Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Disposition Kinetics of Cathinone and its Metabolites after Oral Administration in Rats

Author(s): Fahad Y. Sabei*, Ibrahim Khardali, Mohamed A. Al-Kasim, Emad Sayed Shaheen, Magbool Oraiby, Ahmad Alamir, Banji David, Saeed Alshahrani, Abdulmajeed M. Jali, Mohammed Attafi, Mohammed Y. Albeishy and Ibraheem Attafi*

Volume 25, Issue 3, 2024

Published on: 15 May, 2024

Page: [220 - 226] Pages: 7

DOI: 10.2174/0113892002300638240513065512

Price: $65

Abstract

Background: Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited.

Objective: This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats.

Methods: Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method.

Results: The highest concentration of cathinone was found in the kidney (1438.6 μg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 μg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 μg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 μg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum.

Conclusion: This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.

[1]
Patel, N.B. Khat (Catha edulis Forsk) – And now there are three. Brain Res. Bull., 2019, 145, 92-96.
[http://dx.doi.org/10.1016/j.brainresbull.2018.07.014] [PMID: 30059706]
[2]
Correia, B.; Fernandes, J.; Botica, M.J.; Ferreira, C.; Quintas, A. Novel psychoactive substances: The razor’s edge between therapeutical potential and psychoactive recreational misuse. Medicines (Basel), 2022, 9(3), 19.
[http://dx.doi.org/10.3390/medicines9030019] [PMID: 35323718]
[3]
Brenneisen, R.; Fisch, H.U.; Koelbing, U.; Geisshüsler, S.; Kalix, P. Amphetamine-like effects in humans of the khat alkaloid cathinone. Br. J. Clin. Pharmacol., 1990, 30(6), 825-828.
[http://dx.doi.org/10.1111/j.1365-2125.1990.tb05447.x] [PMID: 2288828]
[4]
Widler, P.; Mathys, K.; Brenneisen, R.; Kalix, P.; Fisch, H.U. Pharmacodynamics and pharmacokinetics of khat: A controlled study. Clin. Pharmacol. Ther., 1994, 55(5), 556-562.
[http://dx.doi.org/10.1038/clpt.1994.69] [PMID: 7910126]
[5]
Administration, D.E. Drugs of abuse: A dea resource guide; CreateSpace Independent Publishing Platform: Scotts Valley, California, US, 2020.
[6]
Zelger, J.L.; Carlini, E.A. Influence of cathinone (α-aminopropiophenone) and cathine (phenylpropanolamine) on circling behavior and on the uptake and release of [3H]dopamine in striatal slices of rats. Neuropharmacology, 1981, 20(9), 839-843.
[http://dx.doi.org/10.1016/0028-3908(81)90076-9] [PMID: 7290356]
[7]
Mereu, G.P.; Pacitti, C.; Argiolas, A. Effect of (-)-cathinone, a khat leaf constituent, on dopaminergic firing and dopamine metabolism in the rat brain. Life Sci., 1983, 32(12), 1383-1389.
[http://dx.doi.org/10.1016/0024-3205(83)90814-7] [PMID: 6834994]
[8]
Coppola, M.; Mondola, R. Synthetic cathinones: Chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicol. Lett., 2012, 211(2), 144-149.
[http://dx.doi.org/10.1016/j.toxlet.2012.03.009] [PMID: 22459606]
[9]
Nencini, P.; Ahmed, A.M. Naloxone-reversible antinociceptive activity of cathinone, the active principle of khat, in the mouse and rat. Pharmacol. Res. Commun., 1982, 14(8), 759-770.
[http://dx.doi.org/10.1016/S0031-6989(82)80082-9] [PMID: 7146059]
[10]
Nencini, P. Cathinone, active principle of the khat leaf: Its effects on in vivo and in vitro lipolysis. Pharmacol. Res. Commun., 1980, 12(9), 855-861.
[http://dx.doi.org/10.1016/S0031-6989(80)80048-8] [PMID: 6255493]
[11]
Kalix, P.; Glennon, R.A. Further evidence for an amphetamine-like mechanism of action of the alkaloid cathinone. Biochem. Pharmacol., 1986, 35(18), 3015-3019.
[http://dx.doi.org/10.1016/0006-2952(86)90380-1] [PMID: 3753515]
[12]
Botanas, C.J.; Yoon, S.S.; Peña, J.B.; Peña, I.J.; Kim, M.; Woo, T.; Seo, J.W.; Jang, C.G.; Park, K.T.; Lee, Y.H.; Lee, Y.S.; Kim, H.J.; Cheong, J.H. The abuse potential of α-piperidinopropiophenone (PIPP) and α-piperidinopentiothiophenone (PIVT), two new synthetic cathinones with piperidine ring substituent. Biomol. Ther. (Seoul), 2017, 25(2), 122-129.
[http://dx.doi.org/10.4062/biomolther.2016.241] [PMID: 28173643]
[13]
Pélissier-Alicot, A.L.; Gaulier, J.M.; Champsaur, P.; Marquet, P. Mechanisms underlying postmortem redistribution of drugs: A review. J. Anal. Toxicol., 2003, 27(8), 533-544.
[http://dx.doi.org/10.1093/jat/27.8.533] [PMID: 14670131]
[14]
Tseng, Y.L.; Shieh, M.H.; Kuo, F.H. Metabolites of ephedrines in human urine after administration of a single therapeutic dose. Forensic Sci. Int., 2006, 157(2-3), 149-155.
[http://dx.doi.org/10.1016/j.forsciint.2005.04.008] [PMID: 15885945]
[15]
Pokrajac, M.; Miljković, B.; Bisailović, B. Mass spectrometric investigation of 2‐aminopropiophenones and some of their metabolites. Rapid Commun. Mass Spectrom., 1991, 5(2), 59-61.
[http://dx.doi.org/10.1002/rcm.1290050202] [PMID: 1804406]
[16]
Scheline, R.R. Handbook of Mammalian Metabolism of Plant Compounds; CRC Press: Boca Raton, Florida, 2017.
[http://dx.doi.org/10.1201/9780203712504]
[17]
Nencini, P.; Ahmed, A.M. Khat consumption: A pharmacological review. Drug Alcohol Depend., 1989, 23(1), 19-29.
[http://dx.doi.org/10.1016/0376-8716(89)90029-X] [PMID: 2537717]
[18]
Alamir, A.M.; Jeraiby, M.A.; Korashy, H.M.; Shaheen, E.S.; Attafi, M.A.; Oraiby, M.E.; Hakami, A.M.; Albeishy, M.Y.; Khardali, I.A.; Juraybi, I.A.; Alobaida, A.A.; Attafi, I.M. Cathine and cathinone disposition kinetics and neurotransmitter profile in several organs of rats exposed to a single dose of Catha edulis (Vahl) Forssk. ex Endl. extract. Drug Metab. Pers. Ther., 2023, 38(2), 199-207.
[http://dx.doi.org/10.1515/dmpt-2022-0154] [PMID: 36883753]
[19]
Alamir, A.; Watterson, J.; Attafi, I. Development and validation of a Uplc-Qtof-Ms method for blood analysis of isomeric amphetamine-related drugs. Separations, 2022, 9(10), 285.
[http://dx.doi.org/10.3390/separations9100285]
[20]
Adebamiro, A.; Perazella, M.A. Recurrent acute kidney injury following bath salts intoxication. Am. J. Kidney Dis., 2012, 59(2), 273-275.
[http://dx.doi.org/10.1053/j.ajkd.2011.10.012] [PMID: 22119408]
[21]
Silva, B.; Soares, J.; Rocha-Pereira, C.; Mladěnka, P.; Remião, F.; Researchers, O. Khat, a cultural chewing drug: A toxicokinetic and toxicodynamic summary. Toxins (Basel), 2022, 14(2), 71.
[http://dx.doi.org/10.3390/toxins14020071] [PMID: 35202099]
[22]
Toennes, S.W.; Harder, S.; Schramm, M.; Niess, C.; Kauert, G.F. Pharmacokinetics of cathinone, cathine and norephedrine after the chewing of khat leaves. Br. J. Clin. Pharmacol., 2003, 56(1), 125-130.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01834.x] [PMID: 12848785]
[23]
Toennes, S.W.; Kauert, G.F. Driving under the influence of khat—alkaloid concentrations and observations in forensic cases. Forensic Sci. Int., 2004, 140(1), 85-90.
[http://dx.doi.org/10.1016/j.forsciint.2003.11.028] [PMID: 15013169]
[24]
Shaikhain, G.; Gaballah, M.; Alhazmi, A.; Khardali, I.; Hakami, A.; Oraiby, M.; Alharbi, S.; Tobaigi, M.; Ghalibi, M.; Fageeh, M.; Albeishy, M.; Attafi, I. Fatalities involving Khat in Jazan, Saudi Arabia, 2018 to 2021. Toxics, 2023, 11(6), 506.
[http://dx.doi.org/10.3390/toxics11060506] [PMID: 37368606]
[25]
Mohan, S.; Abdelwahab, S.; Hobani, Y.; Syam, S.; Al-Zubairi, A.; Al-sanousi, R.; Oraiby, M. Catha edulis extract induces H9c2 cell apoptosis by increasing reactive oxygen species generation and activation of mitochondrial proteins. Pharmacogn. Mag., 2016, 12(46)(Suppl. 3), 321.
[http://dx.doi.org/10.4103/0973-1296.185732] [PMID: 27563219]
[26]
Gambella, G.R.; Bellotti, S.; Cutolo, M.; Modesti, A.; Scarpa, S.; Novelli, A.; Ravera, G.B. Changes in fibronectin production in rat liver during cirrhotic evolution due to treatment with CCl4 and steroid hormones: Correlation with plasmatic fibronectin. Pathologica, 1992, 84(1091), 343-361.
[PMID: 1465320]
[27]
Waters, T.P.; Schultz, B.A.H.; Mercer, B.M.; Catalano, P.M. Effect of 17α-hydroxyprogesterone caproate on glucose intolerance in pregnancy. Obstet. Gynecol., 2009, 114(1), 45-49.
[http://dx.doi.org/10.1097/AOG.0b013e3181a9454b] [PMID: 19546757]
[28]
Nyongesa, A.W.; Oduma, J.A.; Nakajima, M.; Odongo, H.O.; Adoyo, P.A.; al’Absi, M. Dose-response inhibitory effects of purified cathinone from khat (Catha edulis) on cortisol and prolactin release in vervet monkeys (Chlorocebus aethiops). Metab. Brain Dis., 2014, 29(2), 451-458.
[http://dx.doi.org/10.1007/s11011-013-9445-8] [PMID: 24190428]
[29]
Patel, N.B. Mechanism of action of cathinone: The active ingredient of khat (Catha edulis). East Afr. Med. J., 2000, 77(6), 329-332.
[http://dx.doi.org/10.4314/eamj.v77i6.46651] [PMID: 12858935]
[30]
White, H.L.; Scates, P.W. Acetyl-l-carnitine as a precursor of acetylcholine. Neurochem. Res., 1990, 15(6), 597-601.
[http://dx.doi.org/10.1007/BF00973749] [PMID: 2215852]
[31]
Taibjee, S.M.; Ramani, P.; Brown, R.; Moss, C. Lethal cardiomyopathy in epidermolysis bullosa associated with amitriptyline. Arch. Dis. Child., 2005, 90(8), 871-872.
[http://dx.doi.org/10.1136/adc.2004.068775] [PMID: 16040888]
[32]
Blanca, A.J.; Ruiz-Armenta, M.V.; Zambrano, S.; Miguel-Carrasco, J.L.; Arias, J.L.; Arévalo, M.; Mate, A.; Aramburu, O.; Vázquez, C.M. Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: Protective role of l -carnitine. Toxicol. Lett., 2016, 241, 9-18.
[http://dx.doi.org/10.1016/j.toxlet.2015.11.007] [PMID: 26581635]
[33]
Mathew, S.; Menon, P.V.G.; Kurup, P.A. Effect of administration of carnitine on the severity of myocardial infarction induced by isoproterenol in rats. Immunol. Cell Biol., 1986, 64(1), 79-87.
[http://dx.doi.org/10.1038/icb.1986.9] [PMID: 3964138]
[34]
Malone, J.I.; Cuthbertson, D.D.; Malone, M.A.; Schocken, D.D. Cardio-protective effects of carnitine in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol., 2006, 5(1), 2.
[http://dx.doi.org/10.1186/1475-2840-5-2] [PMID: 16423284]
[35]
Ali, W.M.; Zubaid, M.; Al-Motarreb, A.; Singh, R.; Al-Shereiqi, S.Z.; Shehab, A.; Rashed, W.; Al-Sagheer, N.Q.; Saleh, A.H.; Al Suwaidi, J. Association of khat chewing with increased risk of stroke and death in patients presenting with acute coronary syndrome. Mayo Clin. Proc., 2010, 85(11), 974-980.
[http://dx.doi.org/10.4065/mcp.2010.0398]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy