Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Inhibition of Glycyrrhiza Polysaccharide on Human Cytochrome P450 46A1 in vitro and in vivo: Implications in Treating Neurological Diseases

Author(s): Jie Du, Zujia Chen, Xiaodong Chen, Jiahui Zhang, Yaojun Wang, Tingting Zhao, Dalong Wang, Changyuan Wang, Yanwei Chen*, Qiang Meng, Huijun Sun, Kexin Liu and Jingjing Wu*

Volume 25, Issue 3, 2024

Published on: 23 May, 2024

Page: [227 - 234] Pages: 8

DOI: 10.2174/0113892002305873240520072802

Price: $65

Abstract

Background: Cytochrome P450 (CYP) 46A1, also known as cholesterol 24S-hydroxylase, is essential for maintaining the homeostasis of cholesterol in the brain and serves as a therapeutic target of neurodegenerative disorders and excitatory neurotoxicity. N-methyl-d-aspartate receptor (NMDAR) is a prototypical receptor for the excitatory neurotransmitter glutamate and can be specifically regulated by 24S-hydroxycholesterol (24S-HC). Glycyrrhiza is one of the most widely used herbs with broad clinical applications, which has several pharmacological activities, such as clearing heat and detoxifying, moistening the lung and relieving cough, analgesic, neuroprotective outcomes, and regulating a variety of drug activities. Glycyrrhiza is a commonly used herb for the treatment of epileptic encephalopathy. However, whether glycyrrhiza can interfere with the activity of CYP46A1 remains unknown.

Objective: This study aimed to investigate the regulating effects of glycyrrhiza polysaccharides (GP) on CYP46A1-mediated cholesterol conversion, as well as in the modulation of related proteins.

Materials and Methods: The effects of glycyrrhiza polysaccharide (GP) on the activity of CYP46A1 were investigated in vivo and in vitro. Moreover, the potential regulatory effects of GP on the expressions of CYP46A1, HMG-CoA reductase (HMGCR), and NMDAR were also detected.

Results: The in vitro results demonstrated that glycyrrhiza polysaccharide (GP), as the main water-soluble active component of glycyrrhiza, remarkably inhibited the activity of CYP46A1 in a non-competitive mode with a Ki value of 0.7003 mg/ml. Furthermore, the in vivo experiments verified that GP markedly decreased the contents of 24S-HC in rat plasma and brain tissues as compared to the control. More importantly, the protein expressions of CYP46A1, GluN2A, GluN2B, and HMG-CoA reductase (HMGCR) in rat brains were all downregulated, whereas the mRNA expressions of CYP46A1 and HMGCR were not significantly changed after treatment with GP.

Conclusion : GP exhibits a significant inhibitory effect on CYP46A1 activity in vitro and in vivo, and the protein expressions of CYP46A1, HMGCR, and NMDAR are also inhibited by GP, which are of considerable clinical significance for GP's potential therapeutic role in treating neurological diseases.

« Previous
[1]
Lund, E.G.; Guileyardo, J.M.; Russell, D.W. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl. Acad. Sci., 1999, 96(13), 7238-7243.
[http://dx.doi.org/10.1073/pnas.96.13.7238] [PMID: 10377398]
[2]
Lund, E.G.; Xie, C.; Kotti, T.; Turley, S.D.; Dietschy, J.M.; Russell, D.W. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J. Biol. Chem., 2003, 278(25), 22980-22988.
[http://dx.doi.org/10.1074/jbc.M303415200] [PMID: 12686551]
[3]
Hudry, E; Dam, V.D; Kulik, W; Deyn, D.P; Stet, F; Ahouansou, O Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer's disease. Mol Ther., 2010, 18(1), 44-53.
[4]
Burlot, M.A.; Braudeau, J.; Preusse, M.K.; Potier, B.; Ayciriex, S.; Varin, J.; Gautier, B.; Djelti, F.; Audrain, M.; Dauphinot, L.; Gomez, F.F.J.; Caillierez, R.; Laprévote, O.; Bièche, I.; Auzeil, N.; Potier, M.C.; Dutar, P.; Korte, M.; Buée, L.; Blum, D.; Cartier, N. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum. Mol. Genet., 2015, 24(21), 5965-5976.
[http://dx.doi.org/10.1093/hmg/ddv268] [PMID: 26358780]
[5]
Boussicault, L.; Alves, S.; Lamazière, A.; Planques, A.; Heck, N.; Moumné, L.; Despres, G.; Bolte, S.; Hu, A.; Pagès, C.; Galvan, L.; Piguet, F.; Aubourg, P.; Cartier, N.; Caboche, J.; Betuing, S. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain, 2016, 139(3), 953-970.
[http://dx.doi.org/10.1093/brain/awv384] [PMID: 26912634]
[6]
Petrov, A.M.; Lam, M.; Mast, N.; Moon, J.; Li, Y.; Maxfield, E.; Pikuleva, I.A. CYP46A1 Activation by Efavirenz Leads to Behavioral Improvement without Significant Changes in Amyloid Plaque Load in the Brain of 5XFAD Mice. Neurotherapeutics, 2019, 16(3), 710-724.
[http://dx.doi.org/10.1007/s13311-019-00737-0] [PMID: 31062296]
[7]
Nishi, T.; Kondo, S.; Miyamoto, M.; Watanabe, S.; Hasegawa, S.; Kondo, S.; Yano, J.; Watanabe, E.; Ishi, T.; Yoshikawa, M.; Ando, H.K.; Farnaby, W.; Fujimoto, S.; Sunahara, E.; Ohori, M.; During, M.J.; Kuroita, T.; Koike, T. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor shows a therapeutic potential for neural hyperexcitation in mice. Sci. Rep., 2020, 10(1), 17081.
[http://dx.doi.org/10.1038/s41598-020-74036-6] [PMID: 33051477]
[8]
Hawkins, N.A.; Jurado, M.; Thaxton, T.T.; Duarte, S.E.; Barse, L.; Tatsukawa, T.; Yamakawa, K.; Nishi, T.; Kondo, S.; Miyamoto, M.; Abrahams, B.S.; During, M.J.; Kearney, J.A. Soticlestat, a novel cholesterol 24‐hydroxylase inhibitor, reduces seizures and premature death in Dravet syndrome mice. Epilepsia, 2021, 62(11), 2845-2857.
[http://dx.doi.org/10.1111/epi.17062] [PMID: 34510432]
[9]
Koike, T.; Yoshikawa, M.; Ando, H.K.; Farnaby, W.; Nishi, T.; Watanabe, E.; Yano, J.; Miyamoto, M.; Kondo, S.; Ishii, T.; Kuroita, T. Discovery of Soticlestat, a Potent and Selective Inhibitor for Cholesterol 24-Hydroxylase (CH24H). J. Med. Chem., 2021, 64(16), 12228-12244.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00864] [PMID: 34387987]
[10]
Simayi, Z.; Rozi, P.; Yang, X.; Ababaikeri, G.; Maimaitituoheti, W.; Bao, X.; Ma, S.; Askar, G.; Yadikar, N. Isolation, structural characterization, biological activity, and application of Glycyrrhiza polysaccharides: Systematic review. Int. J. Biol. Macromol., 2021, 183, 387-398.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.099] [PMID: 33887291]
[11]
Paudel, Y.N.; Khan, S.U.; Othman, I.; Shaikh, M.F. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem. Neurosci., 2021, 12(18), 3288-3302.
[http://dx.doi.org/10.1021/acschemneuro.0c00825] [PMID: 34463468]
[12]
Yang, E.J.; Park, G.H.; Song, K.S. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology, 2013, 39, 114-123.
[http://dx.doi.org/10.1016/j.neuro.2013.08.012] [PMID: 24012889]
[13]
Lu, H.; Luo, M.; Chen, R.; Luo, Y.; Xi, A.; Wang, K.; Xu, Z. Efficacy and safety of traditional Chinese medicine for the treatment of epilepsy: A updated meta-analysis of randomized controlled trials. Epilepsy Res., 2023, 189, 107075.
[http://dx.doi.org/10.1016/j.eplepsyres.2022.107075] [PMID: 36603453]
[14]
Zhang, C.H.; Yu, Y.; Liang, Y.Z.; Chen, X.Q. Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis. Int. J. Biol. Macromol., 2015, 79, 681-686.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.060] [PMID: 26051342]
[15]
Aipire, A.; Yuan, P.; Aimaier, A.; Cai, S.; Mahabati, M.; Lu, J. Glycyrrhiza uralensisPreparation, Characterization, and Immuno-Enhancing Activity of Polysaccharides from. Biomolecules, 2020, 10(1), 159.
[http://dx.doi.org/10.3390/biom10010159] [PMID: 31963790]
[16]
He, X.; Li, X.; Liu, B.; Xu, L.; Zhao, H.; Lu, A. Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine ratio were induced by polysaccharide from Radix Glycyrrhizae in H22 hepatocarcinoma bearing mice. Molecules, 2011, 16(10), 8343-8352.
[http://dx.doi.org/10.3390/molecules16108343] [PMID: 21963624]
[17]
Wittschier, N.; Faller, G.; Hensel, A. Aqueous extracts and polysaccharides from Liquorice roots (Glycyrrhiza glabra L.) inhibit adhesion of Helicobacter pylori to human gastric mucosa. J. Ethnopharmacol., 2009, 125(2), 218-223.
[http://dx.doi.org/10.1016/j.jep.2009.07.009] [PMID: 19607905]
[18]
Xiao, J.; Wang, Q.; Liu, Z. Effect of glycyrrhiza polysaccharide on pentylenetetrazol kindled epileptic rats. Chinese J. Clin. Pharmacol., 2021, 37(04), 432-435.
[19]
Khassafi, N.; Zahraei, Z.; Vahidinia, Z.; Karimian, M.; Tameh, A.A. Calcitriol Pretreatment Attenuates Glutamate Neurotoxicity by Regulating NMDAR and CYP46A1 Gene Expression in Rats Subjected to Transient Middle Cerebral Artery Occlusion. J. Neuropathol. Exp. Neurol., 2022, 81(4), 252-259.
[http://dx.doi.org/10.1093/jnen/nlac011] [PMID: 35244169]
[20]
Zhang, X.; Peng, K.; Zhang, X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front. Neurosci., 2020, 14, 567665.
[http://dx.doi.org/10.3389/fnins.2020.567665] [PMID: 33117117]
[21]
Ghasemi, M; Schachter, S. The NMDA receptor complex as a therapeutic target in epilepsy: A review. Epilepsy Behav., 2011, 22(4), 617-40.
[http://dx.doi.org/10.1016/j.yebeh.2011.07.024]
[22]
Sun, M.Y.; Taylor, A.; Zorumski, C.F.; Mennerick, S. 24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampal neuronal survival following oxygen-glucose deprivation. PLoS One, 2017, 12(3), e0174416.
[http://dx.doi.org/10.1371/journal.pone.0174416] [PMID: 28346482]
[23]
Paul, S.M.; Doherty, J.J.; Robichaud, A.J.; Belfort, G.M.; Chow, B.Y.; Hammond, R.S.; Crawford, D.C.; Linsenbardt, A.J.; Shu, H.J.; Izumi, Y.; Mennerick, S.J.; Zorumski, C.F. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J. Neurosci., 2013, 33(44), 17290-17300.
[http://dx.doi.org/10.1523/JNEUROSCI.2619-13.2013] [PMID: 24174662]
[24]
Zhong, S.; Li, L.; Liang, N.; Zhang, L.; Xu, X.; Chen, S.; Yin, H. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol., 2021, 41, 101919.
[http://dx.doi.org/10.1016/j.redox.2021.101919] [PMID: 33740503]
[25]
Wu, J.; Cao, Y.; Zhang, Y.; Liu, Y.; Hong, J.Y.; Zhu, L.; Ge, G.; Yang, L. Deoxyschizandrin, a naturally occurring lignan, is a specific probe substrate of human cytochrome P450 3A. Drug Metab. Dispos., 2014, 42(1), 94-104.
[http://dx.doi.org/10.1124/dmd.113.053884] [PMID: 24131672]
[26]
Wen, S.; Wang, C.; Huo, X.; Meng, Q.; Liu, Z.; Yang, S.; Zhu, Y.; Sun, H.; Ma, X.; Liu, K. JBP485 attenuates vancomycin-induced nephrotoxicity by regulating the expressions of organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp) in rats. Toxicol. Lett., 2018, 295, 195-204.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.1220] [PMID: 29964132]
[27]
Abdelghany, RM Interplay between lipo-polysaccahride induced oxidative stress and amyloid beta deposition in Alzheimer's disease and treatment with glycyrrhizin. J. Exp. Appl. Animal Sci., 2014, 1(2), 212-228.
[28]
Song, J.H.; Lee, J.W.; Shim, B.; Lee, C.Y.; Choi, S.; Kang, C.; Sohn, N.W.; Shin, J.W. Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice. Molecules, 2013, 18(12), 15788-15803.
[http://dx.doi.org/10.3390/molecules181215788] [PMID: 24352029]
[29]
Ahn, J.; Um, M.; Choi, W.; Kim, S.; Ha, T. Protective effects of Glycyrrhiza uralensis Fisch. on the cognitive deficits caused by β-amyloid peptide 25–35 in young mice. Biogerontol., 2006, 7(4), 239-247.
[http://dx.doi.org/10.1007/s10522-006-9023-0] [PMID: 16821116]
[30]
Liu, R.T.; Tang, J.T.; Zou, L.B.; Fu, J.Y.; Lu, Q.J. Liquiritigenin attenuates the learning and memory deficits in an amyloid protein precursor transgenic mouse model and the underlying mechanisms. Eur. J. Pharmacol., 2011, 669(1-3), 76-83.
[http://dx.doi.org/10.1016/j.ejphar.2011.07.051] [PMID: 21872584]
[31]
Wang, S.; Wang, X.; Wang, Z.; Wang, Z.; Jiang, L.; Liu, J.; Wu, J.; Liu, Y. Highly sensitive and selective detection of cytochrome P450 46A1 activity by a ultra‐high‐performance liquid chromatography–tandem mass spectrometry method. Biomed. Chromatogr., 2022, 36(3), e5291.
[http://dx.doi.org/10.1002/bmc.5291] [PMID: 34854105]
[32]
Ohyama, Y.; Meaney, S.; Heverin, M.; Ekström, L.; Brafman, A.; Shafir, M.; Andersson, U.; Olin, M.; Eggertsen, G.; Diczfalusy, U.; Feinstein, E.; Björkhem, I. Studies on the transcriptional regulation of cholesterol 24-hydroxylase (CYP46A1): Marked insensitivity toward different regulatory axes. J. Biol. Chem., 2006, 281(7), 3810-3820.
[http://dx.doi.org/10.1074/jbc.M505179200] [PMID: 16321981]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy