Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Nano-nutraceuticals to Combat Oxidative Stress: Unlocking Newer Paradigms in Adjuvant Therapy

Author(s): Pooja, Manisha Pandey*, Tarun Kumar*, Harsh Goswami, Rasna Kumari, Shivani Kumari, Neha Jain*, Bapi Gorain, Pawan Kumar Maurya, Viney Chawla and Pooja A. Chawla*

Volume 24, Issue 17, 2024

Published on: 26 April, 2024

Page: [1490 - 1503] Pages: 14

DOI: 10.2174/0115680266300779240417104340

Price: $65

conference banner
Abstract

Nutraceuticals are products that provide both nutritional and therapeutic benefits. These compounds can slow the aging process and provide physiological effects shielding individuals from acute and chronic diseases. People's interests have shifted from allopathic to Ayurvedic to nutraceuticals in recent years. These are often common dietary supplements that have drawn customers worldwide because of their high nutritional safety and lack of adverse effects when used for a long time. Although conventional dosage forms, including pills, tablets, and semi-solids, are still available, they nevertheless have poorer bioavailability, less stability, and less effectiveness for targeted delivery of bioactives. The use of effective nanocomplex systems as nano-antioxidants using nanotechnology has become a promising field. Among its many uses, nanotechnology is mostly used to create foods and nutraceuticals that are more bioavailable, less toxic, and more sustainable. Additionally, it has been emphasized how precisely nano-pharmaceuticals for oxidative stress produce the desired effects. These improvements show improved antioxidant delivery to the target region, reduced leakage, and increased targeting precision. The outcomes demonstrated that oxidative stress-related illnesses can be effectively treated by lowering ROS levels with the use of nanonutraceuticals. The major ideas and uses of nano-nutraceuticals for health are outlined in this review, with an emphasis on reducing oxidative stress.

[1]
Souyoul, S.A.; Saussy, K.P.; Lupo, M.P. Nutraceuticals: A review. Dermatol. Ther., 2018, 8(1), 5-16.
[http://dx.doi.org/10.1007/s13555-018-0221-x] [PMID: 29411317]
[2]
Vishvakarma, P.; Mandal, S.; Verma, A.; Author-Prabhakar Vishvakarma, C.; Professor, A. A review on current aspects of nutraceuticals and dietary supplements. Int. J. Pharma. Profess. Res., 2023, 14(1), 78-91.
[http://dx.doi.org/10.48165/ijppronline.2023.14107]
[3]
Herrera-Rocha, K.M.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Larrosa-Pérez, M.; Moreno-Jiménez, M.R. Phenolic acids and flavonoids in acetonic extract from quince (Cydonia oblonga Mill.): Nutraceuticals with antioxidant and anti-inflammatory potential. Molecules, 2022, 27(8), 2462.
[http://dx.doi.org/10.3390/molecules27082462] [PMID: 35458657]
[4]
Manocha, S.; Dhiman, S.; Grewal, A.S.; Guarve, K. Nanotechnology: An approach to overcome bioavailability challenges of nutraceuticals. J. Drug Deliv. Sci. Technol., 2022, 72, 103418.
[http://dx.doi.org/10.1016/j.jddst.2022.103418]
[5]
Marques, M.R.C.; Choo, Q.; Ashtikar, M.; Rocha, T.C.; Bremer-Hoffmann, S.; Wacker, M.G. Nanomedicines : Tiny particles and big challenges. Adv. Drug Deliv. Rev., 2019, 151-152, 23-43.
[http://dx.doi.org/10.1016/j.addr.2019.06.003] [PMID: 31226397]
[6]
Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr. Rev. Food Sci. Food Saf., 2020, 19(3), 954-994.
[http://dx.doi.org/10.1111/1541-4337.12547] [PMID: 33331687]
[7]
Paolino, D.; Mancuso, A.; Cristiano, M.C.; Froiio, F.; Lammari, N.; Celia, C.; Fresta, M. Nanonutraceuticals: The new frontier of supplementary food. Nanomaterials, 2021, 11(3), 792.
[http://dx.doi.org/10.3390/nano11030792] [PMID: 33808823]
[8]
Puri, V; Nagpal, M; Singh, I; Singh, M; Dhingra, GA; Huanbutta, K A comprehensive review on nutraceuticals: Therapy support and formulation challenges. Nutrients, 2022, 14(21), 4637.
[9]
Anand, S.; Bharadvaja, N. Potential benefits of nutraceuticals for oxidative stress management. Rev. Bras. Farmacogn., 2022, 32(2), 211-220.
[http://dx.doi.org/10.1007/s43450-022-00246-w] [PMID: 35340996]
[10]
Meenambal, R.; Srinivas Bharath, M.M. Nanocarriers for effective nutraceutical delivery to the brain. Neurochem. Int., 2020, 140, 104851.
[http://dx.doi.org/10.1016/j.neuint.2020.104851] [PMID: 32976906]
[11]
Rusu, AV; Trif, M; Rocha, JM Microbial secondary metabolites via fermentation approaches for dietary supplementation formulations. Molecules, 2023, 28(16), 6020.
[http://dx.doi.org/10.3390/molecules28166020]
[12]
Zhang, Y.; Sun, G.; Li, D.; Xu, J.; McClements, D.J.; Li, Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. Adv. Food Nutr. Res., 2023, 104, 139-178.
[http://dx.doi.org/10.1016/bs.afnr.2022.11.001] [PMID: 37236730]
[13]
Dangi, P.; Chaudhary, N.; Chaudhary, V.; Virdi, A.S.; Kajla, P.; Khanna, P.; Jha, S.K.; Jha, N.K.; Alkhanani, M.F.; Singh, V.; Haque, S. Nanotechnology impacting probiotics and prebiotics: A paradigm shift in nutraceuticals technology. Int. J. Food Microbiol., 2023, 388, 110083.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2022.110083] [PMID: 36708610]
[14]
Muthukrishnan, L. Nanonutraceuticals : Challenges and novel nano-based carriers for effective delivery and enhanced bioavailability. Food Bioprocess Technol., 2022, 15(10), 2155-2184.
[http://dx.doi.org/10.1007/s11947-022-02807-2]
[15]
Ozdal, T.; Tomas, M.; Toydemir, G.; Kamiloglu, S.; Capanoglu, E. Introduction to nutraceuticals, medicinal foods, and herbs. Aromatic Herbs in Food: Bioactive Compounds, Processing, and Applications., 2021, (Jan), 1-34.
[http://dx.doi.org/10.1016/B978-0-12-822716-9.00001-9]
[16]
da Costa, J.P. A current look at nutraceuticals : Key concepts and future prospects. Trends Food Sci. Technol., 2017, 62, 68-78.
[http://dx.doi.org/10.1016/j.tifs.2017.02.010]
[17]
Elkhalifa, A.E.O.; Alshammari, E.; Adnan, M.; Alcantara, J.C.; Awadelkareem, A.M.; Eltoum, N.E.; Mehmood, K.; Panda, B.P.; Ashraf, S.A. Okra (Abelmoschus Esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules, 2021, 26(3), 696.
[http://dx.doi.org/10.3390/molecules26030696] [PMID: 33525745]
[18]
Chopra, A.S.; Lordan, R.; Horbańczuk, O.K.; Atanasov, A.G.; Chopra, I.; Horbańczuk, J.O.; Jóźwik, A.; Huang, L.; Pirgozliev, V.; Banach, M.; Battino, M.; Arkells, N. The current use and evolving landscape of nutraceuticals. Pharmacol. Res., 2022, 175, 106001.
[http://dx.doi.org/10.1016/j.phrs.2021.106001] [PMID: 34826602]
[19]
Ansari, S.H.; Chauhan, B.; Kalam, N.; Kumar, G. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. Res., 2013, 4(1), 4-8.
[http://dx.doi.org/10.4103/2231-4040.107494] [PMID: 23662276]
[20]
Mannucci, C.; Casciaro, M.; Sorbara, E.E.; Calapai, F.; Di Salvo, E.; Pioggia, G.; Navarra, M.; Calapai, G.; Gangemi, S. Nutraceuticals against oxidative stress in autoimmune disorders. Antioxidants, 2021, 10(2), 261.
[http://dx.doi.org/10.3390/antiox10020261] [PMID: 33567628]
[21]
Shende, P.; Mallick, C. Nanonutraceuticals: A way towards modern therapeutics in healthcare. J. Drug Deliv. Sci. Technol., 2020, 58, 101838.
[http://dx.doi.org/10.1016/j.jddst.2020.101838]
[22]
Kankala, R.K.; Han, Y.H.; Xia, H.Y.; Wang, S.B.; Chen, A.Z. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J. Nanobiotechnology, 2022, 20(1), 126.
[http://dx.doi.org/10.1186/s12951-022-01315-x] [PMID: 35279150]
[23]
Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed.Pharmac., 2023, 162, 114643. Available from: https://www.sciencedirect.com/science/article/pii/S0753332223004316
[24]
Remigante, A.; Spinelli, S.; Basile, N.; Caruso, D.; Falliti, G.; Dossena, S.; Marino, A.; Morabito, R. Oxidation stress as a mechanism of aging in human erythrocytes: protective effect of quercetin. Int. J. Mol. Sci., 2022, 23(14), 7781.
[http://dx.doi.org/10.3390/ijms23147781] [PMID: 35887126]
[25]
Magne, T.M.; Alencar, L.M.R.; Carneiro, S.V.; Fechine, L.M.U.D.; Fechine, P.B.A.; Souza, P.F.N.; Portilho, F.L.; de Barros, A.O.S.; Johari, S.A.; Ricci-Junior, E.; Santos-Oliveira, R. Nano-nutraceuticals for health: Principles and applications. Rev. Bras. Farmacogn., 2022, 33(1), 73-88.
[http://dx.doi.org/10.1007/s43450-022-00338-7] [PMID: 36466145]
[26]
Durazzo, A.; Nazhand, A.; Lucarini, M.; Atanasov, A.G.; Souto, E.B.; Novellino, E. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int. J. Molec. Sci., 2020, 21(7), 2285.
[27]
Soukoulis, C.; Bohn, T. A comprehensive overview on the micro and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit. Rev. Food Sci. Nutr., 2018, 58(1), 1-36.
[http://dx.doi.org/10.1080/10408398.2014.971353] [PMID: 26065668]
[28]
Kumar, S.; Gaba, B.; Narang, J.K.; Ali, J.; Baboota, S. Nanostructured Drug Delivery of Nutraceuticals for Counteracting Oxidative Stress; NanoNutraceuticals, 2018, pp. 71-90.
[http://dx.doi.org/10.1201/9781351138949-5]
[29]
Tsiaka, T.; Kritsi, E.; Tsiantas, K.; Christodoulou, P.; Sinanoglou, V.J.; Zoumpoulakis, P. Design and development of novel nutraceuticals: Current trends and methodologies. Nutraceuticals, 2022, 2(2), 71-90.
[http://dx.doi.org/10.3390/nutraceuticals2020006]
[30]
Salama, L; Pastor, ER; Stone, T; Mousa, SA Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomedicines, 2020, 8(9), 347.
[http://dx.doi.org/10.3390/biomedicines8090347]
[31]
Silva, M.P.; Fabi, J.P. Food biopolymers-derived nanogels for encapsulation and delivery of biologically active compounds: A perspective review. Food. Hydrocoll. Heal., 2022, 2, 100079.
[http://dx.doi.org/10.1016/j.fhfh.2022.100079]
[32]
Puttasiddaiah, R; Lakshminarayana, R; Somashekar, NL; Gupta, VK; Inbaraj, BS; Usmani, Z Advances in nanofabrication technology for nutraceuticals: New insights and future trends. Bioengineering, 2022, 9(9), 478.
[33]
Agrawal, M.; Ajazuddin; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release, 2017, 260, 61-77.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.019] [PMID: 28549949]
[34]
Meng, R.Y.; Zhao, Y.; Xia, H.Y.; Wang, S.B.; Chen, A.Z.; Kankala, R.K. 2D architectures-transformed conformational nanoarchitectonics for light-augmented nanocatalytic chemodynamic and photothermal/photodynamic-based trimodal therapies. ACS Materials Lett., 2024, 6, 1160-1177. Available from: https://pubs.acs.org/doi/10.1021/acsmaterialslett.3c01615
[35]
Aditya, N.P.; Espinosa, Y.G.; Norton, I.T. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol. Adv., 2017, 35(4), 450-457.
[http://dx.doi.org/10.1016/j.biotechadv.2017.03.012] [PMID: 28377276]
[36]
Ali, A.; Ahmad, U.; Akhtar, J.; Badruddeen; Khan, M.M. Engineered nano scale formulation strategies to augment efficiency of nutraceuticals. J. Funct. Foods, 2019, 62, 103554.
[http://dx.doi.org/10.1016/j.jff.2019.103554]
[37]
Mohammad, ZH; Ahmad, F; Ibrahim, SA; Zaidi, S Application of nanotechnology in different aspects of the food industry. Discover Food, 2022, 2(1), 1-21.
[http://dx.doi.org/10.1007/s44187-022-00013-9]
[38]
Ameta, SK; Rai, AK; Hiran, D; Ameta, R; Ameta, SC Use of nanomaterials in food science. In: Biogenic Nano-Particles and their Use in Agro-ecosystems; SpringerLink, 2020; pp. 457-488.
[http://dx.doi.org/10.1007/978-981-15-2985-6_24]
[39]
Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 2021, 26(6), 1547.
[http://dx.doi.org/10.3390/molecules26061547] [PMID: 33799855]
[40]
Khalil, I.; Yehye, W.A.; Etxeberria, A.E.; Alhadi, A.A.; Dezfooli, S.M.; Julkapli, N.B.M. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants, 2020, 9, 24. Available from: https://www.mdpi.com/2076-3921/9/1/24
[41]
Hussain, Z.; Abourehab, M.A.S.; Khan, S.; Thu, H.E. Silver nanoparticles: A promising nanoplatform for targeted delivery of therapeutics and optimized therapeutic efficacy. Metal Nanoparticles for Drug Delivery and Diagnostic Applications., 2019, 141-173.
[42]
McClements, D.J.; Xiao, H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci. Food, 2017, 1(1), 6.
[http://dx.doi.org/10.1038/s41538-017-0005-1] [PMID: 31304248]
[43]
Milanezi, F.G.; Meireles, L.M.; de Christo Scherer, M.M.; de Oliveira, J.P.; da Silva, A.R.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Guimarães, M.C.C.; Scherer, R. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm. J., 2019, 27(7), 968-974.
[http://dx.doi.org/10.1016/j.jsps.2019.07.005] [PMID: 31997903]
[44]
Yao, L.; Bojic, D.; Liu, M. Applications and safety of gold nanoparticles as therapeutic devices in clinical trials. J. Pharm. Anal., 2023, 13(9), 960-967.
[http://dx.doi.org/10.1016/j.jpha.2023.06.001] [PMID: 37842655]
[45]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res., 2010, 12(7), 2313-2333.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[46]
Lara-Ochoa, S.; Ortega-Lara, W.; Guerrero-Beltrán, C.E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics, 2021, 13(10), 1642.
[http://dx.doi.org/10.3390/pharmaceutics13101642] [PMID: 34683935]
[47]
Torres, F.C.L.; Sousa, E.M.B.D.; Cipreste, M.F. A brief review on hydroxyapatite nanoparticles interactions with biological constituents. J. Biomater. Nanobiotechnol., 2022, 13(1), 24-44.
[http://dx.doi.org/10.4236/jbnb.2022.131002]
[48]
Mousa, M.; Evans, N.D.; Oreffo, R.O.C.; Dawson, J.I. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 2018, 159(159), 204-214.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.024] [PMID: 29331807]
[49]
Mousavi, S.M.; Hashemi, S.A.; Salahi, S.; Hosseini, M.; Amani, A.M.; Babapoor, A. Development of clay nanoparticles toward bio and medical applications; IntechOpen London: UK, 2018, pp. 167-191.
[http://dx.doi.org/10.5772/intechopen.77341]
[50]
Dong, J.; Cheng, Z.; Tan, S.; Zhu, Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin. Drug Deliv., 2021, 18(6), 695-714.
[http://dx.doi.org/10.1080/17425247.2021.1862792] [PMID: 33301349]
[51]
Ahmad, B.; Shabbir, A.; Jaleel, H.; Khan, M.M.A.; Sadiq, Y. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant Biol., 2018, 13(April), 6-15.
[http://dx.doi.org/10.1016/j.cpb.2018.04.002]
[52]
Pulit-Prociak, J.; Długosz, O.; Staroń, A.; Radomski, P.; Domagała, D.; Banach, M. In vitro studies of titanium dioxide nanoparticles modified with glutathione as a potential drug delivery system. Nanotechnol. Rev., 2023, 12(1), 20230126.
[http://dx.doi.org/10.1515/ntrev-2023-0126]
[53]
Musial, J.; Krakowiak, R.; Mlynarczyk, D.T.; Goslinski, T.; Stanisz, B.J. Titanium dioxide nanoparticles in food and personal care products—what do we know about their safety? Nanomaterials, 2020, 10(6), 1110.
[http://dx.doi.org/10.3390/nano10061110] [PMID: 32512703]
[54]
Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Kuhnle, G.G.; Leblanc, J.C.; Lillegaard, I.T.; Moldeus, P.; Mortensen, A.; Oskarsson, A.; Stankovic, I.; Waalkens-Berendsen, I.; Woutersen, R.A.; Wright, M.; Boon, P.; Chrysafidis, D.; Gürtler, R.; Mosesso, P.; Parent-Massin, D.; Tobback, P.; Kovalkovicova, N.; Rincon, A.M.; Tard, A.; Lambré, C. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J., 2018, 16(1), e05088.
[PMID: 32625658]
[55]
Krishnan, V.; Prakash, J.S.; Manigandan, V.; Venkatasubbu, G.D.; Pugazhendhi, A.; Brindhadevi, K.; Kalaivani, T. Synthesis of mesoporous SiO2 nanoparticles and toxicity assessment in early life stages of zebrafish. Microporous Mesoporous Mater., 2022, 330, 111573.
[http://dx.doi.org/10.1016/j.micromeso.2021.111573]
[56]
Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Feng, X.; Shao, L. The toxicity of silica nanoparticles to the immune system. Nanomedicine, 2018, 13(15), 1939-1962.
[http://dx.doi.org/10.2217/nnm-2018-0076] [PMID: 30152253]
[57]
Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. J. Mat. Sci.Technol., 2014, 30(8), 782-790. Available from: https://www.sciencedirect.com/science/article/pii/S1005030214000292
[58]
Yang, Y.; Bao, H.; Chai, Q.; Wang, Z.; Sun, Z.; Fu, C.; Liu, Z.; Liu, Z.; Meng, X.; Liu, T. Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection. Int. J. Nanomedicine, 2019, 14, 5175-5186.
[http://dx.doi.org/10.2147/IJN.S197565] [PMID: 31409986]
[59]
Bannunah, A.M. Biomedical applications of zirconia-based nanomaterials: Challenges and future perspectives. Molecules, 2023, 28(14), 5428.
[http://dx.doi.org/10.3390/molecules28145428] [PMID: 37513299]
[60]
Chen, X.; Zhang, W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev., 2017, 46(3), 734-760.
[http://dx.doi.org/10.1039/C6CS00109B] [PMID: 27942638]
[61]
Schrand, AM; Huang, H; Carlson, C; Schlager, JJ Are diamond nanoparticles cytotoxic? J. Phys. Chem. B., 2007, 111(1), 2-7.
[62]
Alghriany, A.A.I.; Omar, H.E.L.M.; Mahmoud, A.M.; Atia, M.M. Assessment of the toxicity of aluminum oxide and its nanoparticles in the bone marrow and liver of male mice: Ameliorative efficacy of curcumin nanoparticles. ACS Omega, 2022, 7(16), 13841-13852.
[http://dx.doi.org/10.1021/acsomega.2c00195] [PMID: 35559158]
[63]
Alshatwi, A.A.; Subbarayan, P.V.; Ramesh, E.; Al-Hazzani, A.A.; Alsaif, M.A.; Alwarthan, A.A. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells. Food. Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk. Assess., 2013, 30(1), 1-10.
[http://dx.doi.org/10.1080/19440049.2012.729160]
[64]
Allam, V.S.R.R.; Paudel, K.R.; Gupta, G.; Singh, S.K.; Vishwas, S.; Gulati, M.; Gupta, S.; Chaitanya, M.V.N.L.; Jha, N.K.; Gupta, P.K.; Patel, V.K.; Liu, G.; Kamal, M.A.; Hansbro, P.M.; Oliver, B.G.G.; Chellappan, D.K.; Dua, K. Nutraceuticals and mitochondrial oxidative stress: bridging the gap in the management of bronchial asthma. Environ. Sci. Pollut. Res. Int., 2022, 29(42), 62733-62754.
[http://dx.doi.org/10.1007/s11356-022-21454-w] [PMID: 35796922]
[65]
Mandal, M.; Sarkar, M.; Khan, A.; Biswas, M.; Masi, A.; Rakwal, R.; Agrawal, G.K.; Srivastava, A.; Sarkar, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants maintenance of structural individuality and functional blend. Advances in Redox Research, 2022, 5, 100039.
[http://dx.doi.org/10.1016/j.arres.2022.100039]
[66]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[67]
Colitti, M.; Stefanon, B.; Gabai, G.; Gelain, M.; Bonsembiante, F. Oxidative stress and nutraceuticals in the modulation of the immune function: Current knowledge in animals of veterinary interest. Antioxidants, 2019, 8(1), 28.
[http://dx.doi.org/10.3390/antiox8010028] [PMID: 30669304]
[68]
Tiffon, C. The impact of nutrition and environmental epigenetics on human health and disease. Int. J. Mol. Sci., 2018, 19(11), 3425.
[http://dx.doi.org/10.3390/ijms19113425] [PMID: 30388784]
[69]
Jampilek, J.; Kos, J.; Kralova, K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials, 2019, 9(2), 296.
[http://dx.doi.org/10.3390/nano9020296] [PMID: 30791492]
[70]
Bjørklund, G.; Gasmi, A.; Lenchyk, L.; Shanaida, M.; Zafar, S.; Mujawdiya, P.K.; Lysiuk, R.; Antonyak, H.; Noor, S.; Akram, M.; Smetanina, K.; Piscopo, S.; Upyr, T.; Peana, M. The role of astaxanthin as a nutraceutical in health and age-related conditions. Molecules, 2022, 27(21), 7167.
[http://dx.doi.org/10.3390/molecules27217167] [PMID: 36363994]
[71]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[72]
Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[73]
Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate. Food Chem., 2018, 261, 283-291.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.055] [PMID: 29739595]
[74]
Lian, B.; Wu, M.; Feng, Z.; Deng, Y.; Zhong, C.; Zhao, X. Folate-conjugated human serum albumin-encapsulated resveratrol nanoparticles: preparation, characterization, bioavailability and targeting of liver tumors. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 154-165.
[http://dx.doi.org/10.1080/21691401.2018.1548468] [PMID: 30686050]
[75]
Siu, F.; Ye, S.; Lin, H.; Li, S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: Enhanced bioavailability and in vitro anti-inflammatory activity. Int. J. Nanomedicine, 2018, 13, 4133-4144.
[http://dx.doi.org/10.2147/IJN.S164235] [PMID: 30038494]
[76]
Liu, Y.; Liang, X.; Zou, Y.; Peng, Y.; McClements, D.J.; Hu, K. Resveratrol-loaded biopolymer core–shell nanoparticles: Bioavailability and anti-inflammatory effects. Food Funct., 2020, 11(5), 4014-4025.
[http://dx.doi.org/10.1039/D0FO00195C] [PMID: 32322856]
[77]
Alam, M.M.; Abdullah, K.M.; Singh, B.R.; Naqvi, A.H.; Naseem, I. Ameliorative effect of quercetin nanorods on diabetic mice: mechanistic and therapeutic strategies. RSC Adv., 2016, 6(60), 55092-55103.
[http://dx.doi.org/10.1039/C6RA04821H]
[78]
Moon, H.; Lertpatipanpong, P.; Hong, Y.; Kim, C.T.; Baek, S.J. Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. J. Funct. Foods, 2021, 87, 104756.
[http://dx.doi.org/10.1016/j.jff.2021.104756]
[79]
Sarker, M.R.; Franks, S.F. Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience, 2018, 40(2), 73-95.
[http://dx.doi.org/10.1007/s11357-018-0017-z] [PMID: 29679204]
[80]
Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem., 2019, 163, 527-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.016] [PMID: 30553144]
[81]
Shome, S.; Talukdar, A.D.; Choudhury, M.D.; Bhattacharya, M.K.; Upadhyaya, H. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J. Pharm. Pharmacol., 2016, 68(12), 1481-1500.
[http://dx.doi.org/10.1111/jphp.12611] [PMID: 27747859]
[82]
Jaguezeski, A.M.; Gündel, S.S.; Favarin, F.R.; Gündel, A.; Souza, C.F.; Baldissera, M.D.; Cazarotto, C.C.; Volpato, A.; Fortuoso, B.F.; Ourique, A.F.; Da Silva, A.S. Low-dose curcumin-loaded Eudragit L-100-nanocapsules in the diet of dairy sheep increases antioxidant levels and reduces lipid peroxidation in milk. J. Food Biochem., 2019, 43(8), e12942.
[http://dx.doi.org/10.1111/jfbc.12942] [PMID: 31368562]
[84]
Dama, A.; Shpati, K.; Daliu, P.; Dumur, S.; Gorica, E.; Santini, A. Targeting metabolic diseases: The role of nutraceuticals in modulating oxidative stress and inflammation. Nutrients, 2024, 16(4), 507. Available from: https://www.mdpi.com/2072-6643/16/4/507
[85]
Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology, 2020, 28(3), 667-695.
[http://dx.doi.org/10.1007/s10787-020-00690-x] [PMID: 32144521]
[86]
Lin, W.; Zhang, J.; Xu, J.F.; Pi, J. The advancing of selenium nanoparticles against infectious diseases. Front. Pharmacol., 2021, 12, 682284.
[http://dx.doi.org/10.3389/fphar.2021.682284] [PMID: 34393776]
[87]
Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; Bjørklund, G.; Sochor, J.; Kizek, R. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomedicine, 2018, 13, 2107-2128.
[http://dx.doi.org/10.2147/IJN.S157541] [PMID: 29692609]
[88]
Arif, A.; Bhatti, A.; John, P. Therapeutic potential Of Foeniculum vulgare Mill. derived selenium nanoparticles in arthritic Balb/c Mice. Int. J. Nanomedicine, 2019, 14, 8561-8572.
[http://dx.doi.org/10.2147/IJN.S226674] [PMID: 31802869]
[89]
Pi, J.; Shen, L.; Yang, E.; Shen, H.; Huang, D.; Wang, R.; Hu, C.; Jin, H.; Cai, H.; Cai, J.; Zeng, G.; Chen, Z.W. Macrophage-targeted isoniazid–selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli. Angew. Chem. Int. Ed., 2020, 59(8), 3226-3234.
[http://dx.doi.org/10.1002/anie.201912122] [PMID: 31756258]
[90]
Parhizkar, E.; Rashedinia, M.; Karimi, M.; Alipour, S. Design and development of vitamin C-encapsulated proliposome with improved in-vitro and ex-vivo antioxidant efficacy. J. Microencapsul., 2018, 35(3), 301-311.
[http://dx.doi.org/10.1080/02652048.2018.1477845] [PMID: 29781344]
[91]
Jiao, Z.; Wang, X.; Yin, Y.; Xia, J.; Mei, Y. Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. J. Microencapsul., 2018, 35(3), 272-280.
[http://dx.doi.org/10.1080/02652048.2018.1467509] [PMID: 29671362]
[92]
nutrition JETA journal of clinical, 2000 undefined. Safety considerations of polyunsaturated fatty acids. Elsevier. Available from : https://www.sciencedirect.com/science/article/pii/S0002916523069605 [cited 2024 Mar 18
[93]
Richard, D.; Kefi, K.; Barbe, U. Research PBP, 2008 undefined. Polyunsaturated fatty acids as antioxidants. Elsevier. Available from: https://www.sciencedirect.com/science/article/pii/S1043661808000923 [cited 2024 Mar 18
[94]
Calder, P.C. Polyunsaturated fatty acids, inflammation, and immunity. Lipids, 2001, 36(9), 1007-1024.
[http://dx.doi.org/10.1007/s11745-001-0812-7] [PMID: 11724453]
[95]
Jampilek, J.; Kralova, K. Potential of Nanonutraceuticals in Increasing Immunity. Nanomaterials, 2020, 10(11), 2224. Available from: https://www.mdpi.com/2079-4991/10/11/2224/htm [cited 2024 Mar 18
[http://dx.doi.org/10.3390/nano10112224]
[96]
Padmanaban, S; Pully, D; Samrot, A V.; Gosu, V; Sadasivam, N; Park, IK Rising influence of nanotechnology in addressing oxidative stress-related liver disorders. Antioxidants, 2023, 12(7), 1405.
[http://dx.doi.org/10.3390/antiox12071405]
[97]
El-Naggar, M.E.; Al-Joufi, F.; Anwar, M.; Attia, M.F.; El-Bana, M.A. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf. B Biointerfaces, 2019, 177, 389-398.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.024] [PMID: 30785036]
[98]
Granja, A; Frias, I; Neves, AR; Pinheiro, M; Reis, S Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed. Res. Int., 2017, 2017, 5813793.
[http://dx.doi.org/10.1155/2017/5813793]
[99]
Avadhani, K.S.; Manikkath, J.; Tiwari, M.; Chandrasekhar, M.; Godavarthi, A.; Vidya, S.M.; Hariharapura, R.C.; Kalthur, G.; Udupa, N.; Mutalik, S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv., 2017, 24(1), 61-74.
[http://dx.doi.org/10.1080/10717544.2016.1228718] [PMID: 28155509]
[100]
Wu, J.; Wang, Y.; Yang, H.; Liu, X.; Lu, Z. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr. Polym., 2017, 175, 170-177.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.058] [PMID: 28917853]
[101]
H Shariare, M.; Afnan, K.; Iqbal, F.; A Altamimi, M.; Ahamad, S.R.; S Aldughaim, M.; K Alanazi, F.; Kazi, M. Development and optimization of epigallocatechin-3-gallate (EGCG) nano phytosome using design of experiment (DoE) and their In Vivo anti-inflammatory studies. Molecules, 2020, 25(22), 5453.
[http://dx.doi.org/10.3390/molecules25225453] [PMID: 33233756]
[102]
Singh, A.; Ahmad, I.; Akhter, S.; Jain, G.K.; Iqbal, Z.; Talegaonkar, S.; Ahmad, F.J. Nanocarrier based formulation of Thymoquinone improves oral delivery: Stability assessment, in vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2013, 102, 822-832.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.038] [PMID: 23104039]
[103]
Alam, M; Najmi, AK; Ahmad, I; Ahmad, FJ; Akhtar, MJ; Imam, SS Formulation and evaluation of nano lipid formulation containing CNS acting drug: Molecular docking, in-vitro assessment and bioactivity detail in rats. Artif. Cells. Nanomed. Biotechnol., 2018, 46(sup2), 46-57.
[http://dx.doi.org/10.1080/21691401.2018.1451873]
[104]
Carvalho, G.C.; Sábio, R.M.; Chorilli, M. An overview of properties and analytical methods for lycopene in organic nanocarriers. Crit. Rev. Anal. Chem., 2021, 51(7), 674-686.
[PMID: 32412352]
[105]
Carvalho, G.C.; de Camargo, B.A.F.; de Araújo, J.T.C.; Chorilli, M. Lycopene: From tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci. Technol., 2021, 118, 447-458.
[http://dx.doi.org/10.1016/j.tifs.2021.10.015]
[106]
Li, W.; Yalcin, M.; Lin, Q.; Ardawi, M.S.M.; Mousa, S.A. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery. J. Control. Release, 2017, 248, 117-124.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.009] [PMID: 28077264]
[107]
Wei, Y.; Yang, S.; Zhang, L.; Dai, L.; Tai, K.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y.; Mackie, A. Fabrication, characterization and in vitro digestion of food grade complex nanoparticles for co-delivery of resveratrol and coenzyme Q10. Food Hydrocoll., 2020, 105, 105791.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105791]
[108]
Chen, S.; Zhang, Y.; Qing, J.; Han, Y.; McClements, D.J.; Gao, Y. Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocoll., 2020, 103, 105651.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105651]
[109]
Zou, L.; Zheng, B.; Zhang, R.; Zhang, Z.; Liu, W.; Liu, C.; Xiao, H.; McClements, D.J. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Res. Int., 2016, 81, 74-82.
[http://dx.doi.org/10.1016/j.foodres.2015.12.035]
[110]
Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Lett., 2020, 12(1), 45.
[http://dx.doi.org/10.1007/s40820-020-0383-9] [PMID: 34138283]
[111]
Cano, A.I.; Chiralt, A.; González-Martínez, C. Silver composite materials and food packaging. Composites Materials for Food Packaging., 2017, (Nov), 123-151.
[112]
Gupta, R.; Xie, H. Nanoparticles in daily life: Applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(3), 209-230.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009] [PMID: 30317972]
[113]
Teow, Y.; Asharani, P.V.; Hande, M.P.; Valiyaveettil, S. Health impact and safety of engineered nanomaterials. Chem. Commun., 2011, 47(25), 7025-7038.
[http://dx.doi.org/10.1039/c0cc05271j] [PMID: 21479319]
[114]
Valentini, X; Rugira, P; Frau, A; Tagliatti, V; Conotte, R; Laurent, S Hepatic and renal toxicity induced by TiO2 nanoparticles in rats: A morphological and metabonomic study. J. Toxicol., 2019, 2019, 5767012.
[115]
Mao, B.H.; Tsai, J.C.; Chen, C.W.; Yan, S.J.; Wang, Y.J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 2016, 10(8), 1021-1040.
[http://dx.doi.org/10.1080/17435390.2016.1189614] [PMID: 27240148]
[116]
Valdiglesias, V.; Costa, C.; Sharma, V.; Kiliç, G.; Pásaro, E.; Teixeira, J.P.; Dhawan, A.; Laffon, B. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem. Toxicol., 2013, 57, 352-361.
[http://dx.doi.org/10.1016/j.fct.2013.04.010] [PMID: 23597443]
[117]
Guo, X; Chen, T; Guo, X; Chen, T. Progress in genotoxicity evaluation of engineered nanomaterials. In: Toxicity and Risk Assessment; intechopen, 2015.
[http://dx.doi.org/10.5772/61013]
[118]
Bi, J.; Mo, C.; Li, S.; Huang, M.; Lin, Y.; Yuan, P.; Liu, Z.; Jia, B.; Xu, S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater. Sci., 2023, 11(12), 4151-4183.
[http://dx.doi.org/10.1039/D3BM00271C] [PMID: 37161951]
[119]
Manke, A; Wang, L; Rojanasakul, Y Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int., 2013, 2013, 942916.
[http://dx.doi.org/10.1155/2013/942916]
[120]
Senapati, V.A.; Kumar, A.; Gupta, G.S.; Pandey, A.K.; Dhawan, A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem. Toxicol., 2015, 85, 61-70.
[http://dx.doi.org/10.1016/j.fct.2015.06.018] [PMID: 26146191]
[121]
Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 64-75.
[PMID: 24673904]
[122]
Kalpana, VN; Devi Rajeswari, V A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl., 2018, 2018, 3569758.
[123]
Mouneyrac, C.; Buffet, P.E.; Poirier, L.; Zalouk-Vergnoux, A.; Guibbolini, M.; Faverney, C.R.; Gilliland, D.; Berhanu, D.; Dybowska, A.; Châtel, A.; Perrein-Ettajni, H.; Pan, J.F.; Thomas-Guyon, H.; Reip, P.; Valsami-Jones, E. Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ. Sci. Pollut. Res. Int., 2014, 21(13), 7899-7912.
[http://dx.doi.org/10.1007/s11356-014-2745-7] [PMID: 24647584]
[124]
Kansara, K.; Patel, P.; Shah, D.; Shukla, R.K.; Singh, S.; Kumar, A.; Dhawan, A. TiO 2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen., 2015, 56(2), 204-217.
[http://dx.doi.org/10.1002/em.21925] [PMID: 25524809]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy