Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

HPV16 Genomes: In Silico Analysis of E6 and E7 Oncoproteins in 20 South American Variants

Author(s): Márcio Fabrício Falcão de Paula Filho, Lara Luisa Lopes Chrisóstomo and Isaac Farias Cansanção*

Volume 25, Issue 4, 2024

Published on: 09 May, 2024

Page: [316 - 321] Pages: 6

DOI: 10.2174/0113892029293113240427065916

Price: $65

Abstract

Background: Human papillomavirus (HPV) is the main risk factor for the development of squamous cell cervical cancer, and E6 oncoprotein and E7 oncoprotein are important components of the viral genome and its oncogenic potential. It is known that different viral variants of HPV16 have different pathology and impact on the development of neoplasia, although few studies have been performed on South American variants.

Objective: Therefore, the present study aimed to analyze in silico the genomic diversity of HPV16 in 20 complete genome variants of South America in the National Center for Biotechnology Information (NCBI) database.

Methods: We performed a descriptive study to characterize the polymorphic regions of the E6 and E7 genes in HPV16 variants, using software for genomic data and single nucleotide polymorphism (SNP) analysis and others for phylogenetic analysis.

Results: The variants analyzed included six SNPs linked to cancer (A131G, G145T, C335T, T350G, C712A, and T732C) and significant variation (798 nucleotide substitutions). Despite this, the variants showed low genetic diversity. Eighteen variants of unclear significance (VUS) were identified, 10 of which were in the coding E6 regions and 8 in the coding E7 regions. The prevalence of lineage D variants is of concern due to their pathology in cervical cancer and requires more research and epidemiological vigilance regarding their prevalence in the population.

Conclusion: The data obtained in this study may contribute to future research on South American variants of HPV16, their pathogenicity, and the development of treatments.

« Previous
Graphical Abstract

[1]
Nikolaidis, M.; Tsakogiannis, D.; Bletsa, G.; Mossialos, D.; Kottaridi, C.; Iliopoulos, I.; Markoulatos, P.; Amoutzias, G.D. HPV16-Genotyper: A computational tool for risk-assessment, lineage genotyping and recombination detection in hpv16 sequences, based on a large-scale evolutionary analysis. Diversity, 2021, 13(10), 497-497.
[http://dx.doi.org/10.3390/d13100497]
[2]
Oliveira, C.M.; Bravo, I.G.; Souza, N.C.S.; Genta, M.L.N.D.; Fregnani, J.H.T.G.; Tacla, M.; Carvalho, J.P.; Longatto-Filho, A.; Levi, J.E. High-level of viral genomic diversity in cervical cancers: A Brazilian study on human papillomavirus type 16. Infect. Genet. Evol., 2015, 34, 44-51.
[http://dx.doi.org/10.1016/j.meegid.2015.07.002] [PMID: 26160543]
[3]
Cornet, I.; Gheit, T.; Franceschi, S.; Vignat, J.; Burk, R.D.; Sylla, B.S.; Tommasino, M.; Clifford, G.M. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J. Virol., 2012, 86(12), 6855-6861.
[http://dx.doi.org/10.1128/JVI.00483-12] [PMID: 22491459]
[4]
Kjaer, S.K.; Nygård, M.; Sundström, K.; Munk, C.; Berger, S.; Dzabic, M.; Fridrich, K.E.; Waldstrøm, M.; Sørbye, S.W.; Bautista, O.; Group, T.; Luxembourg, A. Long-term effectiveness of the nine-valent human papillomavirus vaccine in Scandinavian women: interim analysis after 8 years of follow-up. Hum. Vaccin. Immunother., 2021, 17(4), 943-949.
[http://dx.doi.org/10.1080/21645515.2020.1839292] [PMID: 33326342]
[5]
Ntanasis-Stathopoulos, I.; Kyriazoglou, A.; Liontos, M.; A Dimopoulos, M.; Gavriatopoulou, M. Current trends in the management and prevention of human papillomavirus (HPV) infection. JBUON, 2020, 25(3), 1281-1285.
[PMID: 32862567]
[6]
Yang, A.; Farmer, E.; Wu, T.C.; Hung, C.F. Perspectives for therapeutic HPV vaccine development. J. Biomed. Sci., 2016, 23(1), 75.
[http://dx.doi.org/10.1186/s12929-016-0293-9] [PMID: 27809842]
[7]
World Health Organization. Cervical Cancer. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (Accessed on: 05-03-2024)
[8]
Clifford, G.M.; Tenet, V.; Georges, D.; Alemany, L.; Pavón, M.A.; Chen, Z.; Yeager, M.; Cullen, M.; Boland, J.F.; Bass, S.; Steinberg, M.; Raine-Bennett, T.; Lorey, T.; Wentzensen, N.; Walker, J.; Zuna, R.; Schiffman, M.; Mirabello, L. Human papillomavirus 16 sub-lineage dispersal and cervical cancer risk worldwide: Whole viral genome sequences from 7116 HPV16-positive women. Papillomavirus Res., 2019, 7, 67-74.
[http://dx.doi.org/10.1016/j.pvr.2019.02.001] [PMID: 30738204]
[9]
Fertey, J.; Hagmann, J.; Ruscheweyh, H.J.; Munk, C.; Kjaer, S.; Huson, D.; Haedicke-Jarboui, J.; Stubenrauch, F.; Iftner, T. Methylation of CpG 5962 in L1 of the human papillomavirus 16 genome as a potential predictive marker for viral persistence: A prospective large cohort study using cervical swab samples. Cancer Med., 2020, 9(3), 1058-1068.
[http://dx.doi.org/10.1002/cam4.2771] [PMID: 31856411]
[10]
Togtema, M.; Jackson, R.; Richard, C.; Niccoli, S.; Zehbe, I. The human papillomavirus 16 European-T350G E6 variant can immortalize but not transform keratinocytes in the absence of E7. Virology, 2015, 485, 274-282.
[http://dx.doi.org/10.1016/j.virol.2015.07.025] [PMID: 26318249]
[11]
Hsu, I.C.; Metcalf, R.A.; Sun, T.; Welsh, J.A.; Wang, N.J.; Harris, C.C. Mutational hot spot in the p53 gene in human hepatocellular carcinomas. Nature, 1991, 350(6317), 427-428.
[http://dx.doi.org/10.1038/350427a0] [PMID: 1849234]
[12]
Niccoli, S.; Abraham, S.; Richard, C.; Zehbe, I. The Asian-American E6 variant protein of human papillomavirus 16 alone is sufficient to promote immortalization, transformation, and migration of primary human foreskin keratinocytes. J. Virol., 2012, 86(22), 12384-12396.
[http://dx.doi.org/10.1128/JVI.01512-12] [PMID: 22951839]
[13]
Kumar, A.; Hussain, S.; Yadav, I.S.; Gissmann, L.; Natarajan, K.; Das, B.C.; Bharadwaj, M. Identification of human papillomavirus-16 E6 variation in cervical cancer and their impact on T and B cell epitopes. J. Virol. Methods, 2015, 218, 51-58.
[http://dx.doi.org/10.1016/j.jviromet.2015.03.008] [PMID: 25800725]
[14]
Basak, P.; Maitra-Majee, S.; Das, J.K.; Mukherjee, A.; Ghosh Dastidar, S.; Pal Choudhury, P.; Lahiri Majumder, A. An evolutionary analysis identifies a conserved pentapeptide stretch containing the two essential lysine residues for rice L-myo-inositol 1-phosphate synthase catalytic activity. PLoS One, 2017, 12(9), e0185351-e0185351.
[http://dx.doi.org/10.1371/journal.pone.0185351] [PMID: 28950028]
[15]
Crook, T.; Wrede, D.; Tidy, J.A.; Vousden, K.H.; Wrede, D.; Tidy, J.; Mason, W.P.; Evans, D.J. Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. Lancet, 1992, 339(8801), 1070-1073.
[http://dx.doi.org/10.1016/0140-6736(92)90662-M] [PMID: 1349102]
[16]
Qmichou, Z.; Khyatti, M.; Berraho, M.; Ennaji, M.M.; Benbacer, L.; Nejjari, C.; Benjaafar, N.; Benider, A.; Attaleb, M.; El Mzibri, M. Analysis of mutations in the E6 oncogene of human papillomavirus 16 in cervical cancer isolates from Moroccan women. BMC Infect. Dis., 2013, 13(1), 378.
[http://dx.doi.org/10.1186/1471-2334-13-378] [PMID: 23953248]
[17]
Pal, A.; Kundu, R. Human papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol., 2020, 10(3116), 3116.
[http://dx.doi.org/10.3389/fmicb.2019.03116] [PMID: 32038557]
[18]
Yousefi, Z.; Aria, H.; Ghaedrahmati, F.; Bakhtiari, T.; Azizi, M.; Bastan, R.; Hosseini, R.; Eskandari, N. An update on human papilloma virus vaccines: History, types, protection, and efficacy. Front. Immunol., 2022, 12, 805695.
[http://dx.doi.org/10.3389/fimmu.2021.805695] [PMID: 35154080]
[19]
Draper, L.M.; Kwong, M.L.M.; Gros, A.; Stevanović, S.; Tran, E.; Kerkar, S.; Raffeld, M.; Rosenberg, S.A.; Hinrichs, C.S. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6. Clin. Cancer Res., 2015, 21(19), 4431-4439.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3341] [PMID: 26429982]
[20]
Verli, H. Bioinformática: da Biologia à flexibilidade molecular, 1st; Sociedade Brasileira de Bioquímica e Biologia Molecular: São Paulo, 2014.
[21]
Das, J.K.; Roy, S. A study on non-synonymous mutational patterns in structural proteins of SARS-CoV-2. Genome, 2021, 64(7), 665-678.
[http://dx.doi.org/10.1139/gen-2020-0157] [PMID: 33788636]
[22]
Kim, Y.B.; Song, Y.S.; Jeon, Y.T.; Park, J.S.; Um, S.J.; Kim, J.W.; Park, N.H.; Kang, S.B.; Lee, H.P. Sequence variation and the transcriptional activity of the upstream regulatory region in human papillomavirus 16 E7 variants in cervical cancer of Korean women. Oncol. Rep., 2005, 14(2), 459-464.
[http://dx.doi.org/10.3892/or.2012.1837] [PMID: 16012730]
[23]
Egawa, N. Papillomaviruses and cancer: commonalities and differences in HPV carcinogenesis at different sites of the body. Int. J. Clin. Oncol., 2023, 28(8), 956-964.
[http://dx.doi.org/10.1007/s10147-023-02340-y] [PMID: 37199886]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy