Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

MicroRNAs as Key Regulators in RA and SLE: Insights into Biological Functions

Author(s): Xiao-Xiao Li, Chan-Na Zhao, Hai-Fen Wei, Sheng Li, Jian Tang, Yan-Yu Zhu, Xue-Er Cheng, Qian-Qian Shi, Peng Wang* and Hai-Feng Pan*

Volume 30, Issue 22, 2024

Published on: 24 May, 2024

Page: [1746 - 1761] Pages: 16

DOI: 10.2174/0113816128303695240512141729

Price: $65

Abstract

MicroRNAs (miRNAs) are non-coding RNA molecules that bind to mRNAs to regulate gene expression. Since changes in miRNA expression levels have been found in a variety of autoimmune illnesses, miRNAs are important in autoimmune diseases. MiRNAs serve not only as pathogenic factors and biomarkers for autoimmune diseases but also as important targets for disease therapeutics. Although miRNA-based treatments are still in the research stage, in-depth investigations into the biological functions of miRNAs have significantly enhanced our understanding of their mechanisms in autoimmune diseases. The purpose of this review is to summarize the biological functions of miRNAs, their roles in rheumatoid arthritis and systemic lupus erythematosus, therapeutic strategies, and challenges.

[1]
Hiramatsu-Asano S, Wada J. Therapeutic approaches targeting miRNA in systemic lupus erythematosus. Acta Med Okayama 2022; 76(4): 359-71.
[http://dx.doi.org/10.18926/AMO/63887] [PMID: 36123150]
[2]
Gorabi AM, Kiaie N, Aslani S, Jamialahmadi T, Johnston TP, Sahebkar A. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight. J Autoimmun 2020; 114: 102529.
[http://dx.doi.org/10.1016/j.jaut.2020.102529] [PMID: 32782117]
[3]
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci 2019; 20(24): 6249.
[http://dx.doi.org/10.3390/ijms20246249] [PMID: 31835747]
[4]
Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet 2022; 38(6): 613-26.
[http://dx.doi.org/10.1016/j.tig.2022.02.006] [PMID: 35303998]
[5]
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455(7209): 58-63.
[http://dx.doi.org/10.1038/nature07228] [PMID: 18668040]
[6]
Mestdagh P, Boström AK, Impens F, et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell 2010; 40(5): 762-73.
[http://dx.doi.org/10.1016/j.molcel.2010.11.038] [PMID: 21145484]
[7]
Hart M, Walch-Rückheim B, Krammes L, et al. miR-34a as hub of T cell regulation networks. J Immunother Cancer 2019; 7(1): 187.
[http://dx.doi.org/10.1186/s40425-019-0670-5] [PMID: 31311583]
[8]
Ullah S, John P, Bhatti A. MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 2014; 41(1): 225-32.
[http://dx.doi.org/10.1007/s11033-013-2855-1] [PMID: 24197698]
[9]
Roy S, Awasthi A. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. Int Rev Immunol 2019; 38(5): 232-45.
[http://dx.doi.org/10.1080/08830185.2019.1648454] [PMID: 31411520]
[10]
Huang J, Xu X, Yang J. miRNAs alter T helper 17 cell fate in the pathogenesis of autoimmune diseases. Front Immunol 2021; 12: 593473.
[http://dx.doi.org/10.3389/fimmu.2021.593473] [PMID: 33968012]
[11]
Colamatteo A, Micillo T, Bruzzaniti S, et al. Metabolism and autoimmune responses: The microRNA connection. Front Immunol 2019; 10: 1969.
[http://dx.doi.org/10.3389/fimmu.2019.01969] [PMID: 31555261]
[12]
Kissler S. From genome-wide association studies to etiology: Probing autoimmunity genes by RNAi. Trends Mol Med 2011; 17(11): 634-40.
[http://dx.doi.org/10.1016/j.molmed.2011.06.006] [PMID: 21783421]
[13]
Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological regulators in pathogen–host interactions. Cells 2020; 9(1): 113.
[http://dx.doi.org/10.3390/cells9010113] [PMID: 31906500]
[14]
Liu L, Chen H, Jiang T, He D. MicroRNA-106b overexpression suppresses synovial inflammation and alleviates synovial damage in patients with rheumatoid arthritis. Mod Rheumatol 2022; 32(6): 1054-63.
[http://dx.doi.org/10.1093/mr/roab108] [PMID: 34850088]
[15]
Yang J, Li Z, Wang L, et al. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186: 106549.
[http://dx.doi.org/10.1016/j.phrs.2022.106549] [PMID: 36368452]
[16]
Ouboussad L, Hunt L, Hensor EMA, et al. Profiling microRNAs in individuals at risk of progression to rheumatoid arthritis. Arthritis Res Ther 2017; 19(1): 288.
[http://dx.doi.org/10.1186/s13075-017-1492-9] [PMID: 29273071]
[17]
Noack M, Miossec P. Selected cytokine pathways in rheumatoid arthritis. Semin Immunopathol 2017; 39(4): 365-83.
[http://dx.doi.org/10.1007/s00281-017-0619-z] [PMID: 28213794]
[18]
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18(11): 102391.
[http://dx.doi.org/10.1016/j.autrev.2019.102391] [PMID: 31520804]
[19]
Chen Y, Dang J, Lin X, et al. RA fibroblast-like synoviocytes derived extracellular vesicles promote angiogenesis by miRNA-1972 targeting p53/mTOR signaling in vascular endotheliocyte. Front Immunol 2022; 13: 793855.
[http://dx.doi.org/10.3389/fimmu.2022.793855] [PMID: 35350778]
[20]
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1(6): a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[21]
Chen Y, Xian PF, Yang L, Wang SX. MicroRNA-21 promotes proliferation of fibroblast-like synoviocytes through mediation of NF-κ B nuclear translocation in a rat model of collagen-induced rheumatoid arthritis. BioMed Res Int 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/9279078] [PMID: 27429986]
[22]
de la Rica L, Urquiza JM, Gómez-Cabrero D, et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun 2013; 41: 6-16.
[http://dx.doi.org/10.1016/j.jaut.2012.12.005] [PMID: 23306098]
[23]
Shi D L, Shi G R. MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in Rheumatoid Arthritis. Mol Cells 2016; 39(8): 611-8.
[http://dx.doi.org/10.14348/molcells.2016.0103]
[24]
Li Z, Chen H, Wang F, et al. Down-regulation of microRNA-98 promoted apoptosis of TNF-α stimulated human fibroblast-like synoviocytes via up-regulating IL-10. Gene 2019; 706: 124-30.
[http://dx.doi.org/10.1016/j.gene.2019.05.019] [PMID: 31077735]
[25]
Iwamoto N, Fukui S, Takatani A, et al. Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway. Arthritis Res Ther 2018; 20(1): 189.
[http://dx.doi.org/10.1186/s13075-018-1703-z] [PMID: 30157923]
[26]
Semaan N, Frenzel L, Alsaleh G, et al. miR-346 controls release of TNF-α protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization. PLoS One 2011; 6(5): e19827.
[http://dx.doi.org/10.1371/journal.pone.0019827] [PMID: 21611196]
[27]
Ospelt C, Gay S, Klein K. Epigenetics in the pathogenesis of RA. Semin Immunopathol 2017; 39(4): 409-19.
[http://dx.doi.org/10.1007/s00281-017-0621-5] [PMID: 28324153]
[28]
Niederer F, Trenkmann M, Ospelt C, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum 2012; 64(6): 1771-9.
[http://dx.doi.org/10.1002/art.34334] [PMID: 22161761]
[29]
Hussain N, Zhu W, Jiang C, et al. Down-regulation of miR-10a-5p promotes proliferation and restricts apoptosis via targeting T-box transcription factor 5 in inflamed synoviocytes. Biosci Rep 2018; 38(2): BSR20180003.
[http://dx.doi.org/10.1042/BSR20180003] [PMID: 29545315]
[30]
Mu N, Gu J, Huang T, et al. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci Rep 2016; 6(1): 20059.
[http://dx.doi.org/10.1038/srep20059] [PMID: 26821827]
[31]
Akhtar N, Singh AK, Ahmed S. MicroRNA-17 suppresses TNF-α signaling by interfering with TRAF2 and cIAP2 association in rheumatoid arthritis synovial fibroblasts. J Immunol 2016; 197(6): 2219-28.
[http://dx.doi.org/10.4049/jimmunol.1600360] [PMID: 27534557]
[32]
Trenkmann M, Brock M, Gay RE, Michel BA, Gay S, Huber LC. Tumor necrosis factor α-induced microRNA-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-κB signaling. Arthritis Rheum 2013; 65(4): 916-27.
[http://dx.doi.org/10.1002/art.37834] [PMID: 23280137]
[33]
Li Z, Cai J, Cao X. MiR-19 suppresses fibroblast-like synoviocytes cytokine release by targeting toll like receptor 2 in rheumatoid arthritis. Am J Transl Res 2016; 8(12): 5512-8.
[PMID: 28078022]
[34]
Philippe L, Alsaleh G, Suffert G, et al. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol 2012; 188(1): 454-61.
[http://dx.doi.org/10.4049/jimmunol.1102348] [PMID: 22105995]
[35]
Wang M, Mei L, Liu Z, et al. The mechanism of Chinese herbal formula HQT in the treatment of rheumatoid arthritis is related to its regulation of lncRNA uc.477 and miR-19b. J Leukoc Biol 2020; 108(2): 519-29.
[http://dx.doi.org/10.1002/JLB.3MA0620-441RRRR] [PMID: 32696503]
[36]
Li XF, Shen WW, Sun YY, et al. MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint Bone Spine 2016; 83(6): 695-700.
[http://dx.doi.org/10.1016/j.jbspin.2015.10.007] [PMID: 26934991]
[37]
Philippe L, Alsaleh G, Pichot A, et al. MiR-20a regulates ASK1 expression and TLR4-dependent cytokine release in rheumatoid fibroblast-like synoviocytes. Ann Rheum Dis 2013; 72(6): 1071-9.
[http://dx.doi.org/10.1136/annrheumdis-2012-201654] [PMID: 23087182]
[38]
Lin J, Huo R, Xiao L, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol 2014; 66(1): 49-59.
[http://dx.doi.org/10.1002/art.38142] [PMID: 24449575]
[39]
Zhu S, Pan W, Song X, et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med 2012; 18(7): 1077-86.
[http://dx.doi.org/10.1038/nm.2815] [PMID: 22660635]
[40]
Liu J, Fei D, Xing J, Du J. RETRACTED: MicroRNA-29a inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by repressing STAT3. Biomed Pharmacother 2017; 96: 173-81.
[http://dx.doi.org/10.1016/j.biopha.2017.09.120] [PMID: 28987940]
[41]
Gaur N, Karouzakis E, Glück S, et al. MicroRNAs interfere with DNA methylation in rheumatoid arthritis synovial fibroblasts. RMD Open 2016; 2(2): e000299.
[http://dx.doi.org/10.1136/rmdopen-2016-000299] [PMID: 27843576]
[42]
Alsaleh G, François A, Philippe L, et al. MiR-30a-3p negatively regulates BAFF synthesis in systemic sclerosis and rheumatoid arthritis fibroblasts. PLoS One 2014; 9(10): e111266.
[http://dx.doi.org/10.1371/journal.pone.0111266] [PMID: 25360821]
[43]
Luo C, Liang JS, Gong J, et al. miRNA-31 over-expression improve synovial cells apoptosis induced by RA. Bratisl Med J 2018; 119(6): 355-60.
[http://dx.doi.org/10.4149/BLL_2018_066] [PMID: 29947235]
[44]
Hou C, Wang D, Zhang L. MicroRNA-34a-3p inhibits proliferation of rheumatoid arthritis fibroblast-like synoviocytes. Mol Med Rep 2019; 20(3): 2563-70.
[http://dx.doi.org/10.3892/mmr.2019.10516] [PMID: 31524250]
[45]
Kawano S, Nakamachi Y. miR-124a as a key regulator of proliferation and MCP-1 secretion in synoviocytes from patients with rheumatoid arthritis. Ann Rheum Dis 2011; 70 (Suppl. 1): i88-91.
[http://dx.doi.org/10.1136/ard.2010.138669] [PMID: 21339227]
[46]
Nakamachi Y, Kawano S, Takenokuchi M, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 2009; 60(5): 1294-304.
[http://dx.doi.org/10.1002/art.24475] [PMID: 19404929]
[47]
Wang Y, Dai L, Wu H, et al. Novel anti-inflammatory target of geniposide: Inhibiting Itgβ1/Ras-Erk1/2 signal pathway via the miRNA-124a in rheumatoid arthritis synovial fibroblasts. Int Immunopharmacol 2018; 65: 284-94.
[http://dx.doi.org/10.1016/j.intimp.2018.09.049] [PMID: 30342345]
[48]
Gao J, Kong R, Zhou X, Ji L, Zhang J, Zhao D. MiRNA-126 expression inhibits IL-23R mediated TNF-α or IFN-γ production in fibroblast-like synoviocytes in a mice model of collagen-induced rheumatoid arthritis. Apoptosis 2018; 23(11-12): 607-15.
[http://dx.doi.org/10.1007/s10495-018-1474-7] [PMID: 30167920]
[49]
Qu Y, Wu J, Deng JX, et al. MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway. Oncotarget 2016; 7(45): 74217-26.
[http://dx.doi.org/10.18632/oncotarget.12487] [PMID: 27729613]
[50]
Chen J, Luo X, Liu M, et al. Silencing long non-coding RNA NEAT1 attenuates rheumatoid arthritis via the MAPK/ERK signalling pathway by downregulating microRNA-129 and microRNA-204. RNA Biol 2021; 18(5): 657-68.
[http://dx.doi.org/10.1080/15476286.2020.1857941] [PMID: 33258403]
[51]
Du J, Zhang F, Guo J. miR-137 decreases proliferation, migration and invasion in rheumatoid arthritis fibroblast-like synoviocytes. Mol Med Rep 2017; 17(2): 3312-7.
[http://dx.doi.org/10.3892/mmr.2017.8225] [PMID: 29257263]
[52]
Peng JS, Chen SY, Wu CL, et al. Amelioration of experimental autoimmune arthritis through targeting of synovial fibroblasts by intraarticular delivery of MicroRNAs 140-3p and 140-5p. Arthritis Rheumatol 2016; 68(2): 370-81.
[http://dx.doi.org/10.1002/art.39446] [PMID: 26473405]
[53]
Hong BK, You S, Yoo SA, et al. MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Exp Mol Med 2017; 49(8): e363-3.
[http://dx.doi.org/10.1038/emm.2017.108] [PMID: 28775366]
[54]
Yang Z, Wang J, Pan Z, Zhang Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp Ther Med 2018; 15(4): 3781-90.
[http://dx.doi.org/10.3892/etm.2018.5907] [PMID: 29581736]
[55]
Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58(5): 1284-92.
[http://dx.doi.org/10.1002/art.23429] [PMID: 18438844]
[56]
Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EKL. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10(4): R101.
[http://dx.doi.org/10.1186/ar2493] [PMID: 18759964]
[57]
Anaparti V, Smolik I, Meng X, Spicer V, Mookherjee N, El-Gabalawy H. Whole blood microRNA expression pattern differentiates patients with rheumatoid arthritis, their seropositive first-degree relatives, and healthy unrelated control subjects. Arthritis Res Ther 2017; 19(1): 249.
[http://dx.doi.org/10.1186/s13075-017-1459-x] [PMID: 29126434]
[58]
Chen Y, Wang X, Yang M, et al. miR-145-5p increases osteoclast numbers in vitro and aggravates bone erosion in collagen-induced arthritis by targeting osteoprotegerin. Med Sci Monit 2018; 24: 5292-300.
[http://dx.doi.org/10.12659/MSM.908219] [PMID: 30059491]
[59]
Abou-Zeid A, Saad M, Soliman E. MicroRNA 146a expression in rheumatoid arthritis: Association with tumor necrosis factor-alpha and disease activity. Genet Test Mol Biomarkers 2011; 15(11): 807-12.
[http://dx.doi.org/10.1089/gtmb.2011.0026] [PMID: 21810022]
[60]
Kurowska-Stolarska M, Alivernini S, Ballantine LE, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 2011; 108(27): 11193-8.
[http://dx.doi.org/10.1073/pnas.1019536108] [PMID: 21690378]
[61]
Abo ElAtta AS, Ali YBM, Bassyouni IH, Talaat RM. Upregulation of miR-221/222 expression in rheumatoid arthritis (RA) patients: Correlation with disease activity. Clin Exp Med 2019; 19(1): 47-53.
[http://dx.doi.org/10.1007/s10238-018-0524-3] [PMID: 30132091]
[62]
Tang X, Yin K, Zhu H, et al. Correlation between the expression of MicroRNA-301a-3p and the proportion of Th17 cells in patients with rheumatoid arthritis. Inflammation 2016; 39(2): 759-67.
[http://dx.doi.org/10.1007/s10753-016-0304-8] [PMID: 26782362]
[63]
Lai NS, Yu HC, Yu CL, Koo M, Huang HB, Lu MC. Anti-citrullinated protein antibodies suppress let-7a expression in monocytes from patients with rheumatoid arthritis and facilitate the inflammatory responses in rheumatoid arthritis. Immunobiology 2015; 220(12): 1351-8.
[http://dx.doi.org/10.1016/j.imbio.2015.07.007] [PMID: 26227320]
[64]
Dong L, Wang X, Tan J, et al. Decreased expression of micro RNA-21 correlates with the imbalance of Th17 and Treg cells in patients with rheumatoid arthritis. J Cell Mol Med 2014; 18(11): 2213-24.
[http://dx.doi.org/10.1111/jcmm.12353] [PMID: 25164131]
[65]
Hruskova V, Jandova R, Vernerova L, et al. MicroRNA-125b: Association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis Res Ther 2016; 18(1): 124.
[http://dx.doi.org/10.1186/s13075-016-1023-0] [PMID: 27255643]
[66]
Wang Y, Zheng F, Gao G, et al. MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis. J Cell Biochem 2019; 120(2): 1133-40.
[http://dx.doi.org/10.1002/jcb.26659] [PMID: 29315763]
[67]
Long L, Yu P, Liu Y, et al. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis. Clin Dev Immunol 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/296139] [PMID: 24151514]
[68]
Migita K, Iwanaga N, Izumi Y, et al. TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts. BMC Res Notes 2017; 10(1): 403.
[http://dx.doi.org/10.1186/s13104-017-2715-5] [PMID: 28807007]
[69]
Stanczyk J, Pedrioli DML, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008; 58(4): 1001-9.
[http://dx.doi.org/10.1002/art.23386] [PMID: 18383392]
[70]
Paoletti A, Rohmer J, Ly B, et al. Monocyte/macrophage abnormalities specific to rheumatoid arthritis are linked to mir-155 and are differentially modulated by different TNF inhibitors. J Immunol 2019; 203(7): 1766-75.
[http://dx.doi.org/10.4049/jimmunol.1900386] [PMID: 31484730]
[71]
Kim S, Chen Z, Essani AB, et al. Identification of a novel toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol 2016; 68(5): 1099-110.
[http://dx.doi.org/10.1002/art.39544] [PMID: 26662519]
[72]
Ogando J, Tardáguila M, Díaz-Alderete A, et al. Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients. Sci Rep 2016; 6(1): 20223.
[http://dx.doi.org/10.1038/srep20223] [PMID: 26838552]
[73]
Xu K, Xu P, Yao JF, Zhang YG, Hou W, Lu SM. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm Res 2013; 62(2): 229-37.
[http://dx.doi.org/10.1007/s00011-012-0572-1] [PMID: 23178792]
[74]
Wu J, Fan W, Ma L, Geng X. miR-708-5p promotes fibroblast- like synoviocytes’ cell apoptosis and ameliorates rheumatoid arthritis by inhibition of Wnt3a/β-catenin pathway. Drug Des Devel Ther 2018; 12: 3439-47.
[http://dx.doi.org/10.2147/DDDT.S177128] [PMID: 30349197]
[75]
Miao C Gui. DNMT1 activates the canonical Wnt signaling in rheumatoid arthritis model rats via a crucial functional crosstalk between miR-152 and the DNMT1, MeCP2. Int Immunopharmacol 2015; 28(1): 344-53.
[http://dx.doi.org/10.1016/j.intimp.2015.06.013]
[76]
Miao C Gui. MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model. Biochimie 2014; 106: 149-56.
[http://dx.doi.org/10.1016/j.biochi.2014.08.016]
[77]
Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C, Bosserhoff AK. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. Int J Clin Exp Pathol 2015; 8(5): 4953-62.
[PMID: 26191188]
[78]
Li S, Jin Z, Lu X. MicroRNA-192 suppresses cell proliferation and induces apoptosis in human rheumatoid arthritis fibroblast- like synoviocytes by downregulating caveolin 1. Mol Cell Biochem 2017; 432(1-2): 123-30.
[http://dx.doi.org/10.1007/s11010-017-3003-3] [PMID: 28321538]
[79]
Wangyang Y, Yi L, Wang T, et al. MiR-199a-3p inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via suppressing retinoblastoma 1. Biosci Rep 2018; 38(6): BSR20180982.
[http://dx.doi.org/10.1042/BSR20180982] [PMID: 30352835]
[80]
Stanczyk J, Ospelt C, Karouzakis E, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 2011; 63(2): 373-81.
[http://dx.doi.org/10.1002/art.30115] [PMID: 21279994]
[81]
Li B, Li N, Zhang L, et al. Hsa_circ_0001859 regulates ATF2 expression by functioning as an MiR-204/211 sponge in human rheumatoid arthritis. J Immunol Res 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/9412387] [PMID: 29577053]
[82]
Liu Y, Zhang XL, Li XF, Tang YC, Zhao X. miR-212-3p reduced proliferation, and promoted apoptosis of fibroblast-like synoviocytes via down-regulating SOX5 in rheumatoid arthritis. Eur Rev Med Pharmacol Sci 2018; 22(2): 461-71.
[PMID: 29424904]
[83]
Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM. Synovium-derived MicroRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 2017; 32(3): 461-72.
[http://dx.doi.org/10.1002/jbmr.3005] [PMID: 27676131]
[84]
Pandis I, Ospelt C, Karagianni N, et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann Rheum Dis 2012; 71(10): 1716-23.
[http://dx.doi.org/10.1136/annrheumdis-2011-200803] [PMID: 22562984]
[85]
Yang S, Yang Y. Downregulation of microRNA-221 decreases migration and invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Mol Med Rep 2015; 12(2): 2395-401.
[http://dx.doi.org/10.3892/mmr.2015.3642] [PMID: 25891943]
[86]
Moriya N, Shibasaki S, Karasaki M, Iwasaki T. The impact of MicroRNA-223-3p on IL-17 receptor D expression in synovial cells. PLoS One 2017; 12(1): e0169702.
[http://dx.doi.org/10.1371/journal.pone.0169702] [PMID: 28056105]
[87]
Shibuya H, Nakasa T, Adachi N, et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 2013; 23(4): 674-85.
[http://dx.doi.org/10.3109/s10165-012-0710-1] [PMID: 22903258]
[88]
Xu T, Li L, Huang C, Li X, Peng Y, Li J. MicroRNA-323-3p with clinical potential in rheumatoid arthritis, Alzheimer’s disease and ectopic pregnancy. Expert Opin Ther Targets 2014; 18(2): 153-8.
[http://dx.doi.org/10.1517/14728222.2014.855201] [PMID: 24283221]
[89]
Guo T, Ding H, Jiang H, Bao N, Zhou L, Zhao J. miR-338-5p regulates the viability, proliferation, apoptosis and migration of rheumatoid arthritis fibroblast-like synoviocytes by targeting NFAT5. Cell Physiol Biochem 2018; 49(3): 899-910.
[http://dx.doi.org/10.1159/000493222] [PMID: 30184542]
[90]
Miao C G, Shi W J. miR-375 regulates the canonical Wnt pathway through FZD8 silencing in arthritis synovial fibroblasts. Immunol Lett 2015; 164(1): 1-10.
[http://dx.doi.org/10.1016/j.imlet.2015.01.003]
[91]
Wang Y, Hou L, Yuan X, et al. LncRNA NEAT1 targets fibroblast-like synoviocytes in rheumatoid arthritis via the miR-410-3p/YY1 axis. Front Immunol 2020; 11: 1975.
[http://dx.doi.org/10.3389/fimmu.2020.01975] [PMID: 32983133]
[92]
Wang X, Si X, Sun J, Yue L, Wang J, Yu Z. miR-522 modulated the expression of proinflammatory cytokines and matrix metalloproteinases partly via targeting suppressor of cytokine signaling 3 in rheumatoid arthritis synovial fibroblasts. DNA Cell Biol 2018; 37(4): 405-15.
[http://dx.doi.org/10.1089/dna.2017.4008] [PMID: 29394098]
[93]
Chang TK, Zhong YH, Liu SC, et al. Apelin promotes endothelial progenitor cell angiogenesis in rheumatoid arthritis disease via the miR-525-5p/angiopoietin-1 pathway. Front Immunol 2021; 12: 737990.
[http://dx.doi.org/10.3389/fimmu.2021.737990] [PMID: 34659230]
[94]
Liu Y, Qian K, Li C, Ma Y, Chen X. Roles of microRNA-539 and osteopontin in rheumatoid arthritis. Exp Ther Med 2017; 15(3): 2681-7.
[http://dx.doi.org/10.3892/etm.2017.5665] [PMID: 29467860]
[95]
Xu X, Chen H, Zhang Q, Xu J, Shi Q, Wang M. MiR-650 inhibits proliferation, migration and invasion of rheumatoid arthritis synovial fibroblasts by targeting AKT2. Biomed Pharmacother 2017; 88: 535-41.
[http://dx.doi.org/10.1016/j.biopha.2017.01.063] [PMID: 28129626]
[96]
Miao C G. MicroRNA-663 activates the canonical Wnt signaling through the adenomatous polyposis coli suppression. Immunol Lett 2015; 166(1): 45-54.
[http://dx.doi.org/10.1016/j.imlet.2015.05.011]
[97]
Zhou X, Xie D, Huang J, et al. Therapeutic effects of (5R)-5-hydroxytriptolide on fibroblast-like synoviocytes in rheumatoid arthritis via lncRNA WAKMAR2/miR-4478/E2F1/p53 axis. Front Immunol 2021; 12: 605616.
[http://dx.doi.org/10.3389/fimmu.2021.605616] [PMID: 33664742]
[98]
Bi X, Guo XH, Mo BY, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine 2019; 50: 408-20.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.024] [PMID: 31791845]
[99]
Ameer MA, Chaudhry H, Mushtaq J, et al. An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus 2022; 14(10): e30330.
[http://dx.doi.org/10.7759/cureus.30330] [PMID: 36407159]
[100]
Liu Y J. Current progress in treating systemic lupus erythematosus using exosomes/MicroRNAs Cell Transplant 2023; 32.
[http://dx.doi.org/10.1177/09636897221148775]
[101]
Lu M-C, Lai N-S, Chen H-C, et al. Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin Exp Immunol 2012; 171(1): 91-9.
[http://dx.doi.org/10.1111/j.1365-2249.2012.04676.x] [PMID: 23199328]
[102]
Martínez-Ramos R, García-Lozano J-R, Lucena J-M, et al. Differential expression pattern of microRNAs in CD4+ and CD19+ cells from asymptomatic patients with systemic lupus erythematosus. Lupus 2014; 23(4): 353-9.
[http://dx.doi.org/10.1177/0961203314522335] [PMID: 24509687]
[103]
Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 2010; 184(12): 6773-81.
[http://dx.doi.org/10.4049/jimmunol.0904060] [PMID: 20483747]
[104]
Stagakis E, Bertsias G, Verginis P, et al. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: MiR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 2011; 70(8): 1496-506.
[http://dx.doi.org/10.1136/ard.2010.139857] [PMID: 21602271]
[105]
Zhao M, Li M, Gao X, et al. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4 + T cells of systemic lupus erythematosus. Clin Immunol 2018; 187: 113-21.
[http://dx.doi.org/10.1016/j.clim.2017.11.002] [PMID: 29113828]
[106]
Qin H, Zhu X, Liang J, et al. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J Dermatol Sci 2013; 69(1): 61-7.
[http://dx.doi.org/10.1016/j.jdermsci.2012.10.011] [PMID: 23142053]
[107]
Rouas R, Fayyad-Kazan H, El Zein N, et al. Human natural Treg microRNA signature: Role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol 2009; 39(6): 1608-18.
[http://dx.doi.org/10.1002/eji.200838509] [PMID: 19408243]
[108]
Xie M, Wang J, Gong W, et al. NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3. J Autoimmun 2019; 102: 96-113.
[http://dx.doi.org/10.1016/j.jaut.2019.04.018] [PMID: 31130368]
[109]
Zhang C, Zhang C, Huang C, Ji J, Liu J, Lu Y. Hsa_circ_0012919 promotes pyroptosis in CD4+ T cells of systemic lupus erythematous by miR-125a-3p/GSDMD axis. Exp Dermatol 2023; 32(1): 41-9.
[http://dx.doi.org/10.1111/exd.14680] [PMID: 36164970]
[110]
Zhao X, Tang Y, Qu B, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 2010; 62(11): 3425-35.
[http://dx.doi.org/10.1002/art.27632] [PMID: 20589685]
[111]
Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 2011; 63(5): 1376-86.
[http://dx.doi.org/10.1002/art.30196] [PMID: 21538319]
[112]
Gong A, Mi L, Wei F, et al. Downregulation of miR-137 facilitates CD4+ T cell pyroptosis in systemic lupus erythematosus via stimulating AMPK pathway. J Immunol Res 2023; 2023: 1-11.
[http://dx.doi.org/10.1155/2023/1241774] [PMID: 36815949]
[113]
Ding S, Liang Y, Zhao M, et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 2012; 64(9): 2953-63.
[http://dx.doi.org/10.1002/art.34505] [PMID: 22549634]
[114]
Li HS, Ning Y, Li SB, et al. Expression and clinical significance of miR-181a and miR-203 in systemic lupus erythematosus patients. Eur Rev Med Pharmacol Sci 2017; 21(21): 4790-6.
[PMID: 29164585]
[115]
Wang H, Geng G, Zhang D, Han F, Ye S. Analysis of microRNA-199a-3p expression in CD4+ T cells of systemic lupus erythematosus. Clin Rheumatol 2023; 42(6): 1683-94.
[http://dx.doi.org/10.1007/s10067-023-06534-7] [PMID: 36763225]
[116]
Liu D, Zhang N, Zhang X, Qin M, Dong Y, Jin L. MiR-410 down-regulates the expression of interleukin-10 by targeting STAT3 in the pathogenesis of systemic lupus erythematosus. Cell Physiol Biochem 2016; 39(1): 303-15.
[http://dx.doi.org/10.1159/000445625] [PMID: 27351906]
[117]
Chen S, Wang Y, Qin H, et al. Downregulation of miR-633 activated AKT/mTOR pathway by targeting AKT1 in lupus CD4+ T cells. Lupus 2019; 28(4): 510-9.
[http://dx.doi.org/10.1177/0961203319829853] [PMID: 30760089]
[118]
Chen SH, Lv QL, Hu L, Peng MJ, Wang GH, Sun B. DNA methylation alterations in the pathogenesis of lupus. Clin Exp Immunol 2017; 187(2): 185-92.
[http://dx.doi.org/10.1111/cei.12877] [PMID: 27690369]
[119]
Shi X, Ye L, Xu S, et al. Downregulated miR-29a promotes B cell overactivation by upregulating Crk-like protein in systemic lupus erythematosus. Mol Med Rep 2020; 22(2): 841-9.
[http://dx.doi.org/10.3892/mmr.2020.11166] [PMID: 32467986]
[120]
Liu Y, Dong J, Mu R, et al. MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum 2013; 65(6): 1603-11.
[http://dx.doi.org/10.1002/art.37912] [PMID: 23450709]
[121]
Luo S, Ding S, Liao J, et al. Excessive miR-152-3p results in increased BAFF expression in SLE B-cells by inhibiting the KLF5 expression. Front Immunol 2019; 10: 1127.
[http://dx.doi.org/10.3389/fimmu.2019.01127] [PMID: 31178864]
[122]
Wu X Ni. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med 2014; 6(246): 246ra99.
[http://dx.doi.org/10.1126/scitranslmed.3009131]
[123]
Duroux-Richard I, Cuenca J, Ponsolles C, et al. MicroRNA profiling of B cell subsets from systemic lupus erythematosus patients reveals promising novel biomarkers. Int J Mol Sci 2015; 16(8): 16953-65.
[http://dx.doi.org/10.3390/ijms160816953] [PMID: 26225955]
[124]
Chen JQ, Papp G, Póliska S, et al. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren’s syndrome. PLoS One 2017; 12(3): e0174585.
[http://dx.doi.org/10.1371/journal.pone.0174585] [PMID: 28339495]
[125]
Jin L, Fang X, Dai C, et al. The potential role of Ets-1 and miR-326 in CD19+B cells in the pathogenesis of patients with systemic lupus erythematosus. Clin Rheumatol 2019; 38(4): 1031-8.
[http://dx.doi.org/10.1007/s10067-018-4371-0] [PMID: 30456527]
[126]
Luo S, Liu Y, Liang G, et al. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics 2015; 7(1): 24.
[http://dx.doi.org/10.1186/s13148-015-0063-7] [PMID: 25789080]
[127]
You G, Cao H, Yan L, et al. MicroRNA-10a-3p mediates Th17/Treg cell balance and improves renal injury by inhibiting REG3A in lupus nephritis. Int Immunopharmacol 2020; 88: 106891.
[http://dx.doi.org/10.1016/j.intimp.2020.106891] [PMID: 32853927]
[128]
Mishra R, Bhattacharya S, Rawat BS, et al. MicroRNA-30e-5p has an integrated role in the regulation of the innate immune response during virus infection and systemic lupus erythematosus. iScience 2020; 23(7): 101322.
[http://dx.doi.org/10.1016/j.isci.2020.101322] [PMID: 32688283]
[129]
Yuan S, Tang C, Chen D, et al. miR-98 modulates cytokine production from human PBMCs in systemic lupus erythematosus by targeting IL-6 mRNA. J Immunol Res 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/9827574] [PMID: 31886314]
[130]
Sun H, Guo F, Xu L. Downregulation of microRNA-101-3p participates in systemic lupus erythematosus progression via negatively regulating HDAC9. J Cell Biochem 2020; 121(10): 4310-20.
[http://dx.doi.org/10.1002/jcb.29624] [PMID: 31904179]
[131]
Yan L, Jiang L, Wang B, et al. Novel microRNA biomarkers of systemic lupus erythematosus in plasma: MiR-124-3p and miR-377-3p. Clin Biochem 2022; 107: 55-61.
[http://dx.doi.org/10.1016/j.clinbiochem.2022.05.004] [PMID: 35598633]
[132]
Gu Y, Tang J, Zhang H, Wu Q, Luo L, Sun J. MicroRNA-125b mediates Interferon-γ-induced downregulation of the vitamin D receptor in systemic lupus erythematosus. Z Rheumatol 2024; 83(S1) (Suppl. 1): 132-9.
[http://dx.doi.org/10.1007/s00393-023-01319-4] [PMID: 36732450]
[133]
Tang Y, Luo X, Cui H, et al. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009; 60(4): 1065-75.
[http://dx.doi.org/10.1002/art.24436] [PMID: 19333922]
[134]
Zhu Y, Xue Z, Di L. Regulation of MiR-146a and TRAF6 in the diagnose of lupus nephritis. Med Sci Monit 2017; 23: 2550-7.
[http://dx.doi.org/10.12659/MSM.900667] [PMID: 28549054]
[135]
Aboelenein HR, Hamza MT, Marzouk H, et al. Reduction of CD19 autoimmunity marker on B cells of paediatric SLE patients through repressing PU.1/TNF-α/BAFF axis pathway by miR-155. Growth Factors 2017; 35(2-3): 49-60.
[http://dx.doi.org/10.1080/08977194.2017.1345900] [PMID: 28683581]
[136]
Kaga H, Komatsuda A, Omokawa A, et al. Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-α in PBMCs from patients with SLE. Mod Rheumatol 2015; 25(6): 865-70.
[http://dx.doi.org/10.3109/14397595.2015.1030102] [PMID: 25775145]
[137]
Li Z, Wang R, Wang D, et al. Circulating miR-320b contributes to CD4+ T-cell proliferation in systemic lupus erythematosus via MAP3K1. J Immunol Res 2023; 2023: 1-14.
[http://dx.doi.org/10.1155/2023/6696967] [PMID: 37928434]
[138]
Tu Y, Guo R, Li J, et al. MiRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654. Front Immunol 2019; 10: 2229.
[http://dx.doi.org/10.3389/fimmu.2019.02229] [PMID: 31608058]
[139]
Liu L, Liu Y, Yuan M, Xu L, Sun H. Elevated expression of microRNA-873 facilitates Th17 differentiation by targeting forkhead box O1 (Foxo1) in the pathogenesis of systemic lupus erythematosus. Biochem Biophys Res Commun 2017; 492(3): 453-60.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.075] [PMID: 28837808]
[140]
Yang B, Huang X, Xu S, et al. Decreased miR-4512 levels in monocytes and macrophages of individuals with systemic lupus erythematosus contribute to innate immune activation and neutrsophil NETosis by targeting TLR4 and CXCL2. Front Immunol 2021; 12: 756825.
[http://dx.doi.org/10.3389/fimmu.2021.756825] [PMID: 34721432]
[141]
Costa-Reis P, Russo PA, Zhang Z, et al. The role of MicroRNAs and human epidermal growth factor receptor 2 in proliferative lupus nephritis. Arthritis Rheumatol 2015; 67(9): 2415-26.
[http://dx.doi.org/10.1002/art.39219] [PMID: 26016809]
[142]
Qingjuan L, Xiaojuan F, Wei Z, et al. miR-148a-3p overexpression contributes to glomerular cell proliferation by targeting PTEN in lupus nephritis. Am J Physiol Cell Physiol 2016; 310(6): C470-8.
[http://dx.doi.org/10.1152/ajpcell.00129.2015] [PMID: 26791485]
[143]
Cui D, Zhu D, Ren H, et al. MicroRNA-198 contributes to lupus nephritis progression by inhibition of phosphatase and tensin homology deleted on chromosome ten expression. Mol Med Rep 2017; 16(5): 7813-20.
[http://dx.doi.org/10.3892/mmr.2017.7527] [PMID: 28944868]
[144]
Zheng J, Guo R, Tang Y, et al. miR-152 attenuates the severity of lupus nephritis through the downregulation of macrophage migration inhibitory factor (MIF)-induced expression of COL1A1. Front Immunol 2019; 10: 158.
[http://dx.doi.org/10.3389/fimmu.2019.00158] [PMID: 30787934]
[145]
Zhang L, Zhang X, Si F. MicroRNA-124 represents a novel diagnostic marker in human lupus nephritis and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6. Int J Clin Exp Pathol 2019; 12(5): 1578-88.
[PMID: 31933975]
[146]
Han X, Wang Y, Zhang X, et al. MicroRNA-130b ameliorates murine lupus nephritis through targeting the type I interferon pathway on renal mesangial cells. Arthritis Rheumatol 2016; 68(9): 2232-43.
[http://dx.doi.org/10.1002/art.39725] [PMID: 27111096]
[147]
Huang Z, Pang G, Huang YG, Li C. miR-133 inhibits proliferation and promotes apoptosis by targeting LASP1 in lupus nephritis. Exp Mol Pathol 2020; 114: 104384.
[http://dx.doi.org/10.1016/j.yexmp.2020.104384] [PMID: 31987844]
[148]
Zhou H, Hasni SA, Perez P, et al. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol 2013; 24(7): 1073-87.
[http://dx.doi.org/10.1681/ASN.2012080849] [PMID: 23723424]
[149]
Wang X, Wang G, Zhang X, et al. Inhibition of microRNA-182-5p contributes to attenuation of lupus nephritis via Foxo1 signaling. Exp Cell Res 2018; 373(1-2): 91-8.
[http://dx.doi.org/10.1016/j.yexcr.2018.09.026] [PMID: 30308195]
[150]
Li X, Luo F, Li J, Luo C. MiR-183 delivery attenuates murine lupus nephritis-related injuries via targeting mTOR. Scand J Immunol 2019; 90(5): e12810.
[http://dx.doi.org/10.1111/sji.12810] [PMID: 31325389]
[151]
Yao F, Sun L, Fang W, et al. Hsa-miR-371-5p inhibits human mesangial cell proliferation and promotes apoptosis in lupus nephritis by directly targeting hypoxia-inducible factor 1α. Mol Med Rep 2016; 14(6): 5693-8.
[http://dx.doi.org/10.3892/mmr.2016.5939] [PMID: 27878241]
[152]
Krasoudaki E, Banos A, Stagakis E, et al. Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4. Nephrol Dial Transplant 2016; 31(10): 1676-86.
[http://dx.doi.org/10.1093/ndt/gfv374] [PMID: 26546590]
[153]
Wang W, Gao J, Wang F. MiR-663a/MiR-423-5p are involved in the pathogenesis of lupus nephritis via modulating the activation of NF-κB by targeting TNIP2. Am J Transl Res 2017; 9(8): 3796-803.
[PMID: 28861170]
[154]
Dosil SG, Rodríguez-Galán A, Sánchez-Madrid F, Fernández-Messina L. MicroRNAs in T cell-immunotherapy. Int J Mol Sci 2022; 24(1): 250.
[http://dx.doi.org/10.3390/ijms24010250] [PMID: 36613706]
[155]
Asakiya C, Zhu L, Yuhan J, Zhu L, Huang K, Xu W. Current progress of miRNA-derivative nucleotide drugs: Modifications, delivery systems, applications. Expert Opin Drug Deliv 2022; 19(4): 435-50.
[http://dx.doi.org/10.1080/17425247.2022.2063835] [PMID: 35387533]
[156]
Kamali MJ, Salehi M, Fatemi S, Moradi F, Khoshghiafeh A, Ahmadifard M. Locked nucleic acid (LNA): A modern approach to cancer diagnosis and treatment. Exp Cell Res 2023; 423(1): 113442.
[http://dx.doi.org/10.1016/j.yexcr.2022.113442] [PMID: 36521777]
[157]
Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 2011; 18(12): 1111-20.
[http://dx.doi.org/10.1038/gt.2011.100] [PMID: 21753793]
[158]
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48(14): 7623-39.
[http://dx.doi.org/10.1093/nar/gkaa576] [PMID: 32644123]
[159]
Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform strategies of herbal components for the management of rheumatoid arthritis: A review on the battle for next-generation formulations. Curr Drug Deliv 2023.
[http://dx.doi.org/10.2174/1567201821666230825102748] [PMID: 37622715]
[160]
Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[161]
Hung ME, Leonard JN. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extracell Vesicles 2016; 5(1): 31027.
[http://dx.doi.org/10.3402/jev.v5.31027] [PMID: 27189348]
[162]
Mateescu B, Kowal EJK, van Balkom BWM, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J Extracell Vesicles 2017; 6(1): 1286095.
[http://dx.doi.org/10.1080/20013078.2017.1286095] [PMID: 28326170]
[163]
Aboeleneen SB, Scully MA, Harris JC, Sterin EH, Day ES. Membrane-wrapped nanoparticles for photothermal cancer therapy. Nano Converg 2022; 9(1): 37.
[http://dx.doi.org/10.1186/s40580-022-00328-4] [PMID: 35960404]
[164]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106(Pt A): 148-56.
[http://dx.doi.org/10.1016/j.addr.2016.02.006] [PMID: 26928656]
[165]
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 2021; 16(7): 748-59.
[http://dx.doi.org/10.1038/s41565-021-00931-2] [PMID: 34211166]
[166]
Matsumoto A, Takahashi Y, Chang HY, et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles 2020; 9(1): 1696517.
[http://dx.doi.org/10.1080/20013078.2019.1696517] [PMID: 31807238]
[167]
Herrera-Carrillo E, Liu YP, Berkhout B. Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors. Hum Gene Ther Methods 2017; 28(4): 177-90.
[http://dx.doi.org/10.1089/hgtb.2017.036] [PMID: 28712309]
[168]
Li YT, Chen SY, Wang CR, et al. Brief report: Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 2012; 64(10): 3240-5.
[http://dx.doi.org/10.1002/art.34550] [PMID: 22674011]
[169]
Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 2018; 428: 90-103.
[http://dx.doi.org/10.1016/j.canlet.2018.04.016] [PMID: 29680223]
[170]
Lam IKY, Chow JX, Lau CS, Chan VSF. MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett 2018; 431: 201-12.
[http://dx.doi.org/10.1016/j.canlet.2018.05.044] [PMID: 29859876]
[171]
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109: 102438.
[http://dx.doi.org/10.1016/j.jaut.2020.102438] [PMID: 32184036]
[172]
Peng X, Wang Q, Li W, et al. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11(1): 8.
[http://dx.doi.org/10.1038/s41413-023-00244-1] [PMID: 36690624]
[173]
Ouyang T, Liu Z, Han Z, Ge Q. MicroRNA detection specificity: Recent advances and future perspective. Anal Chem 2019; 91(5): 3179-86.
[http://dx.doi.org/10.1021/acs.analchem.8b05909] [PMID: 30702270]
[174]
Pan Y, Jia T, Zhang Y, et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomed 2012; 7: 5957-67.
[http://dx.doi.org/10.2147/IJN.S37990] [PMID: 23233803]
[175]
Zhou S, Wang Y, Meng Y, et al. In vivo therapeutic success of MicroRNA-155 antagomir in a mouse model of lupus alveolar hemorrhage. Arthritis Rheumatol 2016; 68(4): 953-64.
[http://dx.doi.org/10.1002/art.39485] [PMID: 26556607]
[176]
Garchow BG, Bartulos Encinas O, Leung YT, et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med 2011; 3(10): 605-15.
[http://dx.doi.org/10.1002/emmm.201100171] [PMID: 21882343]
[177]
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20(8): 629-51.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[178]
Beg MS, Brenner AJ, Sachdev J. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Invest New Drugs 2017; 35(2): 180-8.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[179]
Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 2020; 122(11): 1630-7.
[http://dx.doi.org/10.1038/s41416-020-0802-1] [PMID: 32238921]
[180]
van Zandwijk N, Pavlakis N, Kao SC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017; 18(10): 1386-96.
[http://dx.doi.org/10.1016/S1470-2045(17)30621-6] [PMID: 28870611]
[181]
Gebert LFR, Rebhan MAE, Crivelli SEM, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 2014; 42(1): 609-21.
[http://dx.doi.org/10.1093/nar/gkt852] [PMID: 24068553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy