran, C.T.; Pratico, D. Adverse cardiovascular effects of the coxibs. J. Med. Chem., 2005, 48(7), 2251-2257.
[http://dx.doi.org/10.1021/jm0402059] [PMID: 15801815]
[95]
Licata, A.; Calvaruso, V.; Cappello, M.; Craxì, A.; Almasio, P.L. Clinical course and outcomes of drug-induced liver injury: Nimesulide as the first implicated medication. Dig. Liver Dis., 2010, 42(2), 143-148.
[http://dx.doi.org/10.1016/j.dld.2009.06.009] [PMID: 19625223]
[96]
Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem., 2020, 28(7), 115403.
[http://dx.doi.org/10.1016/j.bmc.2020.115403] [PMID: 32127262]
[97]
Kaur, G.; Silakari, O. Benzimidazole scaffold based hybrid molecules for various inflammatory targets: Synthesis and evaluation. Bioorg. Chem., 2018, 80, 24-35.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.014] [PMID: 29864685]
[98]
Moneer, A.A.; Mohammed, K.O.; El-Nassan, H.B. Synthesis of Novel Substituted Thiourea and Benzimidazole Derivatives Containing a Pyrazolone Ring as Anti‐Inflammatory Agents. Chem. Biol. Drug Des., 2016, 87(5), 784-793.
[http://dx.doi.org/10.1111/cbdd.12712] [PMID: 26684979]
[99]
Rathore, A.; Sudhakar, R.; Ahsan, M.J.; Ali, A.; Subbarao, N.; Jadav, S.S.; Umar, S.; Yar, M.S. In vivo anti-inflammatory activity and docking study of newly synthesized benzimidazole derivatives bearing oxadiazole and morpholine rings. Bioorg. Chem., 2017, 70, 107-117.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.014] [PMID: 27923497]
[100]
Dinparast, L.; Valizadeh, H.; Bahadori, M.B.; Soltani, S.; Asghari, B.; Rashidi, M.R.; Dinparast, L.; Valizadeh, H.; Bahadori, M.B.; Soltani, S.; Asghari, B.; Rashidi, M-R. Design, synthesis, α-glucosidase inhibitory activity, molecular docking and QSAR studies of benzimidazole derivatives. J. Mol. Struct., 2016, 1114, 84-94.
[http://dx.doi.org/10.1016/j.molstruc.2016.02.005]
[101]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00259.x ] [PMID: 10784220]
[102]
Chakrabarti, R.; Rajagopalan, R. Diabetes and insulin resistance associated disorders: Disease and the therapy. Curr. Sci., 2002, 83(12), 1533-1538.
[103]
Puranik, N.V.; Puntambekar, H.M.; Srivastava, P. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with α-glucosidase and α-amylase. Med. Chem. Res., 2016, 25(4), 805-816.
[http://dx.doi.org/10.1007/s00044-016-1520-3]
[104]
Martin, A.E.; Montgomery, P.A. Acarbose: An α-glucosidase inhibitor. Am. J. Health Syst. Pharm., 1996, 53(19), 2277-2290.
[http://dx.doi.org/10.1093/ajhp/53.19.2277] [PMID: 8893066]
[105]
Khan, M.S.; Munawar, M.A.; Ashraf, M.; Alam, U.; Ata, A.; Asiri, A.M.; Kousar, S.; Khan, M.A. Synthesis of novel indenoquinoxaline derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2014, 22(3), 1195-1200.
[http://dx.doi.org/10.1016/j.bmc.2013.12.024] [PMID: 24398385]
[106]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorg. Chem., 2017, 70, 184-191.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.009] [PMID: 28043716]
[107]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Wadood, A.; Ismail, N.H.; Rahim, F.; Azam, S.S.; Abdullah, N. Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorg. Chem., 2016, 64, 29-36.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.006] [PMID: 26637946]
[108]
Aroua, L.M.; Almuhaylan, H.R.; Alminderej, F.M.; Messaoudi, S.; Chigurupati, S.; Al-mahmoud, S.; Mohammed, H.A. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorg. Chem., 2021, 114, 105073.
[http://dx.doi.org/10.1016/j.bioorg.2021.105073] [PMID: 34153810]
[109]
Deswal, L.; Verma, V.; Kumar, D.; Kaushik, C.P.; Kumar, A.; Deswal, Y.; Punia, S. Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles. Arch. Pharm., 2020, 353(9), 2000090.
[http://dx.doi.org/10.1002/ardp.202000090] [PMID: 32567729]
[110]
Asemanipoor, N.; Mohammadi-Khanaposhtani, M.; Moradi, S.; Vahidi, M.; Asadi, M.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 95, 103482.
[http://dx.doi.org/10.1016/j.bioorg.2019.103482] [PMID: 31838286]
[111]
Singh, G.; Singh, A.; Verma, R.K.; Mall, R.; Azeem, U. Synthesis, biological evaluation and molecular docking studies of novel benzimidazole derivatives. Comput. Biol. Chem., 2018, 72, 45-52.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.12.010 ] [PMID: 29346072]
[112]
Boonstra, J.; Post, J.A. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 2004, 337, 1-13.
[http://dx.doi.org/10.1016/j.gene.2004.04.032] [PMID: 15276197]
[113]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006 ] [PMID: 20840865]
[114]
Dumont, M.; Beal, M.F. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med., 2011, 51(5), 1014-1026.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.026 ] [PMID: 21130159]
[115]
Al Ghouleh, I.; Khoo, N.K.H.; Knaus, U.G.; Griendling, K.K.; Touyz, R.M.; Thannickal, V.J.; Barchowsky, A.; Nauseef, W.M.; Kelley, E.E.; Bauer, P.M.; Darley-Usmar, V.; Shiva, S.; Cifuentes-Pagano, E.; Freeman, B.A.; Gladwin, M.T.; Pagano, P.J. Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling. Free Radic. Biol. Med., 2011, 51(7), 1271-1288.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.011 ] [PMID: 21722728]
[116]
Zhang, Y.; Tocchetti, C.G.; Krieg, T.; Moens, A.L. Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic. Biol. Med., 2012, 53(8), 1531-1540.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.010 ] [PMID: 22819981]
[117]
Matysiak, J.; Skrzypek, A.; Karpińska, M.; Czarnecka, K.; Szymański, P.; Bajda, M.; Niewiadomy, A. Biological evaluation, molecular docking, and SAR studies of novel 2-(2,4-Dihydroxy-phenyl)-1H- benzimidazole analogues. Biomolecules, 2019, 9(12), 870.
[http://dx.doi.org/10.3390/biom9120870] [PMID: 31842463]
[118]
Zhou, B.; Li, B.; Yi, W.; Bu, X.; Ma, L. Synthesis, antioxidant, and antimicrobial evaluation of some 2-arylbenzimidazole derivatives. Bioorg. Med. Chem. Lett., 2013, 23(13), 3759-3763.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.004] [PMID: 23711920]
[119]
Nowacki, D.; Martynowicz, H.; Skoczyńska, A.; Wojakowska, A.; Turczyn, B.; Bobak, Ł.; Trziszka, T.; Szuba, A. Lecithin derived from ω-3 PUFA fortified eggs decreases blood pressure in spontaneously hypertensive rats. Sci. Rep., 2017, 7(1), 12373.
[http://dx.doi.org/10.1038/s41598-017-12019-w] [PMID: 28959007]
[120]
Naik, P.; Gandhi, H.; Pawar, V.; Giridhar, R.; Yadav, M. Management of hypertension-journey from single drug therapy to multitargeted ligand therapy: A clinical overview. Curr. Clin. Pharmacol., 2015, 10(4), 321-346.
[http://dx.doi.org/10.2174/15748847113086660075 ] [PMID: 24117126]
[121]
Naz, Q.; Verma, N.; Serajuddin, M.; Ali Mehdi, A.; Lal Patel, M.; Anjum, B. Study of alpha adducin gene polymorphism in young essential hypertensive north indians. J. Cardiovasc. Dis. Res., 2015, 6(3), 124-130.
[http://dx.doi.org/10.5530/jcdr.2015.3.3]
[122]
Hong, K.W.; Kim, C.D.; Lee, S.H.; Yoo, S-E. The in vitro pharmacological profile of KR31080, a nonpeptide AT 1 receptor antagonist. Fundam. Clin. Pharmacol., 1998, 12(1), 64-69.
[http://dx.doi.org/10.1111/j.1472-8206.1998.tb00925.x ] [PMID: 9523186]
[123]
Yu, Z.; Yin, Y.; Zhao, W.; Chen, F.; Liu, J. Antihypertensive effect of angiotensin-converting enzyme inhibitory peptide RVPSL on spontaneously hypertensive rats by regulating gene expression of the renin-angiotensin system. J. Agric. Food Chem., 2014, 62(4), 912-917.
[http://dx.doi.org/10.1021/jf405189y] [PMID: 24404915]
[124]
Zhang, H.; Unal, H.; Gati, C.; Han, G.W.; Liu, W.; Zatsepin, N.A.; James, D.; Wang, D.; Nelson, G.; Weierstall, U.; Sawaya, M.R.; Xu, Q.; Messerschmidt, M.; Williams, G.J.; Boutet, S.; Yefanov, O.M.; White, T.A.; Wang, C.; Ishchenko, A.; Tirupula, K.C.; Desnoyer, R.; Coe, J.; Conrad, C.E.; Fromme, P.; Stevens, R.C.; Katritch, V.; Karnik, S.S.; Cherezov, V. Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell, 2015, 161(4), 833-844.
[http://dx.doi.org/10.1016/j.cell.2015.04.011] [PMID: 25913193]
[125]
Durdagi, S.; Aksoydan, B.; Erol, I.; Kantarcioglu, I.; Ergun, Y.; Bulut, G.; Acar, M.; Avsar, T.; Liapakis, G.; Karageorgos, V.; Salmas, R.E.; Sergi, B.; Alkhatib, S.; Turan, G.; Yigit, B.N.; Cantasir, K.; Kurt, B.; Kilic, T. Integration of multi-scale molecular modeling approaches with experiments for the in silico guided design and discovery of novel hERG-Neutral antihypertensive oxazalone and imidazolone derivatives and analysis of their potential restrictive effects on cell proliferation. Eur. J. Med. Chem., 2018, 145, 273-290.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.021] [PMID: 29329002]
[126]
Ntountaniotis, D.; Andreadelis, I.; Kellici, T.F.; Karageorgos, V.; Leonis, G.; Christodoulou, E.; Kiriakidi, S.; Becker-Baldus, J.; Stylos, E.K.; Chatziathanasiadou, M.V.; Chatzigiannis, C.M.; Damalas, D.E.; Aksoydan, B.; Javornik, U.; Valsami, G.; Glaubitz, C.; Durdagi, S.; Thomaidis, N.S.; Kolocouris, A.; Plavec, J.; Tzakos, A.G.; Liapakis, G.; Mavromoustakos, T. Host-Guest Interactions between Candesartan and Its Prodrug Candesartan Cilexetil in Complex with 2-Hydroxypropyl-β-cyclodextrin: On the Biological Potency for Angiotensin II Antagonism. Mol. Pharm., 2019, 16(3), 1255-1271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01212 ] [PMID: 30681344]
[127]
Kim, S.; Kawamura, M.; Wanibuchi, H.; Ohta, K.; Hamaguchi, A.; Omura, T.; Yukimura, T.; Miura, K.; Iwao, H.; Angiotensin, I.I. Angiotensin II type 1 receptor blockade inhibits the expression of immediate-early genes and fibronectin in rat injured artery. Circulation, 1995, 92(1), 88-95.
[http://dx.doi.org/10.1161/01.CIR.92.1.88] [PMID: 7788922]
[128]
Kellici, T.; Tzakos, A.; Mavromoustakos, T. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules, 2015, 20(3), 3868-3897.
[http://dx.doi.org/10.3390/molecules20033868] [PMID: 25738535]
[129]
Zhang, J.; Wang, J.L.; Yu, W.F.; Zhou, Z.M.; Tao, W.C.; Wang, Y.C.; Xue, W.Z.; Xu, D.; Hao, L.P.; Han, X.F.; Fei, F.; Liu, T.; Liang, A.H. Nonpeptidic angiotensin II AT1 receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles. Eur. J. Med. Chem., 2013, 69, 44-54.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.014] [PMID: 24007859]
[130]
Guo, X.Z.; Shi, L.; Wang, R.; Liu, X.X.; Li, B.G.; Lu, X.X. Synthesis and biological activities of novel nonpeptide angiotensin II receptor antagonists based on benzimidazole derivatives bearing a heterocyclic ring. Bioorg. Med. Chem., 2008, 16(24), 10301-10310.
[http://dx.doi.org/10.1016/j.bmc.2008.10.040] [PMID: 18976926]
[131]
Monge, M.; Lorthioir, A.; Bobrie, G.; Azizi, M. New drug therapies interfering with the renin-angiotensin-aldosterone system for resistant hypertension. J. Renin Angiotensin Aldosterone Syst., 2013, 14(4), 285-289.
[http://dx.doi.org/10.1177/1470320313513408] [PMID: 24222656]
[132]
Wu, Z.; Xia, M.B.; Bertsetseg, D.; Wang, Y.H.; Bao, X.L.; Zhu, W.B. Design, synthesis and biological evaluation of novel fluoro-substituted benzimidazole derivatives with anti-hypertension activities. Bioorg. Chem., 2020, 101.
[133]
Zhang, Y.; Xu, J.; Li, Y.; Yao, H.; Wu, X. Design, synthesis and pharmacological evaluation of novel NO-releasing benzimidazole hybrids as potential antihypertensive candidate. Chem. Biol. Drug Des., 2015, 85(5), 541-548.
[http://dx.doi.org/10.1111/cbdd.12442] [PMID: 25283264]
[134]
Zhu, W.; Da, Y.; Wu, D.; Zheng, H.; Zhu, L.; Wang, L.; Yan, Y.; Chen, Z. Design, synthesis and biological evaluation of new 5-nitro benzimidazole derivatives as AT1 antagonists with anti-hypertension activities. Bioorg. Med. Chem., 2014, 22(7), 2294-2302.
[http://dx.doi.org/10.1016/j.bmc.2014.02.008] [PMID: 24613628]
[135]
Abuelizz, H.A.; Dib, R.E.; Marzouk, M.; Anouar, E.H.; A Maklad, Y. N Attia, H.; Al-Salahi, R. Molecular Docking and Anticonvulsant Activity of Newly Synthesized Quinazoline Derivatives. Molecules, 2017, 22(7), 22.
[http://dx.doi.org/10.3390/molecules22071094] [PMID: 28665338]
[136]
Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem., 2016, 109, 380-392.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.009] [PMID: 26826582]
[137]
Khan, A.A.; Siddiqui, N.; Akhtar, M.J.; Ali, Z.; Yar, M.S. Design, Synthesis, and Biological evaluation of 6‐(2‐Amino‐substituted phenyl)‐4‐(substituted phenyl)‐1,2,4‐triazine‐3,5(2 H, 4 H)‐dione derivatives as anticonvulsant agents. Arch. Pharm. (Weinheim), 2016, 349(4), 277-292.
[http://dx.doi.org/10.1002/ardp.201500448] [PMID: 26996080]
[138]
Jain, P.; Sharma, P.K.; Rajak, H.; Pawar, R.S.; Patil, U.K.; Singour, P.K. Design, synthesis and biological evaluation of some novel benzimidazole derivatives for their potential anticonvulsant activity. Arch. Pharm. Res., 2010, 33(7), 971-980.
[http://dx.doi.org/10.1007/s12272-010-0701-8] [PMID: 20661705]
[139]
Church, D.L. Major factors affecting the emergence and re-emergence of infectious diseases. Clin. Lab. Med., 2004, 24(3), 559-586. [v.
[http://dx.doi.org/10.1016/j.cll.2004.05.008] [PMID: 15325056]
[140]
Francesconi, V.; Cichero, E.; Schenone, S.; Naesens, L.; Tonelli, M. Synthesis and biological evaluation of novel (thio)semicar-bazone-based benzimidazoles as antiviral agents against human respiratory viruses. Molecules, 2020, 25(7), 1487.
[http://dx.doi.org/10.3390/molecules25071487] [PMID: 32218301]
[141]
Youssif, B.G.M.; Mohamed, Y.A.M.; Salim, M.T.A.; Inagaki, F.; Mukai, C.; Abdu-Allah, H.H.M. Synthesis of some benzimidazole derivatives endowed with 1,2,3-triazole as potential inhibitors of hepatitis C virus. Acta Pharm., 2016, 66(2), 219-231.
[http://dx.doi.org/10.1515/acph-2016-0014] [PMID: 27279065]
[142]
Breman, J.G.; Egan, A.; Keusch, G.T. The intolerable burden of malaria: A new look at the numbers. Am. J. Trop. Med. Hyg., 2001, 64(1)
[http://dx.doi.org/10.4269/ajtmh.2001.64.iv]
[143]
Na-Bangchang, K.; Congpuong, K. Current malaria status and distribution of drug resistance in East and Southeast Asia with special focus to Thailand. Tohoku J. Exp. Med., 2007, 211(2), 99-113.
[http://dx.doi.org/10.1620/tjem.211.99] [PMID: 17287593]
[144]
Wernsdorfer, W.H. Epidemiology of drug resistance in malaria. Acta Trop., 1994, 56(2-3), 143-156.
[http://dx.doi.org/10.1016/0001-706X(94)90060-4] [PMID: 8203301]
[145]
Schlitzer, M. Antimalarial drugs - What is in use and what is in the pipeline. Arch. Pharm., 2008, 341(3), 149-163.
[http://dx.doi.org/10.1002/ardp.200700184] [PMID: 18297679]
[146]
Devine, S.M.; Challis, M.P.; Kigotho, J.K.; Siddiqui, G.; De Paoli, A.; MacRaild, C.A.; Avery, V.M.; Creek, D.J.; Norton, R.S.; Scammells, P.J. Discovery and development of 2-aminobenzi-midazoles as potent antimalarials. Eur. J. Med. Chem., 2021, 221, 113518.
[http://dx.doi.org/10.1016/j.ejmech.2021.113518] [PMID: 34058708]
[147]
Okombo, J.; Brunschwig, C.; Singh, K.; Dziwornu, G.A.; Barnard, L.; Njoroge, M.; Wittlin, S.; Chibale, K. Antimalarial pyrido[1,2- a]benzimidazole derivatives with mannich base side chains: synthesis, pharmacological evaluation, and reactive metabolite trapping studies. ACS Infect. Dis., 2019, 5(3), 372-384.
[http://dx.doi.org/10.1021/acsinfecdis.8b00279] [PMID: 30608648]
[148]
Sharma, K.; Shrivastava, A.; Mehra, R.N.; Deora, G.S.; Alam, M.M.; Zaman, M.S.; Akhter, M. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch. Pharm., 2018, 351(1), 1700251.
[http://dx.doi.org/10.1002/ardp.201700251] [PMID: 29227011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy