Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Review Article

pH-Sensitive Polymers with their Important Applications (A Review)

Author(s): Chintan R. Madhu* and Bharat H. Patel

Volume 14, Issue 2, 2024

Published on: 20 May, 2024

Page: [93 - 115] Pages: 23

DOI: 10.2174/0118779468296209240427102827

Price: $65

Abstract

Materials that modify their chemical or physical characteristics in reaction to diverse stimuli, such as moisture, heat, water, or pH, are commonly known as smart materials or stimuli-responsive polymers. Typical applications for these polymers include catalysis, finishing, and coating processes. Tissue engineering, drug delivery, and gene transportation are additional applications that have emerged in the past two decades. As a result, their potential use extends to a wider range of applications, encompassing chemical processes, drug delivery, body-site targeting, separation, membrane activity, sensing and actuation, and agriculture. Recently, pH-responsive polymers have garnered considerable interest for implementation in membrane and 4D printing. The current review work encompasses previously published research through 2022, with a particular focus on the critical application of pH-sensitive polymers.

Graphical Abstract

[1]
Dai, S.; Ravi, P.; Tam, K.C. pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008, 4(3), 435-449.
[http://dx.doi.org/10.1039/b714741d] [PMID: 32907201]
[2]
Na, K.; Lee, K.; Bae, Y. pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. J. Control. Release, 2004, 97(3), 513-525.
[http://dx.doi.org/10.1016/S0168-3659(04)00184-1] [PMID: 15212883]
[3]
Gregory, A.; Stenzel, M.H. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog. Polym. Sci., 2012, 37(1), 38-105.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.08.004]
[4]
Chuang, C.Y.; Don, T.M.; Chiu, W.Y. Synthesis of chitosan‐based thermo‐ and pH‐responsive porous nanoparticles by temperature‐dependent self‐assembly method and their application in drug release. J. Polym. Sci. A Polym. Chem., 2009, 47(19), 5126-5136.
[http://dx.doi.org/10.1002/pola.23564]
[5]
Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem., 2017, 8(1), 144-176.
[http://dx.doi.org/10.1039/C6PY01872F]
[6]
Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev., 2006, 58(15), 1655-1670.
[http://dx.doi.org/10.1016/j.addr.2006.09.020] [PMID: 17125884]
[7]
Nafee, N.; Schneider, M.; Lehr, C-M. Charge Modification of Pharmaceutical Nanocarriers: Biological Implications; , 2008, pp. 337-362.
[http://dx.doi.org/10.1007/978-0-387-76554-9_11]
[8]
Stayton, P.S.; Hoffman, A.S. Smart” pH-Responsive Carriers for Intracellular Delivery of Biomolecular Drugs; , 2008, pp. 143-159.
[http://dx.doi.org/10.1007/978-0-387-76554-9_5]
[9]
Chan, A.W.; Whitney, R.A.; Neufeld, R.J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules, 2009, 10(3), 609-616.
[http://dx.doi.org/10.1021/bm801316z] [PMID: 19196004]
[10]
D’Ayala, G.; Malinconico, M.; Laurienzo, P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules, 2008, 13(9), 2069-2106.
[http://dx.doi.org/10.3390/molecules13092069] [PMID: 18830142]
[11]
Draget, K.I.; Smidsrød, O.; Skjåk‐Bræk, G. Alginates from Algae. In: Biopolymers Online; Vandamme, E.J.; De Baets, S.; Steinbüchel, A., Eds.; Wiley, 2002.
[http://dx.doi.org/10.1002/3527600035.bpol6008]
[12]
Ghauri, Z.H.; Islam, A.; Qadir, M.A.; Ghaffar, A.; Gull, N.; Azam, M.; Mehmood, A.; Ghauri, A.A.; Khan, R.U. Novel pH-responsive chitosan/sodium alginate/PEG based hydrogels for release of sodium ceftriaxone. Mater. Chem. Phys., 2022, 277, 125456.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125456]
[13]
Khushbu; Jindal, R. Cyclodextrin mediated controlled release of edaravone from pH-responsive sodium alginate and chitosan based nanocomposites. Int. J. Biolo. Macromolecu., 2022, 202, 11-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.001]
[14]
Reyes-Ortega, F. pH-responsive polymers: properties, synthesis and applications. In: Smart Polymers and their Applications; Elsevier, 2014; pp. 45-92.
[http://dx.doi.org/10.1533/9780857097026.1.45]
[15]
Shalaby, S.W.; Burg, K.J.L. Absorbable and Biodegradable Polymers; CRC Press, 2003.
[http://dx.doi.org/10.1201/9780203493014]
[16]
Bazban-Shotorbani, S.; Hasani-Sadrabadi, M.M.; Karkhaneh, A.; Serpooshan, V.; Jacob, K.I.; Moshaverinia, A.; Mahmoudi, M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release, 2017, 253, 46-63.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.021] [PMID: 28242418]
[17]
Chang, C.; He, M.; Zhou, J.; Zhang, L. Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules, 2011, 44(6), 1642-1648.
[http://dx.doi.org/10.1021/ma102801f]
[18]
Liu, H.; Rong, L.; Wang, B.; Xie, R.; Sui, X.; Xu, H.; Zhang, L.; Zhong, Y.; Mao, Z. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr. Polym., 2017, 176, 299-306.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.085] [PMID: 28927612]
[19]
Liu, Z.; Zhang, S.; Gao, C.; Meng, X.; Wang, S.; Kong, F. Temperature/pH-responsive carboxymethyl cellulose/poly (N-isopropyl acrylamide) interpenetrating polymer network aerogels for drug delivery systems. Polymers, 2022, 14(8), 1578.
[http://dx.doi.org/10.3390/polym14081578] [PMID: 35458328]
[20]
Wang, Y.; Zhang, J.; Zhang, L. An active and pHresponsive film developed by sodium carboxymethyl cellulose/polyvinyl alcohol doped with rose anthocyanin extracts. Food Chem., 2022, 373(Pt B), 131367.
[http://dx.doi.org/10.1016/j.foodchem.2021.131367] [PMID: 34731797]
[21]
Han, L.; Zhao, Y.; Yin, L.; Li, R.; Liang, Y.; Huang, H.; Pan, S.; Wu, C.; Feng, M. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech, 2012, 13(3), 836-845.
[http://dx.doi.org/10.1208/s12249-012-9807-2] [PMID: 22644708]
[22]
Han, S.M.; Kim, J.C.; Shin, Y.; Lee, D.; Sim, T.; Lim, C.; Kang, K.; Lee, E.S.; Youn, Y.S.; Oh, K.T. Development of a ph-responsive polymer based on hyaluronic acid conjugated with imidazole and dodecylamine for nanomedicine delivery. Macromol. Res., 2022, 30(8), 547-556.
[http://dx.doi.org/10.1007/s13233-022-0063-3]
[23]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[24]
Miyazaki, M.; Yuba, E.; Hayashi, H.; Harada, A.; Kono, K. Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjug. Chem., 2018, 29(1), 44-55.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00551] [PMID: 29183110]
[25]
Wang, H.; Zhang, Y.; Liu, Y.; Ren, Y.; Wang, J.; Niu, B.; Li, W. Preparation of curcumin loaded hyaluronic acid-poly (lactic-co-glycolic acid) micelles with pH response and tumor targeting. Eur. Polym. J., 2022, 177, 111450.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111450]
[26]
Ezati, P.; Rhim, J.W. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocoll., 2020, 102, 105629.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105629]
[27]
Gaware, S.A.; Rokade, K.A.; Kale, S.N. Silica-chitosan nanocomposite mediated pH-sensitive drug delivery. J. Drug Deliv. Sci. Technol., 2019, 49, 345-351.
[http://dx.doi.org/10.1016/j.jddst.2018.11.022]
[28]
Heras-Mozos, R.; Gavara, R.; Hernández-Muñoz, P. Chitosan films as pH-responsive sustained release systems of naturally occurring antifungal volatile compounds. Carbohydr. Polym., 2022, 283, 119137.
[http://dx.doi.org/10.1016/j.carbpol.2022.119137] [PMID: 35153012]
[29]
Jing, H.; Huang, X.; Du, X.; Mo, L.; Ma, C.; Wang, H. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr. Polym., 2022, 278, 118993.
[http://dx.doi.org/10.1016/j.carbpol.2021.118993] [PMID: 34973796]
[30]
Obireddy, S.R.; Lai, W.F. ROS-generating amine-functionalized magnetic nanoparticles coupled with carboxymethyl chitosan for pH-responsive release of doxorubicin. Int. J. Nanomedicine, 2022, 17, 589-601.
[http://dx.doi.org/10.2147/IJN.S338897] [PMID: 35173432]
[31]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[32]
Yao, K.D.; Peng, T.; Feng, H.B.; He, Y.Y. Swelling kinetics and release characteristic of crosslinked chitosan: Polyether polymer network (semi‐IPN) hydrogels. J. Polym. Sci. A Polym. Chem., 1994, 32(7), 1213-1223.
[http://dx.doi.org/10.1002/pola.1994.080320702]
[33]
Ma, J.; Xie, Y.; Yang, T.; He, X. Melamine foam with pH‐responsive wettability for fast oil absorption and desorption. Adv. Mater. Interfaces, 2022, 9(10), 2102092.
[http://dx.doi.org/10.1002/admi.202102092]
[34]
Wang, X.; Chen, Z.; Yang, Y.; Guo, H.; Yang, Y.; Tang, C.Y.; Li, X.; Law, W.C. Near-infrared and pH responsive molecular machine for controlled encapsulation and release of drugs. Polym. Test., 2022, 112, 107631.
[http://dx.doi.org/10.1016/j.polymertesting.2022.107631]
[35]
Atta, A.M.; Ezzat, A.O.; Al-Lohedan, H.A.; Tawfeek, A.M.; Alobaidi, A.A. Preparation of pH responsive polystyrene and polyvinyl pyridine nanospheres stabilized by mickering microgel emulsions. Nanomaterials, 2019, 9(12), 1693.
[http://dx.doi.org/10.3390/nano9121693] [PMID: 31816812]
[36]
Morse, A.J.; Dupin, D.; Thompson, K.L.; Armes, S.P.; Ouzineb, K.; Mills, P.; Swart, R. Novel pickering emulsifiers based on pH-responsive poly(tert -butylaminoethyl methacrylate) latexes. Langmuir, 2012, 28(32), 11733-11744.
[http://dx.doi.org/10.1021/la301936k] [PMID: 22794126]
[37]
Bütün, V.; Sönmez, Ş.; Yarligan, S.; Taktak, F.F.; Atay, A.; Bütün, S. Micelles and ‘reverse micelles’ with a novel water-soluble diblock copolymer. Polymer, 2008, 49(19), 4057-4065.
[http://dx.doi.org/10.1016/j.polymer.2008.07.026]
[38]
Ofridam, F.; Tarhini, M.; Lebaz, N.; Gagnière, É.; Mangin, D.; Elaissari, A. pH‐Sensitive polymers: Classification and some fine potential applications. Polym. Adv. Technol., 2021, 32(4), 1455-1484.
[http://dx.doi.org/10.1002/pat.5230]
[39]
Smith, A.E.; Xu, X.; McCormick, C.L. Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog. Polym. Sci., 2010, 35(1-2), 45-93.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.11.005]
[40]
Zhou, J.; Wang, L.; Zha, X.; Wang, H. Synthesis of pH-responsive block copolymer micelles via RAFT polymerization induced self-assembly and its application in emulsifier-free emulsion polymerization. Phosphorus Sulfur Sili. Relat. Elem., 2020, 195(2), 131-141.
[http://dx.doi.org/10.1080/10426507.2019.1655419]
[41]
Smyth, P.; Gibson, T.J.; Irvine, G.; Black, G.; Lavery, D.; Semsarilar, M.; Scott, C.J.; Themistou, E. pH-Responsive benzaldehyde-functionalized PEG-based polymeric nanoparticles for drug delivery: Effect of preparation method on morphology, dye encapsulation and attachment. Eur. Polym. J., 2020, 124, 109471.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109471]
[42]
Blackburn, C.; Tai, H.; Salerno, M.; Wang, X.; Hartsuiker, E.; Wang, W. Folic acid and rhodamine labelled pH responsive hyperbranched polymers: Synthesis, characterization and cell uptake studies. Eur. Polym. J., 2019, 120, 109259.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109259]
[43]
Ahmadkhani, L.; Abbasian, M.; Akbarzadeh, A. Synthesis of sharply thermo and PH responsive PMA-b-PNIPAM-b-PEG-b-PNIPAM-b-PMA by RAFT radical polymerization and its schizophrenic micellization in aqueous solutions. Des. Monomers Polym., 2017, 20(1), 406-418.
[http://dx.doi.org/10.1080/15685551.2017.1314654] [PMID: 29491812]
[44]
Kitajima, H.; Ida, S.; Bhowmik, S.; Yusa, S.; Kanaoka, S. pH-responsive aggregation control of multiarm star polymers depending on the ionic segment sequence of arm polymers. Polym. J., 2022, 54(5), 715-725.
[http://dx.doi.org/10.1038/s41428-022-00621-3]
[45]
He, J.; Zhang, W.; Lv, C.; Chen, R.; Wang, L.; Wang, Y.; Pan, X. Thermo- and pH-responsive star-like polymers synthesized by photoATRP. Polymer, 2021, 215, 123345.
[http://dx.doi.org/10.1016/j.polymer.2020.123345]
[46]
Chen, R.; Jiang, X.; Lu, G.; Liu, W.; Jin, W.; Tian, G.; Huang, X. A well-defined thermo- and pH-responsive double hydrophilic graft copolymer bearing pyridine-containing backbone. Polym. Chem., 2022, 13(19), 2791-2802.
[http://dx.doi.org/10.1039/D2PY00169A]
[47]
Jiang, X.; Dausend, J.; Hafner, M.; Musyanovych, A.; Röcker, C.; Landfester, K.; Mailänder, V.; Nienhaus, G.U. Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells. Biomacromolecules, 2010, 11(3), 748-753.
[http://dx.doi.org/10.1021/bm901348z] [PMID: 20166675]
[48]
Tan, B.H.; Tam, K.C.; Lam, Y.C.; Tan, C.B. Microstructure and rheological properties of pH-responsive core–shell particles. Polymer, 2005, 46(23), 10066-10076.
[http://dx.doi.org/10.1016/j.polymer.2005.08.007]
[49]
Tan, B.H.; Ravi, P.; Tam, K.C. Synthesis and characterization of novel pH‐responsive polyampholyte microgels. Macromol. Rapid Commun., 2006, 27(7), 522-528.
[http://dx.doi.org/10.1002/marc.200500830]
[50]
Tan, B.H.; Tam, K.C. Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. Adv. Colloid Interface Sci., 2008, 136(1-2), 25-44.
[http://dx.doi.org/10.1016/j.cis.2007.07.002] [PMID: 17707760]
[51]
Wang, X.; Dai, J.; Chen, Z.; Zhang, T.; Xia, G.; Nagai, T.; Zhang, Q. Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration. J. Control. Release, 2004, 97(3), 421-429.
[http://dx.doi.org/10.1016/S0168-3659(04)00121-X] [PMID: 15212874]
[52]
Yamasaki, E.N.; Patrickios, C.S. Group transfer polymerization in the bulk: linear polymers and randomly cross-linked networks. Eur. Polym. J., 2003, 39(3), 609-616.
[http://dx.doi.org/10.1016/S0014-3057(02)00244-6]
[53]
Zhu, C.; Jung, S.; Luo, S.; Meng, F.; Zhu, X.; Park, T.G.; Zhong, Z. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers. Biomaterials, 2010, 31(8), 2408-2416.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.077] [PMID: 19963269]
[54]
Chan, Y.; Bulmus, V.; Zareie, M.H.; Byrne, F.L.; Barner, L.; Kavallaris, M. Acid-cleavable polymeric core–shell particles for delivery of hydrophobic drugs. J. Control. Release, 2006, 115(2), 197-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.025] [PMID: 16996635]
[55]
Lansalot, M.; Davis, T.P.; Heuts, J.P.A. RAFT miniemulsion polymerization: influence of the structure of the RAFT agent. Macromolecules, 2002, 35(20), 7582-7591.
[http://dx.doi.org/10.1021/ma012214m]
[56]
Satturwar, P.; Eddine, M.N.; Ravenelle, F.; Leroux, J.C. pH-responsive polymeric micelles of poly(ethylene glycol)-β-poly(alkyl(meth)acrylate-co-methacrylic acid): Influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil. Eur. J. Pharm. Biopharm., 2007, 65(3), 379-387.
[http://dx.doi.org/10.1016/j.ejpb.2006.09.012] [PMID: 17123802]
[57]
Tian, Y.; Bromberg, L.; Lin, S.N.; Alan Hatton, T.; Tam, K.C. Complexation and release of doxorubicin from its complexes with pluronic P85-β-poly(acrylic acid) block copolymers. J. Control. Release, 2007, 121(3), 137-145.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.010] [PMID: 17630011]
[58]
Abou Taleb, M.F. Radiation synthesis of multifunctional polymeric hydrogels for oral delivery of insulin. Int. J. Biol. Macromol., 2013, 62, 341-347.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.004] [PMID: 24055698]
[59]
Rodríguez-Hernández, J.; Lecommandoux, S. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J. Am. Chem. Soc., 2005, 127(7), 2026-2027.
[http://dx.doi.org/10.1021/ja043920g] [PMID: 15713063]
[60]
Kim, J.K.; Yang, S.Y.; Lee, Y.; Kim, Y. Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci., 2010, 35(11), 1325-1349.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.06.002]
[61]
Sanjuan, S.; Tran, Y. Stimuli-responsive interfaces using random polyampholyte brushes. Macromolecules, 2008, 41(22), 8721-8728.
[http://dx.doi.org/10.1021/ma8018798]
[62]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2012, 64, 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[63]
De, S.K.; Aluru, N.R.; Johnson, B.; Crone, W.C.; Beebe, D.J.; Moore, J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J. Microelectromech. Syst., 2002, 11(5), 544-555.
[http://dx.doi.org/10.1109/JMEMS.2002.803281]
[64]
Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today, 2002, 7(10), 569-579.
[http://dx.doi.org/10.1016/S1359-6446(02)02255-9] [PMID: 12047857]
[65]
Chen, T.; Ferris, R.; Zhang, J.; Ducker, R.; Zauscher, S. Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Prog. Polym. Sci., 2010, 35(1-2), 94-112.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.11.004]
[66]
Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49.
[http://dx.doi.org/10.1016/j.mser.2015.04.001] [PMID: 27134415]
[67]
Yoshida, T.; Lai, T.C.; Kwon, G.S.; Sako, K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv., 2013, 10(11), 1497-1513.
[http://dx.doi.org/10.1517/17425247.2013.821978] [PMID: 23930949]
[68]
Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci., 2007, 32(10), 1205-1237.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.003]
[69]
Shakya, A.K.; Sami, H.; Srivastava, A.; Kumar, A. Stability of responsive polymer–protein bioconjugates. Prog. Polym. Sci., 2010, 35(4), 459-486.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.01.003]
[70]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[71]
Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. pH‐responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun., 2019, 40(10), 1800917.
[http://dx.doi.org/10.1002/marc.201800917] [PMID: 30835923]
[72]
Pang, X.; Jiang, Y.; Xiao, Q.; Leung, A.W.; Hua, H.; Xu, C. pH-responsive polymer–drug conjugates: Design and progress. J. Control. Release, 2016, 222, 116-129.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.024] [PMID: 26704934]
[73]
Aubry, J.; Ganachaud, F.; Cohen Addad, J.P.; Cabane, B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir, 2009, 25(4), 1970-1979.
[http://dx.doi.org/10.1021/la803000e] [PMID: 19170510]
[74]
Nasef, A.M.; Gardouh, A.R.; Ghorab, M.M. Formulation and in-vitro evaluation of pantoprazole loaded pH-sensitive polymeric nanoparticles. Future J. Pharm. Sci., 2017, 3(2), 103-117.
[http://dx.doi.org/10.1016/j.fjps.2017.04.004]
[75]
Joshi, V.G.; Mohamed, S. Development and characterization of enteric-coated salbutamol sulphate time release tablets. Int. J. Drug Deliv., 2014, 6, 64-74.
[76]
Sung, H.W.; Sonaje, K.; Liao, Z.X.; Hsu, L.W.; Chuang, E.Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc. Chem. Res., 2012, 45(4), 619-629.
[http://dx.doi.org/10.1021/ar200234q] [PMID: 22236133]
[77]
Chandran, S.; Asghar, L.A.; Mantha, N. Design and evaluation of ethyl cellulose based matrix tablets of ibuprofen with pH modulated release kinetics. Indian J. Pharm. Sci., 2008, 70(5), 596-602.
[http://dx.doi.org/10.4103/0250-474X.45397] [PMID: 21394255]
[78]
Shah, S.A.; Sohail, M.; Minhas, M.U.; Nisar-ur-Rehman, Khan, S.; Hussain, Z.; Mudassir, Mahmood, A.; Kousar, M.; Mahmood, A. pH-responsive CAP-co-poly(methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation. Drug Deliv. Transl. Res., 2019, 9(2), 555-577.
[http://dx.doi.org/10.1007/s13346-018-0486-8]
[79]
Alotaibi, H.F.; Elsamaligy, S.; Mahrous, G.M.; Bayomi, M.A.; Mahmoud, H.A. Design of taste masked enteric orodispersible tablets of diclofenac sodium by applying fluid bed coating technology. Saudi Pharm. J., 2019, 27(3), 354-362.
[http://dx.doi.org/10.1016/j.jsps.2018.12.003] [PMID: 30976178]
[80]
Li, J.; Jin, H.; Razzak, M.A.; Kim, E.J.; Choi, S.S. Crosslinker-free Bovine Serum Albumin-loaded Chitosan/alginate Nanocomplex for pH-responsive Bursting Release of Oral-administered Protein. Biotechnol. Bioprocess Eng.; BBE, 2022, 27(1), 40-50.
[http://dx.doi.org/10.1007/s12257-021-0243-6]
[81]
Kadam, V.D.; Gattani, S.G. Development of colon targeted multiparticulate pulsatile drug delivery system for treating nocturnal asthma. Drug Deliv., 2010, 17(5), 343-351.
[http://dx.doi.org/10.3109/10717541003762821] [PMID: 20429842]
[82]
Cui, C.; Sun, J.; Wang, X.; Yu, Z.; Shi, Y. Factors contributing to drug release from enteric-coated omeprazole capsules: an in vitro and in vivo pharmacokinetic study and IVIVC evaluation in beagle dogs. Dose Response, 2020, 18(1)
[http://dx.doi.org/10.1177/1559325820908980] [PMID: 32180688]
[83]
Mastiholimath, V.S.; Dandagi, P.M.; Jain, S.S.; Gadad, A.P.; Kulkarni, A.R. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int. J. Pharm., 2007, 328(1), 49-56.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.045] [PMID: 16942847]
[84]
Zhou, Y.; Qiu, B.; Yin, X.; Liu, H.; Zhu, L. Concomitant drugs-loaded microcapsules of roxithromycin and theophylline with pH-sensitive controlled-releasing properties. Int. J. Polym. Mater., 2020, 69(11), 679-690.
[http://dx.doi.org/10.1080/00914037.2019.1596917]
[85]
Obeidat, W.M.; Price, J.C. Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method. J. Microencapsul., 2006, 23(2), 195-202.
[http://dx.doi.org/10.1080/02652040500435337] [PMID: 16754375]
[86]
Yu, F.; Li, Y.; Liu, C.S.; Chen, Q.; Wang, G.H.; Guo, W.; Wu, X.E.; Li, D.H.; Wu, W.D.; Chen, X.D. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int. J. Pharm., 2015, 484(1-2), 181-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.055] [PMID: 25724135]
[87]
Naha, P.C.; Kanchan, V.; Manna, P.K.; Panda, A.K. Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles. J. Microencapsul., 2008, 25(4), 248-256.
[http://dx.doi.org/10.1080/02652040801903843] [PMID: 18465311]
[88]
Wu, Z.M.; Zhou, L.; Guo, X.D.; Jiang, W.; Ling, L.; Qian, Y.; Luo, K.Q.; Zhang, L.J. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int. J. Pharm., 2012, 425(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.055] [PMID: 22248666]
[89]
Jelvehgari, M.; Zakeri-Milani, P.; Siahi-Shadbad, M.R.; Loveymi, B.D.; Nokhodchi, A.; Azari, Z.; Valizadeh, H. Development of pH-sensitive insulin nanoparticles using Eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech, 2010, 11(3), 1237-1242.
[http://dx.doi.org/10.1208/s12249-010-9488-7] [PMID: 20686881]
[90]
Agrawal, G.R.; Wakte, P.; Shelke, S. Formulation, physicochemical characterization and in vitro evaluation of human insulin-loaded microspheres as potential oral carrier. Prog. Biomater., 2017, 6(3), 125-136.
[http://dx.doi.org/10.1007/s40204-017-0072-z] [PMID: 28864917]
[91]
Jalil, A.; Khan, S.; Naeem, F.; Haider, M.S.; Sarwar, S.; Riaz, A.; Ranjha, N.M. The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium. Des. Monomers Polym., 2017, 20(1), 308-324.
[http://dx.doi.org/10.1080/15685551.2016.1259834] [PMID: 29491802]
[92]
Sun, S.; Yamamoto, H.; Kawashima, Y.; Cui, F.; Yan, P.; Liang, N. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin. Int. J. Nanomedicine, 2015, 10, 3489-3498.
[http://dx.doi.org/10.2147/IJN.S81715] [PMID: 25999713]
[93]
Farooq, A.; Farooq, A.; Jabeen, S.; Islam, A.; Gull, N.; Khan, R.U.; Shifa ul Haq, H.M.; Mehmood, A.; Hussain, N.; Bilal, M. Designing Kappa-carrageenan/guar gum/polyvinyl alcohol-based pH-responsive silane-crosslinked hydrogels for controlled release of cephradine. J. Drug Deliv. Sci. Technol., 2022, 67, 102969.
[http://dx.doi.org/10.1016/j.jddst.2021.102969]
[94]
Du, X.; Peng, Y.; Zhao, C.; Xing, J. Temperature/pH-responsive carmofur-loaded nanogels rapidly prepared via one-pot laser-induced emulsion polymerization. Colloids Surf. B Biointerfaces, 2022, 217, 112611.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112611] [PMID: 35679736]
[95]
Cetin, M.; Atila, A.; Kadioglu, Y. Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech, 2010, 11(3), 1250-1256.
[http://dx.doi.org/10.1208/s12249-010-9489-6] [PMID: 20697984]
[96]
Liu, L.; Zhang, Y.; Yu, S.; Zhang, Z.; He, C.; Chen, X. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromolecules, 2018, 19(6), 2123-2136.
[http://dx.doi.org/10.1021/acs.biomac.8b00215] [PMID: 29664632]
[97]
Li, C.; Zhou, K.; Chen, D.; Xu, W.; Tao, Y.; Pan, Y.; Meng, K.; Shabbir, M.A.B.; Liu, Q.; Huang, L.; Xie, S. Solid lipid nanoparticles with enteric coating for improving stability, palatability, and oral bioavailability of enrofloxacin. Int. J. Nanomedicine, 2019, 14, 1619-1631.
[http://dx.doi.org/10.2147/IJN.S183479] [PMID: 30880969]
[98]
Gao, G.H.; Li, Y.; Lee, D.S. Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. J. Control. Release, 2013, 169(3), 180-184.
[http://dx.doi.org/10.1016/j.jconrel.2012.11.012] [PMID: 23195533]
[99]
Kim, D.; Lee, E.S.; Oh, K.T.; Gao, Z.G.; Bae, Y.H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008, 4(11), 2043-2050.
[http://dx.doi.org/10.1002/smll.200701275] [PMID: 18949788]
[100]
Lee, E.S.; Oh, K.T.; Kim, D.; Youn, Y.S.; Bae, Y.H. Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-β-poly(ethylene glycol)-β-poly(l-histidine). J. Control. Release, 2007, 123(1), 19-26.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.006] [PMID: 17826863]
[101]
Huh, K.M.; Kang, H.C.; Lee, Y.J.; Bae, Y.H. pH-sensitive polymers for drug delivery. Macromol. Res., 2012, 20(3), 224-233.
[http://dx.doi.org/10.1007/s13233-012-0059-5]
[102]
Li, B.; Meng, Z.; Li, Q.; Huang, X.; Kang, Z.; Dong, H.; Chen, J.; Sun, J.; Dong, Y.; Li, J.; Jia, X.; Sessler, J.L.; Meng, Q.; Li, C. A pH responsive complexation-based drug delivery system for oxaliplatin. Chem. Sci., 2017, 8(6), 4458-4464.
[http://dx.doi.org/10.1039/C7SC01438D] [PMID: 28970876]
[103]
Min, K.H.; Kim, J.H.; Bae, S.M.; Shin, H.; Kim, M.S.; Park, S.; Lee, H.; Park, R.W.; Kim, I.S.; Kim, K.; Kwon, I.C.; Jeong, S.Y.; Lee, D.S. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J. Control. Release, 2010, 144(2), 259-266.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.024] [PMID: 20188131]
[104]
Wang, Y.; Zhou, K.; Huang, G.; Hensley, C.; Huang, X.; Ma, X.; Zhao, T.; Sumer, B.D.; DeBerardinis, R.J.; Gao, J. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater., 2014, 13(2), 204-212.
[http://dx.doi.org/10.1038/nmat3819] [PMID: 24317187]
[105]
Zhao, T.; Huang, G.; Li, Y.; Yang, S.; Ramezani, S.; Lin, Z.; Wang, Y.; Ma, X.; Zeng, Z.; Luo, M.; de Boer, E.; Xie, X.-J.; Thibodeaux, J.; Brekken, R. A.; Sun, X.; Sumer, B. D.; Gao, J. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nature Biomedical Engineering, 2016, 1(1), 0006.
[http://dx.doi.org/10.1038/s41551-016-0006]
[106]
Montha, W.; Maneeprakorn, W.; Buatong, N.; Tang, I.M.; Pon-On, W. Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn, Zn)Fe 2 O 4 nanoparticles: Biological activity and pH-responsive drug release. Mater. Sci. Eng. C, 2016, 59, 235-240.
[http://dx.doi.org/10.1016/j.msec.2015.09.098] [PMID: 26652369]
[107]
Sadighian, S.; Rostamizadeh, K.; Hosseini-Monfared, H.; Hamidi, M. Doxorubicin-conjugated core–shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf. B Biointerfaces, 2014, 117, 406-413.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.001] [PMID: 24675279]
[108]
Unsoy, G.; Khodadust, R.; Yalcin, S.; Mutlu, P.; Gunduz, U. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci., 2014, 62, 243-250.
[http://dx.doi.org/10.1016/j.ejps.2014.05.021] [PMID: 24931189]
[109]
Feng, C.; Wang, Z.; Jiang, C.; Kong, M.; Zhou, X.; Li, Y.; Cheng, X.; Chen, X. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. Int. J. Pharm., 2013, 457(1), 158-167.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.079] [PMID: 24029170]
[110]
Shalviri, A.; Raval, G.; Prasad, P.; Chan, C.; Liu, Q.; Heerklotz, H.; Rauth, A.M.; Wu, X.Y. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur. J. Pharm. Biopharm., 2012, 82(3), 587-597.
[http://dx.doi.org/10.1016/j.ejpb.2012.09.001] [PMID: 22995704]
[111]
Zhang, Y.; Yang, C.; Wang, W.; Liu, J.; Liu, Q.; Huang, F.; Chu, L.; Gao, H.; Li, C.; Kong, D.; Liu, Q.; Liu, J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci. Rep., 2016, 6(1), 21225.
[http://dx.doi.org/10.1038/srep21225] [PMID: 26876480]
[112]
Vivek, R.; Nipun Babu, V.; Thangam, R.; Subramanian, K.S.; Kannan, S. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf. B Biointerfaces, 2013, 111, 117-123.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.018] [PMID: 23787278]
[113]
Ahmad, Z.; Majeed, S.; Shah, A. In vitro release and cytotoxicity of cisplatin loaded methoxy poly (ethylene glycol)- block -poly (glutamic acid) nanoparticles against human breast cancer cell lines. J. Drug Deliv. Sci. Technol., 2018, 43, 85-93.
[http://dx.doi.org/10.1016/j.jddst.2017.09.016]
[114]
John, J.V.; Uthaman, S.; Augustine, R.; Manickavasagam Lekshmi, K.; Park, I.K.; Kim, I. Biomimetic pH/redox dual stimuli‐responsive zwitterionic polymer block poly(L ‐histidine) micelles for intracellular delivery of doxorubicin into tumor cells. J. Polym. Sci. A Polym. Chem., 2017, 55(12), 2061-2070.
[http://dx.doi.org/10.1002/pola.28602]
[115]
Johnson, R.P.; Jeong, Y.I.; Choi, E.; Chung, C.W.; Kang, D.H.; Oh, S.O.; Suh, H.; Kim, I. Biocompatible poly(2‐hydroxyethyl methacrylate)‐ b ‐poly(L ‐histidine) hybrid materials for ph‐sensitive intracellular anticancer drug delivery. Adv. Funct. Mater., 2012, 22(5), 1058-1068.
[http://dx.doi.org/10.1002/adfm.201102756]
[116]
Chytil, P.; Šírová, M.; Kudláčová, J.; Říhová, B.; Ulbrich, K.; Etrych, T. Bloodstream stability predetermines the antitumor efficacy of micellar polymer–doxorubicin drug conjugates with ph-triggered drug release. Mol. Pharm., 2018, 15(9), 3654-3663.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00156] [PMID: 29543465]
[117]
Zhou, Z.; Li, L.; Yang, Y.; Xu, X.; Huang, Y. Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials, 2014, 35(24), 6622-6635.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.059] [PMID: 24814427]
[118]
Xu, X.; Li, L.; Zhou, Z.; Sun, W.; Huang, Y. Dual-pH responsive micelle platform for co-delivery of axitinib and doxorubicin. Int. J. Pharm., 2016, 507(1-2), 50-60.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.060] [PMID: 27154256]
[119]
Thambi, T.; Deepagan, V.G.; Yoo, C.K.; Park, J.H. Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier. Polymer, 2011, 52(21), 4753-4759.
[http://dx.doi.org/10.1016/j.polymer.2011.08.024]
[120]
Kim, J.O.; Kabanov, A.V.; Bronich, T.K. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J. Control. Release, 2009, 138(3), 197-204.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.019] [PMID: 19386272]
[121]
Li, H.; Li, M.; Chen, C.; Fan, A.; Kong, D.; Wang, Z.; Zhao, Y. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int. J. Pharm., 2015, 495(1), 572-578.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.022] [PMID: 26387617]
[122]
Tang, R.; Ji, W.; Panus, D.; Palumbo, R.N.; Wang, C. Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells. J. Control. Release, 2011, 151(1), 18-27.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.005] [PMID: 21194551]
[123]
Hamaguchi, T.; Matsumura, Y.; Suzuki, M.; Shimizu, K.; Goda, R.; Nakamura, I.; Nakatomi, I.; Yokoyama, M.; Kataoka, K.; Kakizoe, T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer, 2005, 92(7), 1240-1246.
[http://dx.doi.org/10.1038/sj.bjc.6602479] [PMID: 15785749]
[124]
Licciardi, M.; Craparo, E.F.; Giammona, G.; Armes, S.P.; Tang, Y.; Lewis, A.L. in vitro biological evaluation of folate-functionalized block copolymer micelles for selective anti-cancer drug delivery. Macromol. Biosci., 2008, 8(7), 615-626.
[http://dx.doi.org/10.1002/mabi.200800009] [PMID: 18432597]
[125]
Liu, H.; Chen, H.; Cao, F.; Peng, D.; Chen, W.; Zhang, C. Amphiphilic Block Copolymer Poly (Acrylic Acid)-β-Polycaprolactone as a Novel pH-sensitive Nanocarrier for Anti-Cancer Drugs Delivery: In-vitro and In-vivo Evaluation. Polymers, 2019, 11(5), 820.
[http://dx.doi.org/10.3390/polym11050820] [PMID: 31067730]
[126]
Qu, Y.; Chu, B.; Wei, X.; Lei, M.; Hu, D.; Zha, R.; Zhong, L.; Wang, M.; Wang, F.; Qian, Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J. Control. Release, 2019, 296, 93-106.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.016] [PMID: 30664976]
[127]
Shim, M.S.; Kwon, Y.J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev., 2012, 64(11), 1046-1059.
[http://dx.doi.org/10.1016/j.addr.2012.01.018] [PMID: 22329941]
[128]
Zakeri, A.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S.M.; Hashemi, S.A.R.; Karimi Zade, A.; Amani, A.M.; Savardashtaki, A.; Mirzaei, E.; Jahandideh, S.; Movahedpour, A. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev. Exp., 2018, 9(1), 1488497.
[http://dx.doi.org/10.1080/20022727.2018.1488497] [PMID: 30410712]
[129]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Poly(ethylenimine) and its role in gene delivery. J. Control. Release, 1999, 60(2-3), 149-160.
[http://dx.doi.org/10.1016/S0168-3659(99)00090-5] [PMID: 10425321]
[130]
Manganiello, M.J.; Cheng, C.; Convertine, A.J.; Bryers, J.D.; Stayton, P.S. Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials, 2012, 33(7), 2301-2309.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.019] [PMID: 22169826]
[131]
Chim, Y.T.A.; Lam, J.K.W.; Ma, Y.; Armes, S.P.; Lewis, A.L.; Roberts, C.J.; Stolnik, S.; Tendler, S.J.B.; Davies, M.C. Structural study of DNA condensation induced by novel phosphorylcholine-based copolymers for gene delivery and relevance to DNA protection. Langmuir, 2005, 21(8), 3591-3598. a
[http://dx.doi.org/10.1021/la047480i] [PMID: 15807606]
[132]
Cho, H.Y.; Srinivasan, A.; Hong, J.; Hsu, E.; Liu, S.; Shrivats, A.; Kwak, D.; Bohaty, A.K.; Paik, H.; Hollinger, J.O.; Matyjaszewski, K. Synthesis of biocompatible PEG-Based star polymers with cationic and degradable core for siRNA delivery. Biomacromolecules, 2011, 12(10), 3478-3486. a
[http://dx.doi.org/10.1021/bm2006455] [PMID: 21894897]
[133]
Yue, X.; Zhang, W.; Xing, J.; Zhang, B.; Deng, L.; Guo, S.; Yang, J.; Zhang, Q.; Dong, A. Self-assembled cationic triblock copolymer mPEG-b-PDLLA-b-PDMA nanoparticles as nonviral gene vector. Soft Matter, 2012, 8(7), 2252. a
[http://dx.doi.org/10.1039/c2sm07068e]
[134]
Lee, C.H.; Kim, J.H.; Lee, H.J.; Jeon, K.; Lim, H.; Choi, H.; Lee, E.R.; Park, S.H.; Park, J.Y.; Hong, S.; Kim, S.; Cho, S.G. The generation of iPS cells using non-viral magnetic nanoparticlebased transfection. Biomaterials, 2011, 32(28), 6683-6691.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.070] [PMID: 21683440]
[135]
Nishiyama, N.; Bae, Y.; Miyata, K.; Fukushima, S.; Kataoka, K. Smart polymeric micelles for gene and drug delivery. Drug Discov. Today. Technol., 2005, 2(1), 21-26.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.007] [PMID: 24981751]
[136]
Park, H.J.; Yang, F.; Cho, S.W. Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv. Drug Deliv. Rev., 2012, 64(1), 40-52.
[http://dx.doi.org/10.1016/j.addr.2011.09.005] [PMID: 21971337]
[137]
Ho, V.H.B.; Slater, N.K.H.; Chen, R. pH-responsive endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models. Biomaterials, 2011, 32(11), 2953-2958.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.010] [PMID: 21272931]
[138]
Zhu, J.; Tang, A.; Law, L.P.; Feng, M.; Ho, K.M.; Lee, D.K.L.; Harris, F.W.; Li, P. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug. Chem., 2005, 16(1), 139-146.
[http://dx.doi.org/10.1021/bc049895l] [PMID: 15656585]
[139]
Khoerunnisa, Mazrad, Z. A. I.; In, I.; Park, S. Y. pH-switchable bacteria detection using zwitterionic fluorescent polymer. In: Biosensors and Bioelectronics; , 2017; 90, pp. 394-402.
[http://dx.doi.org/10.1016/j.bios.2016.12.013]
[140]
Paek, K.; Yang, H.; Lee, J.; Park, J.; Kim, B.J. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide. ACS Nano, 2014, 8(3), 2848-2856.
[http://dx.doi.org/10.1021/nn406657b] [PMID: 24548181]
[141]
Phuong, P.T.M.; Ryplida, B.; In, I.; Park, S.Y. High performance of electrochemical and fluorescent probe by interaction of cell and bacteria with pH-sensitive polymer dots coated surfaces. Mater. Sci. Eng. C, 2019, 101, 159-168.
[http://dx.doi.org/10.1016/j.msec.2019.03.098] [PMID: 31029309]
[142]
Zhao, Y.; Shi, C.; Yang, X.; Shen, B.; Sun, Y.; Chen, Y.; Xu, X.; Sun, H.; Yu, K.; Yang, B.; Lin, Q. pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano, 2016, 10(6), 5856-5863.
[http://dx.doi.org/10.1021/acsnano.6b00770] [PMID: 27232534]
[143]
Kang, S.I.; Bae, Y.H. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release, 2003, 86(1), 115-121.
[http://dx.doi.org/10.1016/S0168-3659(02)00409-1] [PMID: 12490377]
[144]
Gonçalves, J.; Crucho, C.; Alves, S.; Baleizão, C.; Farinha, J. Hybrid mesoporous nanoparticles for ph-actuated controlled release. Nanomaterials, 2019, 9(3), 483.
[http://dx.doi.org/10.3390/nano9030483] [PMID: 30917559]
[145]
Li, H.; Go, G.; Ko, S.Y.; Park, J.O.; Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct., 2016, 25(2), 027001.
[http://dx.doi.org/10.1088/0964-1726/25/2/027001]
[146]
Li, X.; Cai, X.; Gao, Y.; Serpe, M.J. Reversible bidirectional bending of hydrogel-based bilayer actuators. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(15), 2804-2812.
[http://dx.doi.org/10.1039/C7TB00426E] [PMID: 32264167]
[147]
Shang, J.; Theato, P. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Soft Matter, 2018, 14(41), 8401-8407.
[http://dx.doi.org/10.1039/C8SM01728J] [PMID: 30311935]
[148]
Cheng, Y.; Huang, C.; Yang, D.; Ren, K.; Wei, J. Bilayer hydrogel mixed composites that respond to multiple stimuli for environmental sensing and underwater actuation. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(48), 8170-8179.
[http://dx.doi.org/10.1039/C8TB02242A] [PMID: 32254936]
[149]
Zarzar, L.D.; Kim, P.; Aizenberg, J. Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv. Mater., 2011, 23(12), 1442-1446.
[http://dx.doi.org/10.1002/adma.201004231] [PMID: 21433110]
[150]
Hester, J.F.; Olugebefola, S.C.; Mayes, A.M. Preparation of pH-responsive polymer membranes by self-organization. J. Membr. Sci., 2002, 208(1-2), 375-388.
[http://dx.doi.org/10.1016/S0376-7388(02)00317-4]
[151]
Jiang, J.H.; Zhu, L.P.; Zhang, H.T.; Zhu, B.K.; Xu, Y.Y. Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J. Membr. Sci., 2014, 457, 73-81.
[http://dx.doi.org/10.1016/j.memsci.2014.01.043]
[152]
Yang, H.; Fang, S.; Song, H.M.; Zhu, L.J.; Zeng, Z.X. pH-responsive poly(vinylidene fluoride)/poly(acrylic acid) porous membranes prepared via an vapor induced phase separation technique for removing copper ions from water. Mater. Lett., 2020, 260, 126957.
[http://dx.doi.org/10.1016/j.matlet.2019.126957]
[153]
Xian, Y.; Shui, Y.; Li, M.; Pei, C.; Zhang, Q.; Yao, Y. pH‐Dependent thermoresponsive poly[2‐(diethylamino)ethyl acrylamide]‐grafted PVDF membranes with switchable wettability for efficient emulsion separation. J. Appl. Polym. Sci., 2020, 137(35), 49032.
[http://dx.doi.org/10.1002/app.49032]
[154]
Liu, H.; Yang, S.; Liu, Y.; Miao, M.; Zhao, Y.; Sotto, A.; Gao, C.; Shen, J. Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning. J. Membr. Sci., 2019, 579, 230-239.
[http://dx.doi.org/10.1016/j.memsci.2019.03.010]
[155]
Willott, J.D.; Nielen, W.M.; de Vos, W.M. Stimuli-responsive membranes through sustainable aqueous phase separation. ACS Appl. Polym. Mater., 2020, 2(2), 659-667.
[http://dx.doi.org/10.1021/acsapm.9b01006] [PMID: 32090202]
[156]
Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Kovářík, T.; Křenek, T.; Pasha, S.K.K. 3D and 4D printing of pH-responsive and functional polymers and their composites. In: 3D and 4D Printing of Polymer Nanocomposite Materials; Elsevier, 2020; pp. 85-117.
[http://dx.doi.org/10.1016/B978-0-12-816805-9.00004-1]
[157]
Pourmasoumi, P.; Moghaddam, A.; Nemati Mahand, S.; Heidari, F.; Salehi Moghaddam, Z.; Arjmand, M.; Kühnert, I.; Kruppke, B.; Wiesmann, H.P.; Khonakdar, H.A. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. J. Biomater. Sci. Polym. Ed., 2023, 34(1), 108-146.
[http://dx.doi.org/10.1080/09205063.2022.2110480] [PMID: 35924585]
[158]
You, Y.; Yang, J.; Zheng, Q.; Wu, N.; Lv, Z.; Jiang, Z. Ultra-stretchable hydrogels with hierarchical hydrogen bonds. Sci. Rep., 2020, 10(1), 11727.
[http://dx.doi.org/10.1038/s41598-020-68678-9] [PMID: 32678203]
[159]
Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci. Technol., 2020, 105, 93-144.
[http://dx.doi.org/10.1016/j.tifs.2020.08.014]
[160]
Chen, H.; Zhang, M.; Bhandari, B.; Yang, C. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocoll., 2020, 100, 105438.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105438]
[161]
Ding, L.; Li, X.; Hu, L.; Zhang, Y.; Jiang, Y.; Mao, Z.; Xu, H.; Wang, B.; Feng, X.; Sui, X. A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr. Polym., 2020, 233, 115859.
[http://dx.doi.org/10.1016/j.carbpol.2020.115859] [PMID: 32059910]
[162]
Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem., 2019, 272, 306-312.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.041] [PMID: 30309548]
[163]
Chen, S.; Wu, M.; Lu, P.; Gao, L.; Yan, S.; Wang, S. Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. Int. J. Biol. Macromol., 2020, 149, 271-280.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.231] [PMID: 31987949]
[164]
Froiio, F.; Ginot, L.; Paolino, D.; Lebaz, N.; Bentaher, A.; Fessi, H.; Elaissari, A. Essential oils-loaded polymer particles: preparation, characterization and antimicrobial property. Polymers , 2019, 11(6), 1017.
[http://dx.doi.org/10.3390/polym11061017] [PMID: 31181851]
[165]
Sun, G.; Chi, W.; Zhang, C.; Xu, S.; Li, J.; Wang, L. Developing a green film with pH-sensitivity and antioxidant activity based on к-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocoll., 2019, 94, 345-353.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.039]
[166]
Yong, H.; Wang, X.; Zhang, X.; Liu, Y.; Qin, Y.; Liu, J. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll., 2019, 94, 93-104.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.012]
[167]
Lorenzo, R.A.; Carro, A.M.; Concheiro, A.; Alvarez-Lorenzo, C. Stimuli-responsive materials in analytical separation. Anal. Bioanal. Chem., 2015, 407(17), 4927-4948.
[http://dx.doi.org/10.1007/s00216-015-8679-1] [PMID: 25910881]
[168]
Ekici, S. Intelligent poly(N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies. J. Mater. Sci., 2011, 46(9), 2843-2850.
[http://dx.doi.org/10.1007/s10853-010-5158-0]
[169]
Eldin, M.S.M.; El-Sherif, H.M.; Soliman, E.A.; Elzatahry, A.A.; Omer, A.M. Polyacrylamide‐grafted carboxymethyl cellulose: Smart pH‐sensitive hydrogel for protein concentration. J. Appl. Polym. Sci., 2011, 122(1), 469-479.
[http://dx.doi.org/10.1002/app.33283]
[170]
Li, Z.; Wang, Y.; Wu, N.; Chen, Q.; Wu, K. Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism. Environ. Sci. Pollut. Res. Int., 2013, 20(3), 1511-1525.
[http://dx.doi.org/10.1007/s11356-012-0973-2] [PMID: 22614052]
[171]
Loh, X.J.; Roshan Deen, G.; Gan, Y.Y.; Gan, L.H. Water-sorption and metal-uptake behavior of pH-responsive poly (N-acryloyl-N?-methylpiperazine) gels. J. Appl. Polym. Sci., 2001, 80(2), 268-273.
[http://dx.doi.org/10.1002/1097-4628(20010411)80:2<268::AID-APP1095>3.0.CO;2-I]
[172]
Yildiz, U.; Kemik, Ö.F.; Hazer, B. The removal of heavy metal ions from aqueous solutions by novel pH-sensitive hydrogels. J. Hazard. Mater., 2010, 183(1-3), 521-532.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.055] [PMID: 20709450]
[173]
Arif, Z.U.; Khalid, M.Y.; Zolfagharian, A.; Bodaghi, M. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. React. Funct. Polym., 2022, 179, 105374.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105374]
[174]
Khalid, M.Y.; Arif, Z.U.; Noroozi, R.; Zolfagharian, A.; Bodaghi, M. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. J. Manuf. Process., 2022, 81, 759-797.
[http://dx.doi.org/10.1016/j.jmapro.2022.07.035]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy