Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Investigation of Anti-Diabetic Properties of Ceylon Cinnamon Bark Extracts by In-Vitro α-Amylase and α-Glucosidase Inhibition, Molecular Modeling, and Postprandial Blood Glucose Regulation for Potential Nutraceuticals

In Press, (this is not the final "Version of Record"). Available online 30 May, 2024
Author(s): Chanaka Sandaruwan, Thusitha Kusal, Asitha Siriwardhana*, Wasantha Lankathilake, Kosala Purasinhala, Sahan Gunarathne, Sanjeewa Rodrigo, Manju Gunawardene, Veranja Karunaratne and Gehan A.J. Amaratunga
Published on: 30 May, 2024

Article ID: e300524230538

DOI: 10.2174/0126659786277971240508050021

Price: $95

Abstract

Background: Diabetes Mellitus (DM) can appear due to the absence of insulin (DM1- type 1) or poor response of cells to insulin (DM2-type 2). Even though DM1 cannot be controlled using general treatments, DM2 can be easily controlled or prevented using pharmaceuticals, nutraceuticals, or dietary practices. Ceylon cinnamon (Cinnamomum zeylanicum) is one such natural remedy that has been consumed against elevated blood glucose levels in the past. Cinnamon and different types of cinnamon extracts have been scientifically tested for their activities on the inhibition of α-amylase and α-glucosidase enzymes that are responsible for carbohydrate metabolism and are effective in blood glucose regulation. However, the combined effect of aqueous and ethanol extracts of cinnamon bark on blood glucose regulation is still lacking. In this study, Water Extract of Cinnamon (CWE), Ethanol Extracts of Cinnamon (hot ethanol extract of cinnamon-CHEE, cold ethanol extract of cinnamon-CEE, and 50% ethanol extract of cinnamon- CEE-50) were studied for their sugar-controlling properties. Objectives: This study was performed to identify the efficacy of different cinnamon extracts on the inhibition of α-amylase and α-glucosidase enzymes, followed by animal studies to confirm the use of the extracts in nutraceutical formulations. Methods: Water and ethanol-based extraction method was used to prepare cinnamon extracts. These extracts have been scientifically tested for their activities on the inhibition of α-amylase and α-glucosidase enzymes. Molecular docking studies were used to identify the binding of the active molecules to the substrate binding sites of α-amylase and α-glucosidase. In-vivo time dependence postprandial blood glucose regulation studies have been performed with healthy Wistar male rats. Results: Yields of the CHEE, CEE, and CWE were 14±2%, 12±2%, and 8±1% respectively. According to the LCMS data, the major component in the CEE was cinnamaldehyde. Both CWE and CEE were subjected to the Total Polyphenol assay (TPC) and Total Flavonoids (TFC) assays. The TPC of CWE and CEE were 117±1 mg (Gal)/g and 170±10 mg (Gal)/g, while the TFC of CWE and CEE were 359±1 mg (Qc)/g and 254±4 mg (Qc)/g, respectively. In the α-amylase inhibition assay, Acarbose; a known α-amylase inhibitor, and CEE showed IC50 values of 65.4 ppm and 2.6 ppm, while CWE failed to show inhibition against α-amylase. In the α-glucosidase inhibition assay, Acarbose; a known α-amylase inhibitor, CEE, and CWE showed IC50 values of 312 ppm, 4.5 ppm, and 1.3 ppm, respectively. In-vivo time dependence postprandial blood glucose regulation studies that have been performed with healthy Wistar male rats showed a lowering of blood glucose concentrations by 22%, 11%, and 10% of glucose at 30 min, 60 min, and 90 min compared to the control group. Conclusion: The CEE contains polyphenols and flavonoids and is effective in inhibiting both α- amylase and α-glucosidase. The CWE also contains polyphenols and a comparatively higher level of flavonoids and is effective in inhibiting α-glucosidase while not affecting α-amylase inhibition. Overall, the IC50 data, TPC data, and TFC data proposed that the inhibition of carbohydrate hydrolyzing enzymes by polyphenols may depend on the polarity of particular polyphenols. Based on the rat trials, it can be concluded that the 1:1 combination of CWE and CEE may be useful in formulating postprandial blood glucose level-regulating nutraceuticals.

[1]
Andrade-Cetto, A.; Becerra-Jiménez, J.; Cárdenas-Vázquez, R. Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J. Ethnopharmacol., 2008, 116(1), 27-32.
[http://dx.doi.org/10.1016/j.jep.2007.10.031] [PMID: 18082348]
[2]
Romeo, G.R.; Lee, J.; Mulla, C.M.; Noh, Y.; Holden, C.; Lee, B.C. Influence of cinnamon on glycemic control in individuals with prediabetes: a randomized controlled trial. J. Endocr. Soc., 2020, 4(11), bvaa094.
[http://dx.doi.org/10.1210/jendso/bvaa094] [PMID: 33123653]
[3]
Verspohl, E.J.; Bauer, K.; Neddermann, E. Antidiabetic effect ofCinnamomum cassia and Cinnamomum zeylanicum In vivo and In vitro. Phytother. Res., 2005, 19(3), 203-206.
[http://dx.doi.org/10.1002/ptr.1643] [PMID: 15934022]
[4]
Westman, E.C. Type 2 diabetes mellitus: A pathophysiologic perspective. Front. Nutr., 2021, 8, 707371.
[http://dx.doi.org/10.3389/fnut.2021.707371] [PMID: 34447776]
[5]
Pathak, A.; Pathak, R. Study of life style habits on risk of type 2 diabetes. Int. J. Appl. Basic Med. Res., 2012, 2(2), 92-96.
[http://dx.doi.org/10.4103/2229-516X.106349] [PMID: 23776819]
[6]
Blair, M. Diabetes mellitus review. Urol. Nurs., 2016, 36(1), 27-36.
[http://dx.doi.org/10.7257/1053-816X.2016.36.1.27] [PMID: 27093761]
[7]
Haller, M.J.; Atkinson, M.A.; Schatz, D. Type 1 diabetes mellitus: Etiology, presentation, and management. Pediatr. Clin. North Am., 2005, 52(6), 1553-1578.
[http://dx.doi.org/10.1016/j.pcl.2005.07.006] [PMID: 16301083]
[8]
Janež, A.; Guja, C.; Mitrakou, A. Insulin therapy in adults with type 1 diabetes mellitus: A narrative review. Diabetes Ther., 2020, 11(2), 387-409.
[http://dx.doi.org/10.1007/s13300-019-00743-7] [PMID: 31902063]
[9]
Salehi, P.; Asghari, B.; Esmaeili, M.A.; Dehghan, H.; Ghazi, I. α-Glucosidase and α-amylase inhibitory effect and antioxidant activity of ten plant extracts traditionally used in Iran for diabetes. J. Med. Plants Res., 2013, 7, 257-266.
[10]
Rang, H.; Dale, M.M.; Ritter, J.; Moore, P. Pharmacology Churchill Livingstone; New York, 2003.
[11]
Kimmel, B.; Inzucchi, S.E. Oral agents for type 2 diabetes: An update. Clin. Diabetes, 2005, 23(2), 64-76.
[http://dx.doi.org/10.2337/diaclin.23.2.64]
[12]
Nair, S.S.; Kavrekar, V.; Mishra, A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol., 2013, 3, 128-131.
[13]
Shihabudeen, H.M.S.; Priscilla, D.H.; Thirumurugan, K. Cinnamon extract inhibits a-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutr. Metab., 2011, 8, 1-p11.
[14]
Beejmohun, V.; Peytavy-Izard, M.; Mignon, C. Acute effect of Ceylon cinnamon extract on postprandial glycemia: Alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC Complement. Altern. Med., 2014, 14(1), 351.
[http://dx.doi.org/10.1186/1472-6882-14-351] [PMID: 25249234]
[15]
Coman, C.; Rugina, O.D.; Socaciu, C. Plants and natural compounds with antidiabetic action. Not. Bot. Horti Agrobot. Cluj-Napoca, 2012, 40(1), 314-325.
[http://dx.doi.org/10.15835/nbha4017205]
[16]
Rai, M.K. A review on some antidiabetic plants of India. Anc. Sci. Life, 1995, 14(3), 168-180.
[PMID: 22556695]
[17]
Wasana, K.G.P.; Attanayake, A.P.; Jayatilaka, K.A.P.W.; Weerarathna, T.P. Antidiabetic activity of widely used medicinal plants in the Sri Lankan traditional healthcare system: new insight to medicinal flora in Sri Lanka. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6644004] [PMID: 33628307]
[18]
Choudhury, H.; Pandey, M.; Hua, C.K. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med., 2018, 8(3), 361-376.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[19]
Senevirathne, B.S.; Jayasinghe, M.A.; Pavalakumar, D.; Siriwardhana, C.G. Ceylon cinnamon: a versatile ingredient for futuristic diabetes management. J Fut Foods, 2022, 2(2), 125-142.
[http://dx.doi.org/10.1016/j.jfutfo.2022.03.010]
[20]
Kim, S.H.; Hyun, S.H.; Choung, S.Y. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J. Ethnopharmacol., 2006, 104(1-2), 119-123.
[http://dx.doi.org/10.1016/j.jep.2005.08.059] [PMID: 16213119]
[21]
Qin, B.; Nagasaki, M.; Ren, M.; Bajotto, G.; Oshida, Y.; Sato, Y. Cinnamon extract prevents the insulin resistance induced by a high-fructose diet. Horm. Metab. Res., 2004, 36(2), 119-125.
[http://dx.doi.org/10.1055/s-2004-814223] [PMID: 15002064]
[22]
Qin, B.; Panickar, K.S.; Anderson, R.A. Cinnamon: Potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J. Diabetes Sci. Technol., 2010, 4(3), 685-693.
[http://dx.doi.org/10.1177/193229681000400324] [PMID: 20513336]
[23]
Blahová, J.; Svobodová, Z. Assessment of coumarin levels in ground cinnamon available in the Czech retail market. ScientificWorldJournal, 2012, 2012, 1-4.
[http://dx.doi.org/10.1100/2012/263851] [PMID: 22761548]
[24]
Ranasinghe, P.; Galappaththy, P. Health benefits of Ceylon cinnamon (Cinnamomum zeylanicum): A summary of the current evidence. Ceylon Med. J., 2016, 61(1), 1-5.
[25]
Ranasinghe, P.; Jayawardena, R.; Pigera, S. Evaluation of pharmacodynamic properties and safety of Cinnamomum zeylanicum (Ceylon cinnamon) in healthy adults: a phase I clinical trial. BMC Complement. Altern. Med., 2017, 17(1), 550.
[http://dx.doi.org/10.1186/s12906-017-2067-7] [PMID: 29282046]
[26]
Spence, C. Cinnamon: The historic spice, medicinal uses, and flavour chemistry. Int. J. Gastron. Food Sci., 2023, 100858.
[27]
Ranasinghe, P.; Gunatilake, M.; Gunapala, N. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy Res., 2012, 4(2), 73-79.
[http://dx.doi.org/10.4103/0974-8490.94719] [PMID: 22518078]
[28]
Anderson, R.A. Chromium and polyphenols from cinnamon improve insulin sensitivity. Proc. Nutr. Soc., 2008, 67(1), 48-53.
[http://dx.doi.org/10.1017/S0029665108006010] [PMID: 18234131]
[29]
Aryaeian, N.; Khorshidi Sedehi, S.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran, 2017, 31(1), 886-892.
[http://dx.doi.org/10.14196/mjiri.31.134] [PMID: 29951434]
[30]
Tuzcu, Z.; Orhan, C.; Sahin, N.; Juturu, V.; Sahin, K. Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxid. Med. Cell. Longev., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/1583098] [PMID: 28396714]
[31]
Hapsari, N.R.P.; Wijayanti, C. The potency of cinnamon as an anti-diabetic and anti-covid19 based on its mineral content and phenolic compounds. J. Phys. Conf. Ser., 1751, 012105.
[32]
Dubey, S.; Ganeshpurkar, A.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Glycolytic enzyme inhibitory and antiglycation potential of rutin. Future J. Pharmac. Sci., 2017, 3(2), 158-162.
[http://dx.doi.org/10.1016/j.fjps.2017.05.005]
[33]
Oboh, G.; Ogunsuyi, O.B.; Ogunbadejo, M.D.; Adefegha, S.A. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. Yao Wu Shi Pin Fen Xi, 2016, 24(3), 627-634.
[PMID: 28911570]
[34]
Sheng, Z.; Dai, H.; Pan, S.; Wang, H.; Hu, Y.; Ma, W. Isolation and characterization of an α-glucosidase inhibitor from Musa spp. (Baxijiao) flowers. Molecules, 2014, 19(7), 10563-10573.
[http://dx.doi.org/10.3390/molecules190710563] [PMID: 25045894]
[35]
Uduwela, H.; Deraniyagala, S.; Thiripuranathar, G. Antioxidant and anti-inflammatory potential of the aqueous extract of the peel of a sri lankan variety of nephelium lappaceum linn. World J. Pharm. Res., 2019, 8, 154-166.
[36]
Dissanayake, D.; Deraniyagala, S.A.; Hettiarachchi, C.; Thiripuranathar, G. The study of antioxidant and antibacterial properties of skin, seeds and leaves of the Sri Lankan variety of pumpkin. IOSR J. Pharm., 2018, 8, 43-48.
[37]
Akilen, R.; Tsiami, A.; Devendra, D.; Robinson, N. Glycated haemoglobin and blood pressure‐lowering effect of cinnamon in multi‐ethnic Type 2 diabetic patients in the UK: A randomized, placebo‐controlled, double‐blind clinical trial. Diabet. Med., 2010, 27(10), 1159-1167.
[http://dx.doi.org/10.1111/j.1464-5491.2010.03079.x] [PMID: 20854384]
[38]
Crawford, P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: A randomized, controlled trial. J. Am. Board Fam. Med., 2009, 22(5), 507-512.
[http://dx.doi.org/10.3122/jabfm.2009.05.080093] [PMID: 19734396]
[39]
Khan, A.; Safdar, M.; Ali Khan, M.M.; Khattak, K.N.; Anderson, R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care, 2003, 26(12), 3215-3218.
[http://dx.doi.org/10.2337/diacare.26.12.3215] [PMID: 14633804]
[40]
Mang, B.; Wolters, M.; Schmitt, B. Effects of a cinnamon extract on plasma glucose, HbA 1c, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Invest., 2006, 36(5), 340-344.
[http://dx.doi.org/10.1111/j.1365-2362.2006.01629.x] [PMID: 16634838]
[41]
Khan, R.; Khan, Z.; Shah, S.H. Cinnamon may reduce glucose, lipid and cholesterol level in type 2 diabetic individuals. Pak. J. Nutr., 2010, 9(5), 430-433.
[http://dx.doi.org/10.3923/pjn.2010.430.433]
[42]
Suppapitiporn, S; Kanpaksi, N The effect of cinnamon cassia powder in type 2 diabetes mellitus. J Med Assoc Thail Chotma thangphaet, 2006, 89, S200-5.
[43]
Ziegenfuss, T.N.; Hofheins, J.E.; Mendel, R.W.; Landis, J.; Anderson, R.A. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J. Int. Soc. Sports Nutr., 2006, 3(2), 45-53.
[http://dx.doi.org/10.1186/1550-2783-3-2-45] [PMID: 18500972]
[44]
Jivraj, M.; Martini, L.G.; Thomson, C.M. An overview of the different excipients useful for the direct compression of tablets. Pharm. Sci. Technol. Today, 2000, 3(2), 58-63.
[http://dx.doi.org/10.1016/S1461-5347(99)00237-0] [PMID: 10664574]
[45]
Kikuta, J.I.; Kitamori, N. Effect of mixing time on the lubricating properties of magnesium stearate and the final characteristics of the compressed tablets. Drug Dev. Ind. Pharm., 1994, 20(3), 343-355.
[http://dx.doi.org/10.3109/03639049409050187]
[46]
Ali, J.; Saigal, N.; Baboota, S.; Ahuja, A. Microcrystalline cellulose as a versatile excipient in drug research. J. Young Pharm., 2009, 1(1), 6.
[http://dx.doi.org/10.4103/0975-1483.51868]
[47]
Shangraw, R.F. Compressed tablets by direct compression, Pharmaceutical dosage forms. Tablets, 1989, 1, 195-246.
[48]
Anil, S.K.; Sonal, S.; Vikas, W. A review on effervescent tablet. Int Res J Modern Eng Technol Sci, 2022, 4, 2113-2121.
[49]
Patel, S.G.; Siddaiah, M. Formulation and evaluation of effervescent tablets: A review. J. Drug Deliv. Ther., 2018, 8(6), 296-303.
[http://dx.doi.org/10.22270/jddt.v8i6.2021]
[50]
Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery: A review. Pharm. Sci. Technol. Today, 2000, 3(4), 138-145.
[http://dx.doi.org/10.1016/S1461-5347(00)00247-9] [PMID: 10754543]
[51]
Subash Babu, P.; Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde: A potential antidiabetic agent. Phytomedicine, 2007, 14(1), 15-22.
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[52]
Zhang, W.; Xu, Y.; Guo, F.; Meng, Y.; Li, M. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin. Med. J., 2008, 121(21), 2124-2128.
[http://dx.doi.org/10.1097/00029330-200811010-00003] [PMID: 19080170]
[53]
Zhu, R.; Liu, H.; Liu, C. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res., 2017, 122, 78-89.
[http://dx.doi.org/10.1016/j.phrs.2017.05.019] [PMID: 28559210]
[54]
Anderson, R.A.; Broadhurst, C.L.; Polansky, M.M. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem., 2004, 52(1), 65-70.
[http://dx.doi.org/10.1021/jf034916b] [PMID: 14709014]
[55]
Im, K.; Issac, A.; Nm, J.; Ninan, E.; Maliakel, B.; Kuttan, R. Effects of the polyphenol content on the anti-diabetic activity of Cinnamomum zeylanicum extracts. Food Funct., 2014, 5(9), 2208-2220.
[http://dx.doi.org/10.1039/C4FO00130C] [PMID: 25051315]
[56]
Li, R.; Liang, T.; Xu, L.; Li, Y.; Zhang, S.; Duan, X. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism. Food Chem. Toxicol., 2013, 51, 419-425.
[http://dx.doi.org/10.1016/j.fct.2012.10.024] [PMID: 23127600]
[57]
Hayward, N.J.; McDougall, G.J.; Farag, S. Cinnamon shows antidiabetic properties that are species-specific: effects on enzyme activity inhibition and starch digestion. Plant Foods Hum. Nutr., 2019, 74(4), 544-552.
[http://dx.doi.org/10.1007/s11130-019-00760-8] [PMID: 31372918]
[58]
Adisakwattana, S.; Lerdsuwankij, O.; Poputtachai, U.; Minipun, A.; Suparpprom, C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods Hum. Nutr., 2011, 66(2), 143-148.
[http://dx.doi.org/10.1007/s11130-011-0226-4] [PMID: 21538147]
[59]
Kaushal, J.; Singh, G.; Arya, S.K. Emerging trends and future prospective in enzyme technology. In: In: Value-Addition in Food Products and Processing Through Enzyme Technology; Elsevier, 2022; pp. 491-1.
[60]
Kumari, A.; Singh, K.; Kayastha, M. α-Amylase: General properties, mechanism and biotechnological applications: A review. Curr. Biotechnol., 2012, 1, 98-107.
[61]
Sitrin, M.D. Digestion and absorption of carbohydrates and proteins.The gastrointestinal system: Gastrointestinal, nutritional and hepatobiliary physiology; Springer, 2014, pp. 137-158.
[http://dx.doi.org/10.1007/978-94-017-8771-0_6]
[62]
Smith, M.E.; Morton, D.G. The digestive system: systems of the body series; Elsevier Health Sciences, 2011.
[63]
Coniff, R.; Krol, A. Acarbose: A review of US clinical experience. Clin. Ther., 1997, 19(1), 16-26.
[http://dx.doi.org/10.1016/S0149-2918(97)80069-0] [PMID: 9083705]
[64]
Martin, A.E.; Montgomery, P.A. Acarbose: An α-glucosidase inhibitor. Am. J. Health Syst. Pharm., 1996, 53(19), 2277-2290.
[http://dx.doi.org/10.1093/ajhp/53.19.2277] [PMID: 8893066]
[65]
Rosak, C.; Mertes, G. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes Metab. Syndr. Obes., 2012, 5, 357-367.
[http://dx.doi.org/10.2147/DMSO.S28340] [PMID: 23093911]
[66]
Abbas, G.; Al-Harrasi, A.; Hussain, H. α-glucosidase enzyme inhibitors from natural products. In: In: Discovery and Development of Antidiabetic Agents from Natural Products; Elsevier , 2016; pp. 251-69.
[67]
Assefa, S.T.; Yang, E.Y.; Chae, S.Y. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants, 2019, 9(1), 2.
[http://dx.doi.org/10.3390/plants9010002] [PMID: 31861279]
[68]
Terra, W.R.; Ferreira, C. Biochemistry and molecular biology of digestion.Insect molecular biology and biochemistry; Elsevier, 2012, pp. 365-418.
[http://dx.doi.org/10.1016/B978-0-12-384747-8.10011-X]
[69]
Miller, N.; Joubert, E. Critical assessment of in vitro screening of α-glucosidase inhibitors from plants with acarbose as a reference standard. Planta Med., 2022, 88(12), 1078-1091.
[http://dx.doi.org/10.1055/a-1557-7379] [PMID: 34662924]
[70]
Rabasa‐Lhoret, R; Chiasson, J L α‐Glucosidase inhibitors, International textbook of diabetes mellitus. Wiley Online Library, 2003.
[71]
Hullatti, K.; Telagari, M. In-vitro α-amylase and α-glucosidase inhibitory activity of adiantum caudatum linn. and celosia argentea linn. extracts and fractions. Indian J. Pharmacol., 2015, 47(4), 425-429.
[http://dx.doi.org/10.4103/0253-7613.161270] [PMID: 26288477]
[72]
Shen, X.; Saburi, W.; Gai, Z. Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(6), 1382-1391.
[http://dx.doi.org/10.1107/S139900471500721X] [PMID: 26057678]
[73]
Williams, L.K.; Zhang, X.; Caner, S. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nat. Chem. Biol., 2015, 11(9), 691-696.
[http://dx.doi.org/10.1038/nchembio.1865] [PMID: 26214255]
[74]
Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem., 2022, 372, 131231.
[http://dx.doi.org/10.1016/j.foodchem.2021.131231] [PMID: 34624776]
[75]
Oboh, G.; Ademosun, A.O.; Ayeni, P.O.; Omojokun, O.S.; Bello, F. Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comp. Clin. Pathol., 2015, 24(5), 1103-1110.
[http://dx.doi.org/10.1007/s00580-014-2040-5]
[76]
Tonsic, B.R.; Correa, V.G.; Garcia-Manieri, J.A.A.; Bracht, A.; Peralta, R.M. An in vivo approach to the reported effects of phenolic acids and flavonoids on the pancreatic α-amylase activity. Food Biosci., 2023, 51, 102357.
[http://dx.doi.org/10.1016/j.fbio.2023.102357]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy