Generic placeholder image

Journal of Current Toxicology and Venomics

Editor-in-Chief

ISSN (Print): 2950-5704
ISSN (Online): 2950-5712

Review Article

Scorpion Peptides from Buthus martensii Karsch Venom with Dual Functions: Their Pharmaceutic Potential for Cancer Pain Therapy

Author(s): Sylvanus Kampo*, David Zawumya Kolbilla and Aaron Bayor Babu

Volume 4, 2024

Published on: 28 May, 2024

Article ID: e280524230381 Pages: 10

DOI: 10.2174/0126661217299553240505162816

Price: $65

Abstract

Buthus martensii Karsch (BmK) scorpion venom and its extracts are compounds found to contain a mixture of peptides with antitumor and analgesic activities. The extracts also contain polypeptides, lipids, nucleotides, mucoproteins, and other unknown substances showing potential therapeutic application. Finding medically relevant toxins, a range of peptides have been purified from BmK scorpion venom. These scorpion toxins are believed to modulate pain pathways to treat pain and cancer. This study aims to review the literature on BmK scorpion peptides with dual functions, their analgesic effects, and their mechanism of action in pain treatments and cancer. We reviewed the literature published between 1990 and 2023 from various databases and identified 68 articles suitable for our narrative review. In 1994, the first BmK scorpion peptide with an analgesic effect was purified. Since then, more analgesic peptides have been purified, including BmK AGAP, BmK AGAP-SYPU2, BmK AGP, BmK AGP-SYPU1, BmK AGP-SYPU2, BmK AS, and BmK iT2. Studies have demonstrated that these peptides bind to voltage sodium channels and inhibit the inactivation of the activated sodium channels to block neuron transmission. The analgesic activities of these peptides have been examined on different pain stimuli, resulting in strong analgesic and antitumor effects. Moreover, the antitumor activities of these peptides have been investigated in vitro and in vivo. The findings showed that the analgesic peptides may have antitumor effects. Based on their dual functions, these peptides have the potential to be developed as practical therapeutic agents for the treatment of cancer-related pain.

[1]
Li Z, Aninditha T, Griene B, et al. Burden of cancer pain in developing countries: A narrative literature review. Clinicoecon Outcomes Res 2018; 10: 675-91.
[http://dx.doi.org/10.2147/CEOR.S181192] [PMID: 30464561]
[2]
Breivik H, Cherny N, Collett B, et al. Cancer-related pain: A pan-European survey of prevalence, treatment, and patient attitudes. Ann Oncol 2009; 20(8): 1420-33.
[http://dx.doi.org/10.1093/annonc/mdp001] [PMID: 19244085]
[3]
Jain PN, Pai K, Chatterjee A. The prevalence of severe pain, its etiopathological characteristics and treatment profile of patients referred to a tertiary cancer care pain clinic. Indian J Palliat Care 2015; 21(2): 148-51.
[http://dx.doi.org/10.4103/0973-1075.156467] [PMID: 26009666]
[4]
Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007; 57(2): 75-89.
[http://dx.doi.org/10.3322/canjclin.57.2.75] [PMID: 17392385]
[5]
Li Y, Ma J, Lu G, et al. Hydromorphone for cancer pain. Cochrane Libr 2021; 2021(8): CD011108.
[http://dx.doi.org/10.1002/14651858.CD011108.pub3] [PMID: 34350974]
[6]
Sinatra R. Causes and consequences of inadequate management of acute pain. Pain Med 2010; 11(12): 1859-71.
[http://dx.doi.org/10.1111/j.1526-4637.2010.00983.x] [PMID: 21040438]
[7]
Thapa D, Rastogi V, Ahuja V. Cancer pain management-current status. J Anaesthesiol Clin Pharmacol 2011; 27(2): 162-8.
[http://dx.doi.org/10.4103/0970-9185.81820] [PMID: 21772673]
[8]
Carr DB, Goudas LC, Balk EM, Bloch R, Ioannidis JP, Lau J. Evidence report on the treatment of pain in cancer patients. J Natl Cancer Inst Monogr 2004; 2004(32): 23-31.
[http://dx.doi.org/10.1093/jncimonographs/lgh012] [PMID: 15263038]
[9]
O’Brien CP. Drug addiction and drug abuse. In: Goodman and Gilman are the pharmacological basis of therapeutics. 2006; 11: pp. 607-27.
[10]
Niu DG, Peng F, Zhang W, et al. Morphine promotes cancer stem cell properties, contributing to chemoresistance in breast cancer. Oncotarget 2015; 6(6): 3963-76.
[http://dx.doi.org/10.18632/oncotarget.2894] [PMID: 25686831]
[11]
Yang HF, Yu M, Jin HD, et al. Fentanyl promotes breast cancer cell stemness and epithelial-mesenchymal transition by upregulating α1, 6-fucosylation via the Wnt/β-catenin signaling pathway. Front Physiol 2017; 8: 510.
[http://dx.doi.org/10.3389/fphys.2017.00510] [PMID: 28798691]
[12]
Mikaelian AG, Traboulay E, Zhang XM, et al. Pleiotropic anticancer properties of scorpion venom peptides: Rhopalurus princeps venom as an anticancer agent. Drug Des Devel Ther 2020; 14: 881-93.
[http://dx.doi.org/10.2147/DDDT.S231008] [PMID: 32161447]
[13]
Fet V, Sissom WD, Lowe G, Braunwalder ME. Catalog of the scorpions of the world (1758-1998). New York Entomological Society 2000.
[14]
Chen N, Xu S, Zhang Y, Wang F. Animal protein toxins: Origins and therapeutic applications. Biophys Rep 2018; 4(5): 233-42.
[http://dx.doi.org/10.1007/s41048-018-0067-x] [PMID: 30533488]
[15]
Mullen GR, Sissom WD. ScorpionsMedical and veterinary entomology. Academic Press 2019; pp. 489-504.
[http://dx.doi.org/10.1016/B978-0-12-814043-7.00023-6]
[16]
Amr ZS, Abu Baker MA, Al-Saraireh M, Warrell DA. Scorpions and scorpion sting envenoming (scorpionism) in the Arab Countries of the Middle East. Toxicon 2021; 191: 83-103.
[http://dx.doi.org/10.1016/j.toxicon.2020.12.017] [PMID: 33387549]
[17]
Chippaux JP, Goyffon M. Epidemiology of scorpionism: A global appraisal. Acta Trop 2008; 107(2): 71-9.
[http://dx.doi.org/10.1016/j.actatropica.2008.05.021] [PMID: 18579104]
[18]
Ding J, Chua PJ, Bay BH, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp Biol Med 2014; 239(4): 387-93.
[http://dx.doi.org/10.1177/1535370213513991] [PMID: 24599885]
[19]
Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion venom-toxins that aid in drug development: A review. Int J Pept Res Ther 2019; 25(1): 27-37.
[http://dx.doi.org/10.1007/s10989-018-9721-x] [PMID: 32214927]
[20]
Kampo S, Ahmmed B, Zhou T, et al. Scorpion venom analgesic peptide, BmK AGAP inhibits stemness and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Front Oncol 2019; 9: 21.
[http://dx.doi.org/10.3389/fonc.2019.00021] [PMID: 30740360]
[21]
Fratini F, Cilia G, Turchi B, Felicioli A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130: 91-103.
[http://dx.doi.org/10.1016/j.toxicon.2017.02.020] [PMID: 28242227]
[22]
Lin King JV, Emrick JJ, Kelly MJS, et al. A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain. Cell 2019; 178(6): 1362-1374.e16.
[http://dx.doi.org/10.1016/j.cell.2019.07.014] [PMID: 31447178]
[23]
Wang QZ, Zhang JH, Tang L. Isolation, purification and a study on the analgesic effect of the analgesic peptide from scorpion venom of Buthus martensiiKarsch. J Shenyang Coll Pharm 1994; 11: 273-7.
[24]
Shao JH, Cui Y, Zhao MY, Wu CF, Liu YF, Zhang JH. Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensiiKarsch. Peptides 2014; 53: 89-96.
[http://dx.doi.org/10.1016/j.peptides.2013.10.023] [PMID: 24269605]
[25]
Shao J, Zhang R, Ge X, Yang B, Zhang J. Analgesic peptides in Buthus martensiiKarsch: A traditional Chinese animal medicine. 2007; 2(2): 45-50.
[26]
Wang Y, Wang L, Cui Y, et al. Purification, characterization and functional expression of a new peptide with an analgesic effect from Chinese scorpion Buthus martensiiKarsch (BmK AGP‐SYPU1). Biomed Chromatogr 2011; 25(7): 801-7.
[http://dx.doi.org/10.1002/bmc.1519] [PMID: 20945457]
[27]
Zhang R, Yang Z, Liu YF, Cui Y, Zhang JH. Purification, characterization and cDNA cloning of an analgesic peptide from the Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2). Mol Biol 2011; 45(6): 956-62.
[PMID: 22295565]
[28]
Guan RJ, Wang CG, Wang M, Wang DC. A depressant insect toxin with a novel analgesic effect from scorpion Buthus martensii Karsch. Biochim Biophys Acta Protein Struct Mol Enzymol 2001; 1549(1): 9-18.
[http://dx.doi.org/10.1016/S0167-4838(01)00241-2] [PMID: 11566364]
[29]
Guan RJ, Wang M, Wang D, Wang DC. A new insect neurotoxin AngP1 with analgesic effect from the scorpion Buthus martensiiKarsch: purification and characterization. J Pept Res 2001; 58(1): 27-35.
[http://dx.doi.org/10.1034/j.1399-3011.2001.00869.x] [PMID: 11454167]
[30]
Li YJ, Tan ZY, Ji YH. The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels. Neurosci Res 2000; 38(3): 257-64.
[http://dx.doi.org/10.1016/S0168-0102(00)00164-4]
[31]
Valdivia HH, Martin BM, Ramírez AN, Fletcher PL, Possani LD. Isolation and pharmacological characterization of four novel Na+ channel-blocking toxins from the scorpion Centruroides noxius Hoffmann. J Biochem 1994; 116(6): 1383-91.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124691] [PMID: 7706233]
[32]
Zhao YS, Zhang R, Xu Y, et al. The role of glycine residues at the C-terminal peptide segment in antinociceptive activity: A molecular dynamics simulation. J Mol Model 2013; 19(3): 1295-9.
[http://dx.doi.org/10.1007/s00894-012-1666-y] [PMID: 23179767]
[33]
Li CL, Liu XF, Li GX, et al. Antinociceptive Effects of AGAP, a Recombinant Neurotoxic Polypeptide: Possible Involvement of the Tetrodotoxin-Resistant Sodium Channels in Small Dorsal Root Ganglia Neurons. Front Pharmacol 2016; 7: 496.
[http://dx.doi.org/10.3389/fphar.2016.00496] [PMID: 28066245]
[34]
Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/958797] [PMID: 23843786]
[35]
Bosmans F, Tytgat J. Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon 2007; 49(2): 142-58.
[http://dx.doi.org/10.1016/j.toxicon.2006.09.023] [PMID: 17087986]
[36]
Ma R, Cui Y, Zhou Y, et al. Location of the analgesic domain in Scorpion toxin BmK AGAP by mutagenesis of disulfide bridges. Biochem Biophys Res Commun 2010; 394(2): 330-4.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.179] [PMID: 20206129]
[37]
Jiang F, Hua LM, Jiao YL, et al. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator. Neurosci Bull 2014; 30(1): 21-32.
[http://dx.doi.org/10.1007/s12264-013-1377-0] [PMID: 24132796]
[38]
Li Z, Hu P, Wu W, Wang Y. Peptides with therapeutic potential in the venom of the scorpion Buthus martensiiKarsch. Peptides 2019; 115: 43-50.
[http://dx.doi.org/10.1016/j.peptides.2019.02.009] [PMID: 30858089]
[39]
Deng L, Zhang HX, Wang Y, et al. Site-directed mutagenesis of BmK AGP-SYPU1: The role of two conserved Tyr (Tyr5 and Tyr42) in analgesic activity. Protein J 2014; 33(2): 157-64.
[http://dx.doi.org/10.1007/s10930-014-9547-0] [PMID: 24554422]
[40]
Meng X, Xu Y, Zhao M, et al. The functional property changes of muscular Nav1. 4 and cardiac Nav1. 5 induced by scorpion toxin BmK AGP-SYPU1 mutants Y42F and Y5F. Biochemistry 2015; 54(19): 2988-96.
[http://dx.doi.org/10.1021/acs.biochem.5b00067] [PMID: 25919575]
[41]
Meng X, Xu Y, Wang F, et al. The roles of conserved aromatic residues (Tyr5 and Tyr42) in interaction of scorpion toxin BmK AGP-SYPU1 with human Na v 1.7. Int J Biol Macromol 2017; 99: 105-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.020] [PMID: 28065753]
[42]
Cui Y, Wang T, Hao Z, Zhang J, Zhao Y. Methionine 58 is a key residue in the modulation of BmK scorpion toxin AGP-SYPU2 activity through in silico and in vivo studies. J Biomol Struct Dyn 2022; 40(7): 2955-62.
[http://dx.doi.org/10.1080/07391102.2020.1848626] [PMID: 33228478]
[43]
Zhang R, Cui Y, Zhang X, et al. Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2. BMB Rep 2010; 43(12): 801-6.
[http://dx.doi.org/10.5483/BMBRep.2010.43.12.801] [PMID: 21189156]
[44]
Chen J, Feng XH, Shi J, et al. The anti-nociceptive effect of BmK AS, a scorpion active polypeptide, and the possible mechanism on specifically modulating voltage-gated Na+ currents in primary afferent neurons. Peptides 2006; 27(9): 2182-92.
[http://dx.doi.org/10.1016/j.peptides.2006.03.026] [PMID: 16716457]
[45]
Zhu MM, Tao J, Tan M, Yang H, Ji YH. U‐shaped dose‐dependent effects of BmK AS, a unique scorpion polypeptide toxin, on voltage‐gated sodium channels. Br J Pharmacol 2009; 158(8): 1895-903.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00471.x] [PMID: 19912232]
[46]
Li YJ, Liu Y, Ji YH. BmK AS: New scorpion neurotoxin binds to distinct receptor sites of mammal and insect voltage‐gated sodium channels. J Neurosci Res 2000; 61(5): 541-8.
[http://dx.doi.org/10.1002/1097-4547(20000901)61:5<541:AID-JNR9>3.0.CO;2-#] [PMID: 10956424]
[47]
Ji YH, Li YJ, Zhang JW, et al. Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch. Toxicon 1999; 37(3): 519-36.
[http://dx.doi.org/10.1016/S0041-0101(98)00190-1] [PMID: 10080355]
[48]
Tan ZY, Mao X, Xiao H, Zhao ZQ, Ji YH. Buthus martensi Karsch agonist of skeletal-muscle RyR-1, a scorpion active polypeptide: antinociceptive effect on rat peripheral nervous system and spinal cord, and inhibition of voltage-gated Na+ currents in dorsal root ganglion neurons. Neurosci Lett 2001; 297(2): 65-8.
[http://dx.doi.org/10.1016/S0304-3940(00)01642-6] [PMID: 11121871]
[49]
Tan ZY, Xiao H, Mao X, Wang CY, Zhao ZQ, Ji YH. The inhibitory effects of BmK IT2, a scorpion neurotoxin on rat nociceptive flexion reflex and a possible mechanism for modulating voltage-gated Na+ channels. Neuropharmacology 2001; 40(3): 352-7.
[http://dx.doi.org/10.1016/S0028-3908(00)00168-4] [PMID: 11166328]
[50]
Li YJ, Ji YH. Binding characteristics of BmK I, an α‐like scorpion neurotoxic polypeptide, on cockroach nerve cord synaptosomes. J Pept Res 2000; 56(4): 195-200.
[http://dx.doi.org/10.1034/j.1399-3011.2000.00750.x] [PMID: 11083058]
[51]
He H, Liu Z, Dong B, et al. Localization of receptor site on insect sodium channel for depressant β-toxin BmK IT2. PLoS One 2011; 6(1): e14510.
[http://dx.doi.org/10.1371/journal.pone.0014510] [PMID: 21264295]
[52]
Ruan JP, Mao QH, Lu WG, et al. Inhibition of spinal MAPKs by scorpion venom peptide BmK AGAP produces a sensory-specific analgesic effect. Mol Pain 2018; 14.
[http://dx.doi.org/10.1177/1744806918761238] [PMID: 29424271]
[53]
Richard SA, Kampo S, Sackey M, Hechavarria ME, Buunaaim ADB. The pivotal potentials of scorpion Buthus martensiiKarsch-analgesic-antitumor peptide in pain management and cancer. Evid Based Complement Alternat Med 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/4234273] [PMID: 33178316]
[54]
Liu YF, Ma RL, Wang SL, et al. Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensiikarsch in Escherichia coli. Protein Expr Purif 2003; 27(2): 253-8.
[http://dx.doi.org/10.1016/S1046-5928(02)00609-5] [PMID: 12597884]
[55]
Cui Y, Guo GL, Liu YF, et al. Construction of three different recombinant scorpion fusion proteins with bifunctional activity. Indian J Biochem Biophys 2011; 48(3): 141-7.
[PMID: 21793303]
[56]
Kampo S, Cui Y, Yu J, et al. Scorpion Venom peptide, AGAP inhibits TRPV1 and potentiates the analgesic effect of lidocaine. Heliyon 2021; 7(12): e08560.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08560] [PMID: 35005265]
[57]
Kampo S, Anabah WT, Bayor F, Wilfred S-A. Scorpion venom component; BmK AGAP potentiates the analgesic effects of lidocaine during sciatic nerve block. Venoms and Toxins 2023; 3: e130623217925.
[58]
Kampo S, Anabah TW, Doudou NR, Kwakye AK, Wen QP. Scorpion venom component: AGAP exhibits local anaesthetic effects and attenuates nociceptive pain. South African J Anaesth Analg 2023; 29(4): 136-41.
[http://dx.doi.org/10.36303/SAJAA.2966]
[59]
Doudou NR, Kampo S, Liu Y, et al. Monitoring the early antiproliferative effect of the analgesic-antitumor peptide, BmK AGAP on breast cancer using intravoxel incoherent motion with a reduced distribution of four b-values. Front Physiol 2019; 10: 708.
[http://dx.doi.org/10.3389/fphys.2019.00708] [PMID: 31293432]
[60]
Cao Q, Lu W, Cai X, et al. In vitro refolding and functional analysis of polyhistidine-tagged Buthus martensii Karsch antitumor-analgesic peptide produced in Escherichia coli. Biotechnol Lett 2015; 37(12): 2461-6.
[http://dx.doi.org/10.1007/s10529-015-1936-8] [PMID: 26303431]
[61]
Gu Y, Liu SL, Ju WZ, Li CY, Cao P. Analgesic-antitumor peptide induces apoptosis and inhibits the proliferation of SW480 human colon cancer cells. Oncol Lett 2013; 5(2): 483-8.
[http://dx.doi.org/10.3892/ol.2012.1049] [PMID: 23420047]
[62]
Zhao Y, Cai X, Ye T, et al. Analgesic‐antitumor peptide inhibits proliferation and migration of SHG‐44 human malignant glioma cells. J Cell Biochem 2011; 112(9): 2424-34.
[http://dx.doi.org/10.1002/jcb.23166] [PMID: 21538480]
[63]
Wang Y, Song YB, Yang GZ, et al. Arginine residues in the C-terminal and their relationship with the analgesic activity of the toxin from the Chinese scorpion Buthus martensiiKarsch (BmK AGP-SYPU1). Appl Biochem Biotechnol 2012; 168(2): 247-55.
[http://dx.doi.org/10.1007/s12010-012-9768-7] [PMID: 22869257]
[64]
Uzair B, Bint-e-Irshad S, Khan BA, et al. Scorpion venom peptides as a potential source for human drug candidates. Protein Pept Lett 2018; 25(7): 702-8.
[http://dx.doi.org/10.2174/0929866525666180614114307] [PMID: 29921194]
[65]
Wang CY, Tan ZY, Chen B, Zhao ZQ, Ji YH. Antihyperalgesia effect of BmK IT2, a depressant insect-selective scorpion toxin in rat by peripheral administration. Brain Res Bull 2000; 53(3): 335-8.
[http://dx.doi.org/10.1016/S0361-9230(00)00355-5] [PMID: 11113589]
[66]
Feng YJ, Feng Q, Tao J, Zhao R, Ji YH. Allosteric interactions between receptor site 3 and 4 of voltage-gated sodium channels: a novel perspective for the underlying mechanism of scorpion sting-induced pain. J Venom Anim Toxins Incl Trop Dis 2015; 21(1): 42-9.
[http://dx.doi.org/10.1186/s40409-015-0043-6] [PMID: 26491429]
[67]
Ji YH, Hattori H, Xu K, Terakawa S. Molecular characteristics of four new depressant insect neurotoxins purified from venom of] Buthus martensi Karsch by HPLC. Sci China B Chem Life Sci Earth Sci 1994; 37(8): 955-63.
[PMID: 7993579]
[68]
Chai Z, Bai Z, Liu T, Pang X, Ji Y. The binding of BmK IT2 on mammal and insect sodium channels by surface plasmon resonance assay. Pharmacol Res 2006; 54(2): 85-90.
[http://dx.doi.org/10.1016/j.phrs.2006.02.009] [PMID: 16616856]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy