Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

3′-Daidzein Sulfonate Sodium Protects against Glutamate-induced Neuronal Injuries by Regulating NMDA Receptors

Author(s): Ruixue Feng, Li Luo, Zun Han, Yue Qi, Hai Xiao, Cheng Huang, Weijie Peng, Ruizhen Liu* and Zhihua Huang*

Volume 30, Issue 22, 2024

Published on: 20 May, 2024

Page: [1762 - 1770] Pages: 9

DOI: 10.2174/0113816128299123240505172222

Price: $65

Abstract

Background: It was previously found that 3'-Daidzein Sulfonate Sodium (DSS) exhibits protective effects on cerebral ischemia/reperfusion injury (CI/RI).

Aim: This study aimed to explore the underlying molecular mechanisms involved in the neuroprotective effects of DSS against ischemic stroke.

Methods: In this study, rats with transient middle cerebral artery occlusion (tMCAO) were used as an in vivo model, whereas PC12 cells treated with glutamate alone and rat primary cortical neurons treated with the combination of glutamate and glycine were used as in vitro models. Cell viability and lactate dehydrogenase (LDH) release were used to evaluate cell injury. Cell apoptosis was determined by flow cytometry. Quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescent staining methods were used to determine the mRNA expressions and protein levels and location.

Results: It was found that DSS significantly suppressed the impaired viability of PC12 cells induced by glutamate. DSS also increased cell viability while reducing the LDH release and apoptosis in primary cortical neurons injured by glutamate and glycine. In addition, DSS decreased GluN2B subunit expression while enhancing the expressions of GluN2A subunit and PSD95 in tMCAO rats’ brains.

Conclusion: This study demonstrated that DSS protects against excitotoxic damage in neurons induced by CI/RI through regulating the expression of NMDA receptors and PSD95. Our findings provide experimental evidence for the potential clinical administration of DSS in ischemic stroke.

[1]
Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci 2017; 38(7): 1167-86.
[http://dx.doi.org/10.1007/s10072-017-2938-1] [PMID: 28417216]
[2]
Meng XL, Zhang DL, Sui SH. Acute remote ischemic preconditioning alleviates free radical injury and inflammatory response in cerebral ischemia/reperfusion rats. Exp Ther Med 2019; 18(3): 1953-60.
[http://dx.doi.org/10.3892/etm.2019.7797] [PMID: 31410157]
[3]
Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: From neurotoxicity to ischemic tolerance. Curr Opin Pharmacol 2017; 35: 111-9.
[http://dx.doi.org/10.1016/j.coph.2017.07.014] [PMID: 28826602]
[4]
Huang M, Cheng G, Tan H, et al. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol 2017; 295: 66-76.
[http://dx.doi.org/10.1016/j.expneurol.2017.05.001] [PMID: 28479337]
[5]
Zaghmi A, López DA, Mato PM, et al. Sustained blood glutamate scavenging enhances protection in ischemic stroke. Commun Biol 2020; 3(1): 729.
[http://dx.doi.org/10.1038/s42003-020-01406-1] [PMID: 33273696]
[6]
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11(10): 682-96.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[7]
Liu S, Xiong L, Yu Z, et al. Icaritin alleviates cerebral ischemia- reperfusion injury by regulating NMDA receptors through ERK signaling. Eur J Pharmacol 2023; 941: 175492.
[http://dx.doi.org/10.1016/j.ejphar.2023.175492] [PMID: 36610684]
[8]
Sun Y, Zhang L, Chen Y, Zhan L, Gao Z. Therapeutic targets for cerebral ischemia based on the signaling pathways of the glun2b c terminus. Stroke 2015; 46(8): 2347-53.
[http://dx.doi.org/10.1161/STROKEAHA.115.009314] [PMID: 26173725]
[9]
Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: New hope in neuroprotection. Mol Brain 2018; 11(1): 15.
[http://dx.doi.org/10.1186/s13041-018-0357-8] [PMID: 29534733]
[10]
Heo HS, Han GE, Won J, Cho Y, Woo H, Lee JH. Pueraria montana var. lobata root extract inhibits photoaging on skin through Nrf2 pathway. J Microbiol Biotechnol 2019; 29(4): 518-26.
[http://dx.doi.org/10.4014/jmb.1812.12019] [PMID: 30954034]
[11]
Aboushanab SA, Khedr SM, Gette IF, et al. Isoflavones derived from plant raw materials: Bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2023; 63(2): 261-87.
[http://dx.doi.org/10.1080/10408398.2021.1946006] [PMID: 34251921]
[12]
Wu J, Li K, Liu Y, et al. Daidzein ameliorates doxorubicin-induced cardiac injury by inhibiting autophagy and apoptosis in rats. Food Funct 2023; 14(2): 934-45.
[http://dx.doi.org/10.1039/D2FO03416F] [PMID: 36541083]
[13]
Zhang Q, Xie H, Chen D, et al. Dietary daidzein supplementation during pregnancy facilitates fetal growth in rats. Mol Nutr Food Res 2018; 62(24): 1800921.
[http://dx.doi.org/10.1002/mnfr.201800921] [PMID: 30365232]
[14]
Singh S, Grewal S, Sharma N, et al. Unveiling the pharmacological and nanotechnological facets of daidzein: Present state-of-the-art and future perspectives. Molecules 2023; 28(4): 1765.
[http://dx.doi.org/10.3390/molecules28041765] [PMID: 36838751]
[15]
Liu R, Zhong X, Zeng J, et al. 3′-Daidzein sulfonate sodium inhibits neuronal apoptosis induced by cerebral ischemia-reperfusion. Int J Mol Med 2017; 39(4): 1021-8.
[http://dx.doi.org/10.3892/ijmm.2017.2915] [PMID: 28290606]
[16]
Zeng J, Yuan W, Chen Q, et al. 3′-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury. Neural Regen Res 2017; 12(2): 235-41.
[http://dx.doi.org/10.4103/1673-5374.200807] [PMID: 28400805]
[17]
Zeng J, Xiao H, Li X, et al. 3′-Daidzein sulfonate sodium protects against memory impairment and hippocampal damage caused by chronic cerebral hypoperfusion. Neural Regen Res 2018; 13(9): 1561-7.
[http://dx.doi.org/10.4103/1673-5374.237119] [PMID: 30127116]
[18]
Li X, Huang Z, Liu S, et al. 3′-Daidzein sulfonate sodium provides neuroprotection by promoting the expression of the α7 nicotinic acetylcholine receptor and suppressing inflammatory responses in a rat model of focal cerebral ischemia. Am J Transl Res 2018; 10(11): 3455-64.
[PMID: 30662599]
[19]
Zeng Q, Huang Z, Zhang J, et al. 3′-Daidzein sulfonate sodium protects against chronic cerebral hypoperfusion-mediated cognitive impairment and hippocampal damage via activity-regulated cytoskeleton-associated protein upregulation. Front Neurosci 2019; 13: 104.
[http://dx.doi.org/10.3389/fnins.2019.00104] [PMID: 30930725]
[20]
Zhihua H, Liangdong L, Xiao L, Fang C, Jing Z. Effect of 3(')- daidzein sulfonic sodium on the anti-oxidation of retinal ischemia/reperfusion injury in rats. Adv Exp Med Biol 2010; 664: 585-91.
[http://dx.doi.org/10.1007/978-1-4419-1399-9_67] [PMID: 20238062]
[21]
Li L, Xue J, Liu R, et al. Neuroprotective effects of genistein-3′- sodium sulfonate on focal cerebral ischemia in rats. Neurosci Lett 2017; 646: 43-8.
[http://dx.doi.org/10.1016/j.neulet.2017.02.046] [PMID: 28237799]
[22]
Sadeghnia HR, Kolangikhah M, Asadpour E, Forouzanfar F, Hosseinzadeh H. Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. Iran J Basic Med Sci 2017; 20(5): 594-603.
[PMID: 28656094]
[23]
Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation 2018; 137(12): e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[24]
Korshunova A, Blagonravov M, Neborak E, et al. BCL2-regulated apoptotic process in myocardial ischemia-reperfusion injury (Review). Int J Mol Med 2020; 47(1): 23-36.
[http://dx.doi.org/10.3892/ijmm.2020.4781] [PMID: 33155658]
[25]
Parvez S, Kaushik M, Ali M, et al. Dodging blood brain barrier with “nano” warriors: Novel strategy against ischemic stroke. Theranostics 2022; 12(2): 689-719.
[http://dx.doi.org/10.7150/thno.64806] [PMID: 34976208]
[26]
Ravindran S, Hussain JS, Boovarahan SR, Kurian GA. Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress. Chem Biol Interact 2017; 274: 24-34.
[http://dx.doi.org/10.1016/j.cbi.2017.07.002] [PMID: 28688941]
[27]
Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci 2020; 21(18): 6454.
[http://dx.doi.org/10.3390/ijms21186454] [PMID: 32899616]
[28]
Choo AM, Klein GDM, Hockenberry A, et al. NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int 2012; 60(5): 506-16.
[http://dx.doi.org/10.1016/j.neuint.2012.02.007] [PMID: 22366650]
[29]
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol 2014; 115: 157-88.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.006] [PMID: 24361499]
[30]
Zhu J, Xu S, Li S, Yang X, Yu X, Zhang X. Up-regulation of GluN2A-containing NMDA receptor protects cultured cortical neuron cells from oxidative stress. Heliyon 2018; 4(11): e00976.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00976] [PMID: 30555952]
[31]
Shen Z, Xiang M, Chen C, et al. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151: 113125.
[http://dx.doi.org/10.1016/j.biopha.2022.113125] [PMID: 35609367]
[32]
Shi Z, Zhu L, Li T, et al. Neuroprotective mechanisms of Lycium barbarum polysaccharides against ischemic insults by regulating NR2B and NR2A containing nmda receptor signaling pathways. Front Cell Neurosci 2017; 11: 288.
[http://dx.doi.org/10.3389/fncel.2017.00288] [PMID: 29021742]
[33]
Sun Y, Xu Y, Cheng X, et al. The differences between GluN2A and GluN2B signaling in the brain. J Neurosci Res 2018; 96(8): 1430-43.
[http://dx.doi.org/10.1002/jnr.24251] [PMID: 29682799]
[34]
Liu Y, Wong TP, Aarts M, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007; 27(11): 2846-57.
[http://dx.doi.org/10.1523/JNEUROSCI.0116-07.2007] [PMID: 17360906]
[35]
Wu T, Chen SR, Pan HL, Luo Y. The α2δ-1-NMDA receptor complex and its potential as a therapeutic target for ischemic stroke. Front Neurol 2023; 14: 1148697.
[http://dx.doi.org/10.3389/fneur.2023.1148697] [PMID: 37153659]
[36]
Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet 2020; 21(10): 630-44.
[http://dx.doi.org/10.1038/s41576-020-0258-4] [PMID: 32709985]
[37]
Cheng Z, Teo G, Krueger S, et al. Differential dynamics of the mammalian MRNA and protein expression response to misfolding stress. Mol Syst Biol 2016; 12(1): 855.
[http://dx.doi.org/10.15252/msb.20156423] [PMID: 26792871]
[38]
McEachern EP, Coley AA, Yang SS, Gao WJ. PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology 2020; 179: 108277.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108277] [PMID: 32818520]
[39]
Coley AA, Gao WJ. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep 2019; 9(1): 9486.
[http://dx.doi.org/10.1038/s41598-019-45971-w] [PMID: 31263190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy